1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 1996-2015 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software; you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by the
@c Free Software Foundation; either version 3 of the License, or (at
@c your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but WITHOUT
@c ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
@c FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
@c for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <http://www.gnu.org/licenses/>.
@node Statistics
@chapter Statistics
Octave has support for various statistical methods. This includes
basic descriptive statistics, probability distributions, statistical tests,
random number generation, and much more.
The functions that analyze data all assume that multi-dimensional data
is arranged in a matrix where each row is an observation, and each
column is a variable. Thus, the matrix defined by
@example
@group
a = [ 0.9, 0.7;
0.1, 0.1;
0.5, 0.4 ];
@end group
@end example
@noindent
contains three observations from a two-dimensional distribution.
While this is the default data arrangement, most functions support
different arrangements.
It should be noted that the statistics functions don't test for data
containing NaN, NA, or Inf. These values need to be detected and dealt
with explicitly. See @ref{XREFisnan,,isnan}, @ref{XREFisna,,isna},
@ref{XREFisinf,,isinf}, @ref{XREFisfinite,,isfinite}.
@menu
* Descriptive Statistics::
* Basic Statistical Functions::
* Statistical Plots::
* Correlation and Regression Analysis::
* Distributions::
* Tests::
* Random Number Generation::
@end menu
@node Descriptive Statistics
@section Descriptive Statistics
One principal goal of descriptive statistics is to represent the essence of a
large data set concisely. Octave provides the mean, median, and mode functions
which all summarize a data set with just a single number corresponding to
the central tendency of the data.
@c mean scripts/statistics/base/mean.m
@anchor{XREFmean}
@deftypefn {Function File} {} mean (@var{x})
@deftypefnx {Function File} {} mean (@var{x}, @var{dim})
@deftypefnx {Function File} {} mean (@var{x}, @var{opt})
@deftypefnx {Function File} {} mean (@var{x}, @var{dim}, @var{opt})
Compute the mean of the elements of the vector @var{x}.
The mean is defined as
@tex
$$ {\rm mean}(x) = \bar{x} = {1\over N} \sum_{i=1}^N x_i $$
@end tex
@ifnottex
@example
mean (x) = SUM_i x(i) / N
@end example
@end ifnottex
If @var{x} is a matrix, compute the mean for each column and return them
in a row vector.
If the optional argument @var{dim} is given, operate along this dimension.
The optional argument @var{opt} selects the type of mean to compute.
The following options are recognized:
@table @asis
@item @qcode{"a"}
Compute the (ordinary) arithmetic mean. [default]
@item @qcode{"g"}
Compute the geometric mean.
@item @qcode{"h"}
Compute the harmonic mean.
@end table
Both @var{dim} and @var{opt} are optional. If both are supplied, either
may appear first.
@seealso{@ref{XREFmedian,,median}, @ref{XREFmode,,mode}}
@end deftypefn
@c median scripts/statistics/base/median.m
@anchor{XREFmedian}
@deftypefn {Function File} {} median (@var{x})
@deftypefnx {Function File} {} median (@var{x}, @var{dim})
Compute the median value of the elements of the vector @var{x}.
When the elements of @var{x} are sorted, the median is defined as
@tex
$$
{\rm median} (x) =
\cases{x(\lceil N/2\rceil), & $N$ odd;\cr
(x(N/2)+x(N/2+1))/2, & $N$ even.}
$$
@end tex
@ifnottex
@example
@group
x(ceil(N/2)) N odd
median (x) =
(x(N/2) + x((N/2)+1))/2 N even
@end group
@end example
@end ifnottex
If @var{x} is a matrix, compute the median value for each column and
return them in a row vector.
If the optional @var{dim} argument is given, operate along this dimension.
@seealso{@ref{XREFmean,,mean}, @ref{XREFmode,,mode}}
@end deftypefn
@c mode scripts/statistics/base/mode.m
@anchor{XREFmode}
@deftypefn {Function File} {} mode (@var{x})
@deftypefnx {Function File} {} mode (@var{x}, @var{dim})
@deftypefnx {Function File} {[@var{m}, @var{f}, @var{c}] =} mode (@dots{})
Compute the most frequently occurring value in a dataset (mode).
@code{mode} determines the frequency of values along the first non-singleton
dimension and returns the value with the highest frequency. If two, or
more, values have the same frequency @code{mode} returns the smallest.
If the optional argument @var{dim} is given, operate along this dimension.
The return variable @var{f} is the number of occurrences of the mode in
the dataset.
The cell array @var{c} contains all of the elements with the maximum
frequency.
@seealso{@ref{XREFmean,,mean}, @ref{XREFmedian,,median}}
@end deftypefn
Using just one number, such as the mean, to represent an entire data set may
not give an accurate picture of the data. One way to characterize the fit is
to measure the dispersion of the data. Octave provides several functions for
measuring dispersion.
@c range scripts/statistics/base/range.m
@anchor{XREFrange}
@deftypefn {Function File} {} range (@var{x})
@deftypefnx {Function File} {} range (@var{x}, @var{dim})
Return the range, i.e., the difference between the maximum and the minimum
of the input data.
If @var{x} is a vector, the range is calculated over the elements of
@var{x}. If @var{x} is a matrix, the range is calculated over each column
of @var{x}.
If the optional argument @var{dim} is given, operate along this dimension.
The range is a quickly computed measure of the dispersion of a data set, but
is less accurate than @code{iqr} if there are outlying data points.
@seealso{@ref{XREFiqr,,iqr}, @ref{XREFstd,,std}}
@end deftypefn
@c iqr scripts/statistics/base/iqr.m
@anchor{XREFiqr}
@deftypefn {Function File} {} iqr (@var{x})
@deftypefnx {Function File} {} iqr (@var{x}, @var{dim})
Return the interquartile range, i.e., the difference between the upper
and lower quartile of the input data.
If @var{x} is a matrix, do the above for first non-singleton dimension of
@var{x}.
If the optional argument @var{dim} is given, operate along this dimension.
As a measure of dispersion, the interquartile range is less affected by
outliers than either @code{range} or @code{std}.
@seealso{@ref{XREFrange,,range}, @ref{XREFstd,,std}}
@end deftypefn
@c meansq scripts/statistics/base/meansq.m
@anchor{XREFmeansq}
@deftypefn {Function File} {} meansq (@var{x})
@deftypefnx {Function File} {} meansq (@var{x}, @var{dim})
Compute the mean square of the elements of the vector @var{x}.
The mean square is defined as
@tex
$$
{\rm meansq} (x) = {\sum_{i=1}^N {x_i}^2 \over N}
$$
where $\bar{x}$ is the mean value of $x$.
@end tex
@ifnottex
@example
@group
meansq (x) = 1/N SUM_i x(i)^2
@end group
@end example
@end ifnottex
For matrix arguments, return a row vector containing the mean square
of each column.
