File: mat2str.m

package info (click to toggle)
octave 3.8.2-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 84,396 kB
  • ctags: 45,547
  • sloc: cpp: 293,356; ansic: 42,041; fortran: 23,669; sh: 13,629; objc: 7,890; yacc: 7,093; lex: 3,442; java: 2,125; makefile: 1,589; perl: 1,009; awk: 974; xml: 34
file content (147 lines) | stat: -rw-r--r-- 4,325 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
## Copyright (C) 2002-2013 Rolf Fabian
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{s} =} mat2str (@var{x}, @var{n})
## @deftypefnx {Function File} {@var{s} =} mat2str (@var{x}, @var{n}, "class")
## Format real, complex, and logical matrices as strings.  The 
## returned string may be used to reconstruct the original matrix by using
## the @code{eval} function.
##
## The precision of the values is given by @var{n}.  If @var{n} is a
## scalar then both real and imaginary parts of the matrix are printed
## to the same precision.  Otherwise @code{@var{n}(1)} defines the
## precision of the real part and @code{@var{n}(2)} defines the
## precision of the imaginary part.  The default for @var{n} is 15.
##
## If the argument @qcode{"class"} is given then the class of @var{x} is
## included in the string in such a way that @code{eval} will result in the
## construction of a matrix of the same class.
##
## @example
## @group
## mat2str ([ -1/3 + i/7; 1/3 - i/7 ], [4 2])
##      @result{} "[-0.3333+0.14i;0.3333-0.14i]"
##
## mat2str ([ -1/3 +i/7; 1/3 -i/7 ], [4 2])
##      @result{} "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]"
##
## mat2str (int16 ([1 -1]), "class")
##      @result{} "int16([1 -1])"
##
## mat2str (logical (eye (2)))
##      @result{} "[true false;false true]"
##
## isequal (x, eval (mat2str (x)))
##      @result{} 1
## @end group
## @end example
##
## @seealso{sprintf, num2str, int2str}
## @end deftypefn

## Author: Rolf Fabian <fabian@tu-cottbus.de>

function s = mat2str (x, n = 15, cls = "")

  if (nargin < 1 || nargin > 3 || ! (isnumeric (x) || islogical (x)))
    print_usage ();
  elseif (ndims (x) > 2)
    error ("mat2str: X must be two dimensional");
  endif

  if (nargin == 2 && ischar (n))
    cls = n;
    n = 15;
  elseif (isempty (n))
    n = 15;   # Default precision
  endif

  x_islogical = islogical (x);
  x_iscomplex = iscomplex (x);

  if (x_iscomplex)
    if (isscalar (n))
      n = [n, n];
    endif
    fmt = sprintf ("%%.%dg%%+.%dgi", n(1), n(2));
  elseif (x_islogical)
    v = {"false", "true"};
    fmt = "%s";
  else
    fmt = sprintf ("%%.%dg", n(1));
  endif

  nel = numel (x);

  if (nel == 0)
    ## Empty, only print brackets
    s = "[]";
  elseif (nel == 1)
    ## Scalar X, don't print brackets
    if (x_iscomplex)
      s = sprintf (fmt, real (x), imag (x));
    elseif (x_islogical)
      s = v{x+1};
    else
      s = sprintf (fmt, x);
    endif
  else
    ## Non-scalar X, print brackets
    fmt = [fmt " "];
    if (x_iscomplex)
      t = x.';
      s = sprintf (fmt, [real(t(:))'; imag(t(:))']);
    elseif (x_islogical)
      t = v(x+1);
      s = cstrcat (sprintf (fmt, t{:}));
    else
      s = sprintf (fmt, x.');
    endif

    s = ["[" s];
    s(end) = "]";
    idx = strfind (s, " ");
    nc = columns (x);
    s(idx(nc:nc:end)) = ";";
  endif

  if (strcmp ("class", cls))
    s = [class(x) "(" s ")"];
  endif

endfunction


%!assert (mat2str (0.7), "0.7")
%!assert (mat2str (pi), "3.14159265358979")
%!assert (mat2str (pi, 5), "3.1416")
%!assert (mat2str (single (pi), 5, "class"), "single(3.1416)")
%!assert (mat2str ([-1/3 + i/7; 1/3 - i/7], [4 2]), "[-0.3333+0.14i;0.3333-0.14i]")
%!assert (mat2str ([-1/3 +i/7; 1/3 -i/7], [4 2]), "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]")
%!assert (mat2str (int16 ([1 -1]), "class"), "int16([1 -1])")
%!assert (mat2str (true), "true")
%!assert (mat2str (false), "false")
%!assert (mat2str (logical (eye (2))), "[true false;false true]")

%% Test input validation
%!error mat2str ()
%!error mat2str (1,2,3,4)
%!error mat2str (["Hello"])
%!error <X must be two dimensional> mat2str (ones (3,3,2))