1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
## Copyright (C) 2002-2013 Rolf Fabian
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{s} =} mat2str (@var{x}, @var{n})
## @deftypefnx {Function File} {@var{s} =} mat2str (@var{x}, @var{n}, "class")
## Format real, complex, and logical matrices as strings. The
## returned string may be used to reconstruct the original matrix by using
## the @code{eval} function.
##
## The precision of the values is given by @var{n}. If @var{n} is a
## scalar then both real and imaginary parts of the matrix are printed
## to the same precision. Otherwise @code{@var{n}(1)} defines the
## precision of the real part and @code{@var{n}(2)} defines the
## precision of the imaginary part. The default for @var{n} is 15.
##
## If the argument @qcode{"class"} is given then the class of @var{x} is
## included in the string in such a way that @code{eval} will result in the
## construction of a matrix of the same class.
##
## @example
## @group
## mat2str ([ -1/3 + i/7; 1/3 - i/7 ], [4 2])
## @result{} "[-0.3333+0.14i;0.3333-0.14i]"
##
## mat2str ([ -1/3 +i/7; 1/3 -i/7 ], [4 2])
## @result{} "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]"
##
## mat2str (int16 ([1 -1]), "class")
## @result{} "int16([1 -1])"
##
## mat2str (logical (eye (2)))
## @result{} "[true false;false true]"
##
## isequal (x, eval (mat2str (x)))
## @result{} 1
## @end group
## @end example
##
## @seealso{sprintf, num2str, int2str}
## @end deftypefn
## Author: Rolf Fabian <fabian@tu-cottbus.de>
function s = mat2str (x, n = 15, cls = "")
if (nargin < 1 || nargin > 3 || ! (isnumeric (x) || islogical (x)))
print_usage ();
elseif (ndims (x) > 2)
error ("mat2str: X must be two dimensional");
endif
if (nargin == 2 && ischar (n))
cls = n;
n = 15;
elseif (isempty (n))
n = 15; # Default precision
endif
x_islogical = islogical (x);
x_iscomplex = iscomplex (x);
if (x_iscomplex)
if (isscalar (n))
n = [n, n];
endif
fmt = sprintf ("%%.%dg%%+.%dgi", n(1), n(2));
elseif (x_islogical)
v = {"false", "true"};
fmt = "%s";
else
fmt = sprintf ("%%.%dg", n(1));
endif
nel = numel (x);
if (nel == 0)
## Empty, only print brackets
s = "[]";
elseif (nel == 1)
## Scalar X, don't print brackets
if (x_iscomplex)
s = sprintf (fmt, real (x), imag (x));
elseif (x_islogical)
s = v{x+1};
else
s = sprintf (fmt, x);
endif
else
## Non-scalar X, print brackets
fmt = [fmt " "];
if (x_iscomplex)
t = x.';
s = sprintf (fmt, [real(t(:))'; imag(t(:))']);
elseif (x_islogical)
t = v(x+1);
s = cstrcat (sprintf (fmt, t{:}));
else
s = sprintf (fmt, x.');
endif
s = ["[" s];
s(end) = "]";
idx = strfind (s, " ");
nc = columns (x);
s(idx(nc:nc:end)) = ";";
endif
if (strcmp ("class", cls))
s = [class(x) "(" s ")"];
endif
endfunction
%!assert (mat2str (0.7), "0.7")
%!assert (mat2str (pi), "3.14159265358979")
%!assert (mat2str (pi, 5), "3.1416")
%!assert (mat2str (single (pi), 5, "class"), "single(3.1416)")
%!assert (mat2str ([-1/3 + i/7; 1/3 - i/7], [4 2]), "[-0.3333+0.14i;0.3333-0.14i]")
%!assert (mat2str ([-1/3 +i/7; 1/3 -i/7], [4 2]), "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]")
%!assert (mat2str (int16 ([1 -1]), "class"), "int16([1 -1])")
%!assert (mat2str (true), "true")
%!assert (mat2str (false), "false")
%!assert (mat2str (logical (eye (2))), "[true false;false true]")
%% Test input validation
%!error mat2str ()
%!error mat2str (1,2,3,4)
%!error mat2str (["Hello"])
%!error <X must be two dimensional> mat2str (ones (3,3,2))
|