If the optional argument @var{dim} is given, operate along this dimension.
@seealso{@ref{XREFvar,,var}, @ref{XREFstd,,std}, @ref{XREFmoment,,moment}}
@end deftypefn
@c std scripts/statistics/base/std.m
@anchor{XREFstd}
@deftypefn {Function File} {} std (@var{x})
@deftypefnx {Function File} {} std (@var{x}, @var{opt})
@deftypefnx {Function File} {} std (@var{x}, @var{opt}, @var{dim})
Compute the standard deviation of the elements of the vector @var{x}.
The standard deviation is defined as
@tex
$$
{\rm std} (x) = \sigma = \sqrt{{\sum_{i=1}^N (x_i - \bar{x})^2 \over N - 1}}
$$
where $\bar{x}$ is the mean value of $x$ and $N$ is the number of elements.
@end tex
@ifnottex
@example
@group
std (x) = sqrt ( 1/(N-1) SUM_i (x(i) - mean(x))^2 )
@end group
@end example
@noindent
where @math{N} is the number of elements.
@end ifnottex
If @var{x} is a matrix, compute the standard deviation for each column and
return them in a row vector.
The argument @var{opt} determines the type of normalization to use.
Valid values are
@table @asis
@item 0:
normalize with @math{N-1}, provides the square root of the best unbiased
estimator of the variance [default]
@item 1:
normalize with @math{N}, this provides the square root of the second
moment around the mean
@end table
If the optional argument @var{dim} is given, operate along this dimension.
@seealso{@ref{XREFvar,,var}, @ref{XREFrange,,range}, @ref{XREFiqr,,iqr}, @ref{XREFmean,,mean}, @ref{XREFmedian,,median}}
@end deftypefn
In addition to knowing the size of a dispersion it is useful to know the shape
of the data set. For example, are data points massed to the left or right
of the mean? Octave provides several common measures to describe the shape
of the data set. Octave can also calculate moments allowing arbitrary shape
measures to be developed.
@c var scripts/statistics/base/var.m
@anchor{XREFvar}
@deftypefn {Function File} {} var (@var{x})
@deftypefnx {Function File} {} var (@var{x}, @var{opt})
@deftypefnx {Function File} {} var (@var{x}, @var{opt}, @var{dim})
Compute the variance of the elements of the vector @var{x}.
The variance is defined as
@tex
$$
{\rm var} (x) = \sigma^2 = {\sum_{i=1}^N (x_i - \bar{x})^2 \over N - 1}
$$
where $\bar{x}$ is the mean value of $x$.
@end tex
@ifnottex
@example
@group
var (x) = 1/(N-1) SUM_i (x(i) - mean(x))^2
@end group
@end example
@end ifnottex
If @var{x} is a matrix, compute the variance for each column and return
them in a row vector.
The argument @var{opt} determines the type of normalization to use.
Valid values are
@table @asis
@item 0:
normalize with @math{N-1}, provides the best unbiased estimator of the
variance [default]
@item 1:
normalizes with @math{N}, this provides the second moment around the mean
@end table
If @math{N==1} the value of @var{opt} is ignored and normalization by
@math{N} is used.
If the optional argument @var{dim} is given, operate along this dimension.
@seealso{@ref{XREFcov,,cov}, @ref{XREFstd,,std}, @ref{XREFskewness,,skewness}, @ref{XREFkurtosis,,kurtosis}, @ref{XREFmoment,,moment}}
@end deftypefn
@c skewness scripts/statistics/base/skewness.m
@anchor{XREFskewness}
@deftypefn {Function File} {} skewness (@var{x})
@deftypefnx {Function File} {} skewness (@var{x}, @var{flag})
@deftypefnx {Function File} {} skewness (@var{x}, @var{flag}, @var{dim})
Compute the sample skewness of the elements of @var{x}.
The sample skewness is defined as
@tex
$$
{\rm skewness} (@var{x}) = {{{1\over N}\,
\sum_{i=1}^N (@var{x}_i - \bar{@var{x}})^3} \over \sigma^3},
$$
where $N$ is the length of @var{x}, $\bar{@var{x}}$ its mean and $\sigma$
its (uncorrected) standard deviation.
@end tex
@ifnottex
@example
@group
mean ((@var{x} - mean (@var{x})).^3)
skewness (@var{X}) = ------------------------.
std (@var{x}).^3
@end group
@end example
@end ifnottex
@noindent
The optional argument @var{flag} controls which normalization is used.
If @var{flag} is equal to 1 (default value, used when @var{flag} is omitted
or empty), return the sample skewness as defined above. If @var{flag} is
equal to 0, return the adjusted skewness coefficient instead:
@tex
$$
{\rm skewness} (@var{x}) = {\sqrt{N (N - 1)} \over N - 2} \times \,
{{{1 \over N} \sum_{i=1}^N (@var{x}_i - \bar{@var{x}})^3} \over \sigma^3}
$$
@end tex
@ifnottex
@example
@group
sqrt (N*(N-1)) mean ((@var{x} - mean (@var{x})).^3)
skewness (@var{X}, 0) = -------------- * ------------------------.
(N - 2) std (@var{x}).^3
@end group
@end example
@end ifnottex
The adjusted skewness coefficient is obtained by replacing the sample second
and third central moments by their bias-corrected versions.
If @var{x} is a matrix, or more generally a multi-dimensional array, return
the skewness along the first non-singleton dimension. If the optional
@var{dim} argument is given, operate along this dimension.
@seealso{@ref{XREFvar,,var}, @ref{XREFkurtosis,,kurtosis}, @ref{XREFmoment,,moment}}
@end deftypefn
@c kurtosis scripts/statistics/base/kurtosis.m
@anchor{XREFkurtosis}
@deftypefn {Function File} {} kurtosis (@var{x})
@deftypefnx {Function File} {} kurtosis (@var{x}, @var{flag})
@deftypefnx {Function File} {} kurtosis (@var{x}, @var{flag}, @var{dim})
Compute the sample kurtosis of the elements of @var{x}.
The sample kurtosis is defined as
@tex
$$
\kappa_1 = {{{1\over N}\,
\sum_{i=1}^N (@var{x}_i - \bar{@var{x}})^4} \over \sigma^4},
$$
where $N$ is the length of @var{x}, $\bar{@var{x}}$ its mean, and $\sigma$
its (uncorrected) standard deviation.
@end tex
@ifnottex
@example
@group
mean ((@var{x} - mean (@var{x})).^4)
k1 = ------------------------
std (@var{x}).^4
@end group
@end example
@end ifnottex
@noindent
The optional argument @var{flag} controls which normalization is used.
If @var{flag} is equal to 1 (default value, used when @var{flag} is omitted
or empty), return the sample kurtosis as defined above. If @var{flag} is
equal to 0, return the @w{"bias-corrected"} kurtosis coefficient instead:
@tex
$$
\kappa_0 = 3 + {\scriptstyle N - 1 \over \scriptstyle (N - 2)(N - 3)} \,
\left( (N + 1)\, \kappa_1 - 3 (N - 1) \right)
$$
@end tex
@ifnottex
@example
@group
N - 1
k0 = 3 + -------------- * ((N + 1) * k1 - 3 * (N - 1))
(N - 2)(N - 3)
@end group
@end example
@end ifnottex
The bias-corrected kurtosis coefficient is obtained by replacing the sample
second and fourth central moments by their unbiased versions. It is an
unbiased estimate of the population kurtosis for normal populations.
If @var{x} is a matrix, or more generally a multi-dimensional array, return
the kurtosis along the first non-singleton dimension. If the optional
@var{dim} argument is given, operate along this dimension.
@seealso{@ref{XREFvar,,var}, @ref{XREFskewness,,skewness}, @ref{XREFmoment,,moment}}
@end deftypefn
@c moment scripts/statistics/base/moment.m
@anchor{XREFmoment}
@deftypefn {Function File} {} moment (@var{x}, @var{p})
@deftypefnx {Function File} {} moment (@var{x}, @var{p}, @var{type})
@deftypefnx {Function File} {} moment (@var{x}, @var{p}, @var{dim})
@deftypefnx {Function File} {} moment (@var{x}, @var{p}, @var{type}, @var{dim})
@deftypefnx {Function File} {} moment (@var{x}, @var{p}, @var{dim}, @var{type})
Compute the @var{p}-th central moment of the vector @var{x}.
@tex
$$
{\sum_{i=1}^N (x_i - \bar{x})^p \over N}
$$
@end tex
@ifnottex
@example
@group
1/N SUM_i (x(i) - mean(x))^p
@end group
@end example
@end ifnottex
If @var{x} is a matrix, return the row vector containing the @var{p}-th
central moment of each column.
If the optional argument @var{dim} is given, operate along this dimension.
The optional string @var{type} specifies the type of moment to be computed.
Valid options are:
@table @asis
@item @qcode{"c"}
Central Moment (default).
@item @qcode{"a"}
@itemx @qcode{"ac"}
Absolute Central Moment. The moment about the mean ignoring sign
defined as
@tex
$$
{\sum_{i=1}^N {\left| x_i - \bar{x} \right|}^p \over N}
$$
@end tex
@ifnottex
@example
@group
1/N SUM_i (abs (x(i) - mean(x)))^p
@end group
@end example
@end ifnottex
@item @qcode{"r"}
Raw Moment. The moment about zero defined as
@tex
$$
{\rm moment} (x) = { \sum_{i=1}^N {x_i}^p \over N }
$$
@end tex
@ifnottex
@example
@group
moment (x) = 1/N SUM_i x(i)^p
@end group
@end example
@end ifnottex
@item @nospell{@qcode{"ar"}}
Absolute Raw Moment. The moment about zero ignoring sign defined as
@tex
$$
{\sum_{i=1}^N {\left| x_i \right|}^p \over N}
$$
@end tex
@ifnottex
@example
@group
1/N SUM_i ( abs (x(i)) )^p
@end group
@end example
@end ifnottex
@end table
If both @var{type} and @var{dim} are given they may appear in any order.
@seealso{@ref{XREFvar,,var}, @ref{XREFskewness,,skewness}, @ref{XREFkurtosis,,kurtosis}}
@end deftypefn
@c quantile scripts/statistics/base/quantile.m
@anchor{XREFquantile}
@deftypefn {Function File} {@var{q} =} quantile (@var{x})
@deftypefnx {Function File} {@var{q} =} quantile (@var{x}, @var{p})
@deftypefnx {Function File} {@var{q} =} quantile (@var{x}, @var{p}, @var{dim})
@deftypefnx {Function File} {@var{q} =} quantile (@var{x}, @var{p}, @var{dim}, @var{method})
For a sample, @var{x}, calculate the quantiles, @var{q}, corresponding to
the cumulative probability values in @var{p}. All non-numeric values (NaNs)
of @var{x} are ignored.
If @var{x} is a matrix, compute the quantiles for each column and
return them in a matrix, such that the i-th row of @var{q} contains
the @var{p}(i)th quantiles of each column of @var{x}.
If @var{p} is unspecified, return the quantiles for
@code{[0.00 0.25 0.50 0.75 1.00]}.
The optional argument @var{dim} determines the dimension along which
the quantiles are calculated. If @var{dim} is omitted it defaults to
the first non-singleton dimension.
The methods available to calculate sample quantiles are the nine methods
used by R (@url{http://www.r-project.org/}). The default value is
@w{METHOD = 5}.
Discontinuous sample quantile methods 1, 2, and 3
@enumerate 1
@item Method 1: Inverse of empirical distribution function.
@item Method 2: Similar to method 1 but with averaging at discontinuities.
@item Method 3: SAS definition: nearest even order statistic.
@end enumerate
Continuous sample quantile methods 4 through 9, where p(k) is the linear
interpolation function respecting each methods' representative cdf.
@enumerate 4
@item Method 4: p(k) = k / n. That is, linear interpolation of the
empirical cdf.
@item Method 5: p(k) = (k - 0.5) / n. That is a piecewise linear function
where the knots are the values midway through the steps of the empirical
cdf.
@item Method 6: p(k) = k / (n + 1).
@item Method 7: p(k) = (k - 1) / (n - 1).
@item Method 8: p(k) = (k - 1/3) / (n + 1/3). The resulting quantile
estimates are approximately median-unbiased regardless of the distribution
of @var{x}.
@item Method 9: p(k) = (k - 3/8) / (n + 1/4). The resulting quantile
estimates are approximately unbiased for the expected order statistics if
@var{x} is normally distributed.
@end enumerate
@nospell{Hyndman and Fan} (1996) recommend method 8. Maxima, S, and R
(versions prior to 2.0.0) use 7 as their default. Minitab and SPSS
use method 6. @sc{matlab} uses method 5.
References:
@itemize @bullet
@item @nospell{Becker, R. A., Chambers, J. M. and Wilks, A. R.} (1988)
The New S Language. Wadsworth & Brooks/Cole.
@item @nospell{Hyndman, R. J. and Fan, Y.} (1996) Sample quantiles in
statistical packages, American Statistician, 50, 361--365.
@item R: A Language and Environment for Statistical Computing;
@url{http://cran.r-project.org/doc/manuals/fullrefman.pdf}.
@end itemize
Examples:
@c Set example in small font to prevent overfull line
@smallexample
@group
x = randi (1000, [10, 1]); # Create empirical data in range 1-1000
q = quantile (x, [0, 1]); # Return minimum, maximum of distribution
q = quantile (x, [0.25 0.5 0.75]); # Return quartiles of distribution
@end group
@end smallexample
@seealso{@ref{XREFprctile,,prctile}}
@end deftypefn
@c prctile scripts/statistics/base/prctile.m
@anchor{XREFprctile}
@deftypefn {Function File} {@var{q} =} prctile (@var{x})
@deftypefnx {Function File} {@var{q} =} prctile (@var{x}, @var{p})
@deftypefnx {Function File} {@var{q} =} prctile (@var{x}, @var{p}, @var{dim})
For a sample @var{x}, compute the quantiles, @var{q}, corresponding
to the cumulative probability values, @var{p}, in percent.
If @var{x} is a matrix, compute the percentiles for each column and return
them in a matrix, such that the i-th row of @var{y} contains the
@var{p}(i)th percentiles of each column of @var{x}.
If @var{p} is unspecified, return the quantiles for @code{[0 25 50 75 100]}.
The optional argument @var{dim} determines the dimension along which the
percentiles are calculated. If @var{dim} is omitted it defaults to the
first non-singleton dimension.
Programming Note: All non-numeric values (NaNs) of @var{x} are ignored.
@seealso{@ref{XREFquantile,,quantile}}
@end deftypefn
A summary view of a data set can be generated quickly with the
@code{statistics} function.
@c statistics scripts/statistics/base/statistics.m
@anchor{XREFstatistics}
@deftypefn {Function File} {} statistics (@var{x})
@deftypefnx {Function File} {} statistics (@var{x}, @var{dim})
Return a vector with the minimum, first quartile, median, third quartile,
maximum, mean, standard deviation, skewness, and kurtosis of the elements of
the vector @var{x}.
If @var{x} is a matrix, calculate statistics over the first non-singleton
dimension.
If the optional argument @var{dim} is given, operate along this dimension.
@seealso{@ref{XREFmin,,min}, @ref{XREFmax,,max}, @ref{XREFmedian,,median}, @ref{XREFmean,,mean}, @ref{XREFstd,,std}, @ref{XREFskewness,,skewness}, @ref{XREFkurtosis,,kurtosis}}
@end deftypefn
@node Basic Statistical Functions
@section Basic Statistical Functions
Octave supports various helpful statistical functions. Many are useful as
initial steps to prepare a data set for further analysis. Others provide
different measures from those of the basic descriptive statistics.
@c center scripts/statistics/base/center.m
@anchor{XREFcenter}
@deftypefn {Function File} {} center (@var{x})
@deftypefnx {Function File} {} center (@var{x}, @var{dim})
Center data by subtracting its mean.
If @var{x} is a vector, subtract its mean.
If @var{x} is a matrix, do the above for each column.
If the optional argument @var{dim} is given, operate along this dimension.
Programming Note: @code{center} has obvious application for normalizing
statistical data. It is also useful for improving the precision of general
numerical calculations. Whenever there is a large value that is common
to a batch of data, the mean can be subtracted off, the calculation
performed, and then the mean added back to obtain the final answer.
@seealso{@ref{XREFzscore,,zscore}}
@end deftypefn
@c zscore scripts/statistics/base/zscore.m
@anchor{XREFzscore}
@deftypefn {Function File} {@var{z} =} zscore (@var{x})
@deftypefnx {Function File} {@var{z} =} zscore (@var{x}, @var{opt})
@deftypefnx {Function File} {@var{z} =} zscore (@var{x}, @var{opt}, @var{dim})
@deftypefnx {Function File} {[@var{z}, @var{mu}, @var{sigma}] =} zscore (@dots{})
Compute the Z score of @var{x}
If @var{x} is a vector, subtract its mean and divide by its standard
deviation. If the standard deviation is zero, divide by 1 instead.
The optional parameter @var{opt} determines the normalization to use when
computing the standard deviation and has the same definition as the
corresponding parameter for @code{std}.
If @var{x} is a matrix, calculate along the first non-singleton dimension.
If the third optional argument @var{dim} is given, operate along this
dimension.
The optional outputs @var{mu} and @var{sigma} contain the mean and standard
deviation.
@seealso{@ref{XREFmean,,mean}, @ref{XREFstd,,std}, @ref{XREFcenter,,center}}
@end deftypefn
@c histc scripts/statistics/base/histc.m
@anchor{XREFhistc}
@deftypefn {Function File} {@var{n} =} histc (@var{x}, @var{edges})
@deftypefnx {Function File} {@var{n} =} histc (@var{x}, @var{edges}, @var{dim})
@deftypefnx {Function File} {[@var{n}, @var{idx}] =} histc (@dots{})
Compute histogram counts.
When @var{x} is a vector, the function counts the number of elements of
@var{x} that fall in the histogram bins defined by @var{edges}. This must be
a vector of monotonically increasing values that define the edges of the
histogram bins. @code{@var{n}(k)} contains the number of elements in
@var{x} for which @code{@var{edges}(k) <= @var{x} < @var{edges}(k+1)}.
The final element of @var{n} contains the number of elements of @var{x}
exactly equal to the last element of @var{edges}.
When @var{x} is an @math{N}-dimensional array, the computation is carried
out along dimension @var{dim}. If not specified @var{dim} defaults to the
first non-singleton dimension.
When a second output argument is requested an index matrix is also returned.
The @var{idx} matrix has the same size as @var{x}. Each element of @var{idx}
contains the index of the histogram bin in which the corresponding element
of @var{x} was counted.
@seealso{@ref{XREFhist,,hist}}
@end deftypefn
@c FIXME: really want to put a reference to unique here
@c @DOCSTRING(values)
@c nchoosek scripts/specfun/nchoosek.m
@anchor{XREFnchoosek}
@deftypefn {Function File} {@var{c} =} nchoosek (@var{n}, @var{k})
@deftypefnx {Function File} {@var{c} =} nchoosek (@var{set}, @var{k})
Compute the binomial coefficient of @var{n} or list all possible
combinations of a @var{set} of items.
If @var{n} is a scalar then calculate the binomial coefficient
of @var{n} and @var{k} which is defined as
@tex
$$
{n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
= {n! \over k! (n-k)!}
$$
@end tex
@ifnottex
@example
@group
/ \
| n | n (n-1) (n-2) @dots{} (n-k+1) n!
| | = ------------------------- = ---------
| k | k! k! (n-k)!
\ /
@end group
@end example
@end ifnottex
@noindent
This is the number of combinations of @var{n} items taken in groups of
size @var{k}.
If the first argument is a vector, @var{set}, then generate all
combinations of the elements of @var{set}, taken @var{k} at a time, with
one row per combination. The result @var{c} has @var{k} columns and
@w{@code{nchoosek (length (@var{set}), @var{k})}} rows.
For example:
How many ways can three items be grouped into pairs?
@example
@group
nchoosek (3, 2)
@result{} 3
@end group
@end example
What are the possible pairs?
@example
@group
nchoosek (1:3, 2)
@result{} 1 2
1 3
2 3
@end group
@end example
Programming Note: When calculating the binomial coefficient @code{nchoosek}
works only for non-negative, integer arguments. Use @code{bincoeff} for
non-integer and negative scalar arguments, or for computing many binomial
coefficients at once with vector inputs for @var{n} or @var{k}.
@seealso{@ref{XREFbincoeff,,bincoeff}, @ref{XREFperms,,perms}}
@end deftypefn
@c perms scripts/specfun/perms.m
@anchor{XREFperms}
@deftypefn {Function File} {} perms (@var{v})
Generate all permutations of @var{v} with one row per permutation.
The result has size @code{factorial (@var{n}) * @var{n}}, where @var{n}
is the length of @var{v}.
Example
@example
@group
perms ([1, 2, 3])
@result{}
1 2 3
2 1 3
1 3 2
2 3 1
3 1 2
3 2 1
@end group
@end example
Programming Note: The maximum length of @var{v} should be less than or
equal to 10 to limit memory consumption.
@seealso{@ref{XREFpermute,,permute}, @ref{XREFrandperm,,randperm}, @ref{XREFnchoosek,,nchoosek}}
@end deftypefn
@c ranks scripts/statistics/base/ranks.m
@anchor{XREFranks}
@deftypefn {Function File} {} ranks (@var{x}, @var{dim})
Return the ranks of @var{x} along the first non-singleton dimension
adjusted for ties.
If the optional argument @var{dim} is given, operate along this dimension.
@seealso{@ref{XREFspearman,,spearman}, @ref{XREFkendall,,kendall}}
@end deftypefn
@c run_count scripts/statistics/base/run_count.m
@anchor{XREFrun_count}
@deftypefn {Function File} {} run_count (@var{x}, @var{n})
@deftypefnx {Function File} {} run_count (@var{x}, @var{n}, @var{dim})
Count the upward runs along the first non-singleton dimension of @var{x}
of length 1, 2, @dots{}, @var{n}-1 and greater than or equal to @var{n}.
If the optional argument @var{dim} is given then operate along this
dimension.
@seealso{@ref{XREFrunlength,,runlength}}
@end deftypefn
@c runlength scripts/statistics/base/runlength.m
@anchor{XREFrunlength}
@deftypefn {Function File} {count =} runlength (@var{x})
@deftypefnx {Function File} {[count, value] =} runlength (@var{x})
Find the lengths of all sequences of common values.
@var{count} is a vector with the lengths of each repeated value.
The optional output @var{value} contains the value that was repeated in
the sequence.
@example
@group
runlength ([2, 2, 0, 4, 4, 4, 0, 1, 1, 1, 1])
@result{} [2, 1, 3, 1, 4]
@end group
@end example
@seealso{@ref{XREFrun_count,,run_count}}
@end deftypefn
@c probit scripts/statistics/base/probit.m
@anchor{XREFprobit}
@deftypefn {Function File} {} probit (@var{p})
Return the probit (the quantile of the standard normal distribution) for
each element of @var{p}.
@seealso{@ref{XREFlogit,,logit}}
@end deftypefn
@c logit scripts/statistics/base/logit.m
@anchor{XREFlogit}
@deftypefn {Function File} {} logit (@var{p})
Compute the logit for each value of @var{p}
The logit is defined as
@tex
$$
{\rm logit}(p) = \log\Big({p \over 1-p}\Big)
$$
@end tex
@ifnottex
@example
logit (@var{p}) = log (@var{p} / (1-@var{p}))
@end example
@end ifnottex
@seealso{@ref{XREFprobit,,probit}, @ref{XREFlogistic_cdf,,logistic_cdf}}
@end deftypefn
@c cloglog scripts/statistics/base/cloglog.m
@anchor{XREFcloglog}
@deftypefn {Function File} {} cloglog (@var{x})
Return the complementary log-log function of @var{x}.
The complementary log-log function is defined as
@tex
$$
{\rm cloglog}(x) = - \log (- \log (x))
$$
@end tex
@ifnottex
@example
cloglog (x) = - log (- log (@var{x}))
@end example
@end ifnottex
@end deftypefn
@c mahalanobis scripts/statistics/base/mahalanobis.m
@anchor{XREFmahalanobis}
@deftypefn {Function File} {} mahalanobis (@var{x}, @var{y})
Return the Mahalanobis' D-square distance between the multivariate
samples @var{x} and @var{y}.
The data @var{x} and @var{y} must have the same number of components
(columns), but may have a different number of observations (rows).
@end deftypefn
@c table scripts/statistics/base/table.m
@anchor{XREFtable}
@deftypefn {Function File} {[@var{t}, @var{l_x}] =} table (@var{x})
@deftypefnx {Function File} {[@var{t}, @var{l_x}, @var{l_y}] =} table (@var{x}, @var{y})
Create a contingency table @var{t} from data vectors.
The @var{l_x} and @var{l_y} vectors are the corresponding levels.
Currently, only 1- and 2-dimensional tables are supported.
@end deftypefn
@node Statistical Plots
@section Statistical Plots
@c Should hist be moved to here, or perhaps the qqplot and ppplot
@c functions should be moved to the Plotting Chapter?
Octave can create Quantile Plots (QQ-Plots), and Probability Plots
(PP-Plots). These are simple graphical tests for determining if a
data set comes from a certain distribution.
Note that Octave can also show histograms of data
using the @code{hist} function as described in
@ref{Two-Dimensional Plots}.
@c qqplot scripts/statistics/base/qqplot.m
@anchor{XREFqqplot}
@deftypefn {Function File} {[@var{q}, @var{s}] =} qqplot (@var{x})
@deftypefnx {Function File} {[@var{q}, @var{s}] =} qqplot (@var{x}, @var{y})
@deftypefnx {Function File} {[@var{q}, @var{s}] =} qqplot (@var{x}, @var{dist})
@deftypefnx {Function File} {[@var{q}, @var{s}] =} qqplot (@var{x}, @var{y}, @var{params})
@deftypefnx {Function File} {} qqplot (@dots{})
Perform a QQ-plot (quantile plot).
If F is the CDF of the distribution @var{dist} with parameters
@var{params} and G its inverse, and @var{x} a sample vector of length
@var{n}, the QQ-plot graphs ordinate @var{s}(@var{i}) = @var{i}-th
largest element of x versus abscissa @var{q}(@var{i}f) = G((@var{i} -
0.5)/@var{n}).
If the sample comes from F, except for a transformation of location
and scale, the pairs will approximately follow a straight line.
If the second argument is a vector @var{y} the empirical CDF of @var{y}
is used as @var{dist}.
The default for @var{dist} is the standard normal distribution. The
optional argument @var{params} contains a list of parameters of
@var{dist}. For example, for a quantile plot of the uniform
distribution on [2,4] and @var{x}, use
@example
qqplot (x, "unif", 2, 4)
@end example
@noindent
@var{dist} can be any string for which a function @var{distinv} or
@var{dist_inv} exists that calculates the inverse CDF of distribution
@var{dist}.
If no output arguments are given, the data are plotted directly.
@end deftypefn
@c ppplot scripts/statistics/base/ppplot.m
@anchor{XREFppplot}
@deftypefn {Function File} {[@var{p}, @var{y}] =} ppplot (@var{x}, @var{dist}, @var{params})
Perform a PP-plot (probability plot).
If F is the CDF of the distribution @var{dist} with parameters
@var{params} and @var{x} a sample vector of length @var{n}, the PP-plot
graphs ordinate @var{y}(@var{i}) = F (@var{i}-th largest element of
@var{x}) versus abscissa @var{p}(@var{i}) = (@var{i} - 0.5)/@var{n}. If
the sample comes from F, the pairs will approximately follow a straight
line.
The default for @var{dist} is the standard normal distribution.
The optional argument @var{params} contains a list of parameters of
@var{dist}.
For example, for a probability plot of the uniform distribution on [2,4]
and @var{x}, use
@example
ppplot (x, "uniform", 2, 4)
@end example
@noindent
@var{dist} can be any string for which a function @var{dist_cdf} that
calculates the CDF of distribution @var{dist} exists.
If no output is requested then the data are plotted immediately.
@end deftypefn
@node Correlation and Regression Analysis
@section Correlation and Regression Analysis
@c FIXME: Need Intro Here
@c cov scripts/statistics/base/cov.m
@anchor{XREFcov}
@deftypefn {Function File} {} cov (@var{x})
@deftypefnx {Function File} {} cov (@var{x}, @var{opt})
@deftypefnx {Function File} {} cov (@var{x}, @var{y})
@deftypefnx {Function File} {} cov (@var{x}, @var{y}, @var{opt})
Compute the covariance matrix.
If each row of @var{x} and @var{y} is an observation, and each column is
a variable, then the @w{(@var{i}, @var{j})-th} entry of
@code{cov (@var{x}, @var{y})} is the covariance between the @var{i}-th
variable in @var{x} and the @var{j}-th variable in @var{y}.
@tex
$$
\sigma_{ij} = {1 \over N-1} \sum_{i=1}^N (x_i - \bar{x})(y_i - \bar{y})
$$
where $\bar{x}$ and $\bar{y}$ are the mean values of $x$ and $y$.
@end tex
@ifnottex
@example
cov (x) = 1/N-1 * SUM_i (x(i) - mean(x)) * (y(i) - mean(y))
@end example
@end ifnottex
If called with one argument, compute @code{cov (@var{x}, @var{x})}, the
covariance between the columns of @var{x}.
The argument @var{opt} determines the type of normalization to use.
Valid values are
@table @asis
@item 0:
normalize with @math{N-1}, provides the best unbiased estimator of the
covariance [default]
@item 1:
normalize with @math{N}, this provides the second moment around the mean
@end table
Compatibility Note:: Octave always computes the covariance matrix.
For two inputs, however, @sc{matlab} will calculate
@code{cov (@var{x}(:), @var{y}(:))} whenever the number of elements in
@var{x} and @var{y} are equal. This will result in a scalar rather than
a matrix output. Code relying on this odd definition will need to be
changed when running in Octave.
@seealso{@ref{XREFcorr,,corr}}
@end deftypefn
@c corr scripts/statistics/base/corr.m
@anchor{XREFcorr}
@deftypefn {Function File} {} corr (@var{x})
@deftypefnx {Function File} {} corr (@var{x}, @var{y})
Compute matrix of correlation coefficients.
If each row of @var{x} and @var{y} is an observation and each column is
a variable, then the @w{(@var{i}, @var{j})-th} entry of
@code{corr (@var{x}, @var{y})} is the correlation between the
@var{i}-th variable in @var{x} and the @var{j}-th variable in @var{y}.
@tex
$$
{\rm corr}(x,y) = {{\rm cov}(x,y) \over {\rm std}(x) {\rm std}(y)}
$$
@end tex
@ifnottex
@example
corr (x,y) = cov (x,y) / (std (x) * std (y))
@end example
@end ifnottex
If called with one argument, compute @code{corr (@var{x}, @var{x})},
the correlation between the columns of @var{x}.
@seealso{@ref{XREFcov,,cov}}
@end deftypefn
@c spearman scripts/statistics/base/spearman.m
@anchor{XREFspearman}
@deftypefn {Function File} {} spearman (@var{x})
@deftypefnx {Function File} {} spearman (@var{x}, @var{y})
@cindex Spearman's Rho
Compute Spearman's rank correlation coefficient @var{rho}.
For two data vectors @var{x} and @var{y}, Spearman's @var{rho} is the
correlation coefficient of the ranks of @var{x} and @var{y}.
If @var{x} and @var{y} are drawn from independent distributions, @var{rho}
has zero mean and variance @code{1 / (n - 1)}, and is asymptotically
normally distributed.
@code{spearman (@var{x})} is equivalent to
@code{spearman (@var{x}, @var{x})}.
@seealso{@ref{XREFranks,,ranks}, @ref{XREFkendall,,kendall}}
@end deftypefn
@c kendall scripts/statistics/base/kendall.m
@anchor{XREFkendall}
@deftypefn {Function File} {} kendall (@var{x})
@deftypefnx {Function File} {} kendall (@var{x}, @var{y})
@cindex Kendall's Tau
Compute Kendall's @var{tau}.
For two data vectors @var{x}, @var{y} of common length @var{n}, Kendall's
@var{tau} is the correlation of the signs of all rank differences of
@var{x} and @var{y}; i.e., if both @var{x} and @var{y} have distinct
entries, then
@tex
$$ \tau = {1 \over n(n-1)} \sum_{i,j} {\rm sign}(q_i-q_j) {\rm sign}(r_i-r_j) $$
@end tex
@ifnottex
@example
@group
1
tau = ------- SUM sign (q(i) - q(j)) * sign (r(i) - r(j))
n (n-1) i,j
@end group
@end example
@end ifnottex
@noindent
in which the
@tex
$q_i$ and $r_i$
@end tex
@ifnottex
@var{q}(@var{i}) and @var{r}(@var{i})
@end ifnottex
are the ranks of @var{x} and @var{y}, respectively.
If @var{x} and @var{y} are drawn from independent distributions,
Kendall's @var{tau} is asymptotically normal with mean 0 and variance
@tex
${2 (2n+5) \over 9n(n-1)}$.
@end tex
@ifnottex
@code{(2 * (2@var{n}+5)) / (9 * @var{n} * (@var{n}-1))}.
@end ifnottex
@code{kendall (@var{x})} is equivalent to @code{kendall (@var{x},
@var{x})}.
@seealso{@ref{XREFranks,,ranks}, @ref{XREFspearman,,spearman}}
@end deftypefn
@c FIXME: Need discussion of ols & gls and references to them in optim.txi
@c logistic_regression scripts/statistics/models/logistic_regression.m
@anchor{XREFlogistic_regression}
@deftypefn {Function File} {[@var{theta}, @var{beta}, @var{dev}, @var{dl}, @var{d2l}, @var{p}] =} logistic_regression (@var{y}, @var{x}, @var{print}, @var{theta}, @var{beta})
Perform ordinal logistic regression.
Suppose @var{y} takes values in @var{k} ordered categories, and let
@code{gamma_i (@var{x})} be the cumulative probability that @var{y}
falls in one of the first @var{i} categories given the covariate
@var{x}. Then
@example
[theta, beta] = logistic_regression (y, x)
@end example
@noindent
fits the model
@example
logit (gamma_i (x)) = theta_i - beta' * x, i = 1 @dots{} k-1
@end example
The number of ordinal categories, @var{k}, is taken to be the number
of distinct values of @code{round (@var{y})}. If @var{k} equals 2,
@var{y} is binary and the model is ordinary logistic regression. The
matrix @var{x} is assumed to have full column rank.
Given @var{y} only, @code{theta = logistic_regression (y)}
fits the model with baseline logit odds only.
The full form is
@example
@group
[theta, beta, dev, dl, d2l, gamma]
= logistic_regression (y, x, print, theta, beta)
@end group
@end example
@noindent
in which all output arguments and all input arguments except @var{y}
are optional.
Setting @var{print} to 1 requests summary information about the fitted
model to be displayed. Setting @var{print} to 2 requests information
about convergence at each iteration. Other values request no
information to be displayed. The input arguments @var{theta} and
@var{beta} give initial estimates for @var{theta} and @var{beta}.
The returned value @var{dev} holds minus twice the log-likelihood.
The returned values @var{dl} and @var{d2l} are the vector of first
and the matrix of second derivatives of the log-likelihood with
respect to @var{theta} and @var{beta}.
@var{p} holds estimates for the conditional distribution of @var{y}
given @var{x}.
@end deftypefn
@node Distributions
@section Distributions
Octave has functions for computing the Probability Density Function
(PDF), the Cumulative Distribution function (CDF), and the quantile
(the inverse of the CDF) for a large number of distributions.
The following table summarizes the supported distributions (in
alphabetical order).
@tex
\vskip 6pt
{\hbox to \hsize {\hfill\vbox{\offinterlineskip \tabskip=0pt
\halign{
\vrule height2.0ex depth1.ex width 0.6pt #\tabskip=0.3em &
# \hfil & \vrule # & # \hfil & \vrule # & # \hfil & \vrule # & # \hfil &
# \vrule width 0.6pt \tabskip=0pt\cr
\noalign{\hrule height 0.6pt}
& {\bf Distribution} && {\bf PDF} && {\bf CDF} && {\bf Quantile}&\cr
\noalign{\hrule}
&Beta && betapdf && betacdf && betainv&\cr
&Binomial && binopdf && binocdf && binoinv&\cr
&Cauchy && cauchy\_pdf && cauchy\_cdf && cauchy\_inv&\cr
&Chi-Square && chi2pdf && chi2cdf && chi2inv&\cr
&Univariate Discrete && discrete\_pdf && discrete\_cdf && discrete\_inv&\cr
&Empirical && empirical\_pdf && empirical\_cdf && empirical\_inv&\cr
&Exponential && exppdf && expcdf && expinv&\cr
&F && fpdf && fcdf && finv&\cr
&Gamma && gampdf && gamcdf && gaminv&\cr
&Geometric && geopdf && geocdf && geoinv&\cr
&Hypergeometric && hygepdf && hygecdf && hygeinv&\cr
&Kolmogorov Smirnov && {\it Not Available} && kolmogorov\_&& {\it Not Available}&\cr
& && && smirnov\_cdf &&&\cr
&Laplace && laplace\_pdf && laplace\_cdf && laplace\_inv&\cr
&Logistic && logistic\_pdf && logistic\_cdf && logistic\_inv&\cr
&Log-Normal && lognpdf && logncdf && logninv&\cr
&Univariate Normal && normpdf && normcdf && norminv&\cr
&Pascal && nbinpdf && nbincdf && nbininv&\cr
&Poisson && poisspdf && poisscdf && poissinv&\cr
&Standard Normal && stdnormal\_pdf && stdnormal\_cdf && stdnormal\_inv&\cr
&t (Student) && tpdf && tcdf && tinv&\cr
&Uniform Discrete && unidpdf && unidcdf && unidinv&\cr
&Uniform && unifpdf && unifcdf && unifinv&\cr
&Weibull && wblpdf && wblcdf && wblinv&\cr
\noalign{\hrule height 0.6pt}
}}\hfill}}
@end tex
@ifnottex
@multitable @columnfractions .31 .23 .23 .23
@headitem Distribution
@tab PDF
@tab CDF
@tab Quantile
@item Beta Distribution
@tab @code{betapdf}
@tab @code{betacdf}
@tab @code{betainv}
@item Binomial Distribution
@tab @code{binopdf}
@tab @code{binocdf}
@tab @code{binoinv}
@item Cauchy Distribution
@tab @code{cauchy_pdf}
@tab @code{cauchy_cdf}
@tab @code{cauchy_inv}
@item Chi-Square Distribution
@tab @code{chi2pdf}
@tab @code{chi2cdf}
@tab @code{chi2inv}
@item Univariate Discrete Distribution
@tab @code{discrete_pdf}
@tab @code{discrete_cdf}
@tab @code{discrete_inv}
@item Empirical Distribution
@tab @code{empirical_pdf}
@tab @code{empirical_cdf}
@tab @code{empirical_inv}
@item Exponential Distribution
@tab @code{exppdf}
@tab @code{expcdf}
@tab @code{expinv}
@item F Distribution
@tab @code{fpdf}
@tab @code{fcdf}
@tab @code{finv}
@item Gamma Distribution
@tab @code{gampdf}
@tab @code{gamcdf}
@tab @code{gaminv}
@item Geometric Distribution
@tab @code{geopdf}
@tab @code{geocdf}
@tab @code{geoinv}
@item Hypergeometric Distribution
@tab @code{hygepdf}
@tab @code{hygecdf}
@tab @code{hygeinv}
@item Kolmogorov Smirnov Distribution
@tab @emph{Not Available}
@tab @code{kolmogorov_smirnov_cdf}
@tab @emph{Not Available}
@item Laplace Distribution
@tab @code{laplace_pdf}
@tab @code{laplace_cdf}
@tab @code{laplace_inv}
@item Logistic Distribution
@tab @code{logistic_pdf}
@tab @code{logistic_cdf}
@tab @code{logistic_inv}
@item Log-Normal Distribution
@tab @code{lognpdf}
@tab @code{logncdf}
@tab @code{logninv}
@item Univariate Normal Distribution
@tab @code{normpdf}
@tab @code{normcdf}
@tab @code{norminv}
@item Pascal Distribution
@tab @code{nbinpdf}
@tab @code{nbincdf}
@tab @code{nbininv}
@item Poisson Distribution
@tab @code{poisspdf}
@tab @code{poisscdf}
@tab @code{poissinv}
@item Standard Normal Distribution
@tab @code{stdnormal_pdf}
@tab @code{stdnormal_cdf}
@tab @code{stdnormal_inv}
@item t (Student) Distribution
@tab @code{tpdf}
@tab @code{tcdf}
@tab @code{tinv}
@item Univariate Discrete Distribution
@tab @code{unidpdf}
@tab @code{unidcdf}
@tab @code{unidinv}
@item Uniform Distribution
@tab @code{unifpdf}
@tab @code{unifcdf}
@tab @code{unifinv}
@item Weibull Distribution
@tab @code{wblpdf}
@tab @code{wblcdf}
@tab @code{wblinv}
@end multitable
@end ifnottex
@c betapdf scripts/statistics/distributions/betapdf.m
@anchor{XREFbetapdf}
@deftypefn {Function File} {} betapdf (@var{x}, @var{a}, @var{b})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the Beta distribution with parameters @var{a} and @var{b}.
@end deftypefn
@c betacdf scripts/statistics/distributions/betacdf.m
@anchor{XREFbetacdf}
@deftypefn {Function File} {} betacdf (@var{x}, @var{a}, @var{b})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the Beta distribution with parameters @var{a} and
@var{b}.
@end deftypefn
@c betainv scripts/statistics/distributions/betainv.m
@anchor{XREFbetainv}
@deftypefn {Function File} {} betainv (@var{x}, @var{a}, @var{b})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the Beta distribution with parameters @var{a} and @var{b}.
@end deftypefn
@c binopdf scripts/statistics/distributions/binopdf.m
@anchor{XREFbinopdf}
@deftypefn {Function File} {} binopdf (@var{x}, @var{n}, @var{p})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the binomial distribution with parameters @var{n} and @var{p},
where @var{n} is the number of trials and @var{p} is the probability of
success.
@end deftypefn
@c binocdf scripts/statistics/distributions/binocdf.m
@anchor{XREFbinocdf}
@deftypefn {Function File} {} binocdf (@var{x}, @var{n}, @var{p})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the binomial distribution with parameters @var{n} and
@var{p}, where @var{n} is the number of trials and @var{p} is the
probability of success.
@end deftypefn
@c binoinv scripts/statistics/distributions/binoinv.m
@anchor{XREFbinoinv}
@deftypefn {Function File} {} binoinv (@var{x}, @var{n}, @var{p})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the binomial distribution with parameters
@var{n} and @var{p}, where @var{n} is the number of trials and
@var{p} is the probability of success.
@end deftypefn
@c cauchy_pdf scripts/statistics/distributions/cauchy_pdf.m
@anchor{XREFcauchy_pdf}
@deftypefn {Function File} {} cauchy_pdf (@var{x})
@deftypefnx {Function File} {} cauchy_pdf (@var{x}, @var{location}, @var{scale})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the Cauchy distribution with location parameter
@var{location} and scale parameter @var{scale} > 0.
Default values are @var{location} = 0, @var{scale} = 1.
@end deftypefn
@c cauchy_cdf scripts/statistics/distributions/cauchy_cdf.m
@anchor{XREFcauchy_cdf}
@deftypefn {Function File} {} cauchy_cdf (@var{x})
@deftypefnx {Function File} {} cauchy_cdf (@var{x}, @var{location}, @var{scale})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the Cauchy distribution with location parameter
@var{location} and scale parameter @var{scale}.
Default values are @var{location} = 0, @var{scale} = 1.
@end deftypefn
@c cauchy_inv scripts/statistics/distributions/cauchy_inv.m
@anchor{XREFcauchy_inv}
@deftypefn {Function File} {} cauchy_inv (@var{x})
@deftypefnx {Function File} {} cauchy_inv (@var{x}, @var{location}, @var{scale})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the Cauchy distribution with location parameter
@var{location} and scale parameter @var{scale}.
Default values are @var{location} = 0, @var{scale} = 1.
@end deftypefn
@c chi2pdf scripts/statistics/distributions/chi2pdf.m
@anchor{XREFchi2pdf}
@deftypefn {Function File} {} chi2pdf (@var{x}, @var{n})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the chi-square distribution with @var{n} degrees of freedom.
@end deftypefn
@c chi2cdf scripts/statistics/distributions/chi2cdf.m
@anchor{XREFchi2cdf}
@deftypefn {Function File} {} chi2cdf (@var{x}, @var{n})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the chi-square distribution with @var{n} degrees of
freedom.
@end deftypefn
@c chi2inv scripts/statistics/distributions/chi2inv.m
@anchor{XREFchi2inv}
@deftypefn {Function File} {} chi2inv (@var{x}, @var{n})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the chi-square distribution with @var{n} degrees of freedom.
@end deftypefn
@c discrete_pdf scripts/statistics/distributions/discrete_pdf.m
@anchor{XREFdiscrete_pdf}
@deftypefn {Function File} {} discrete_pdf (@var{x}, @var{v}, @var{p})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of a univariate discrete distribution which assumes the values
in @var{v} with probabilities @var{p}.
@end deftypefn
@c discrete_cdf scripts/statistics/distributions/discrete_cdf.m
@anchor{XREFdiscrete_cdf}
@deftypefn {Function File} {} discrete_cdf (@var{x}, @var{v}, @var{p})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of a univariate discrete distribution which assumes the
values in @var{v} with probabilities @var{p}.
@end deftypefn
@c discrete_inv scripts/statistics/distributions/discrete_inv.m
@anchor{XREFdiscrete_inv}
@deftypefn {Function File} {} discrete_inv (@var{x}, @var{v}, @var{p})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the univariate distribution which assumes the values in
@var{v} with probabilities @var{p}.
@end deftypefn
@c empirical_pdf scripts/statistics/distributions/empirical_pdf.m
@anchor{XREFempirical_pdf}
@deftypefn {Function File} {} empirical_pdf (@var{x}, @var{data})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the empirical distribution obtained from the
univariate sample @var{data}.
@end deftypefn
@c empirical_cdf scripts/statistics/distributions/empirical_cdf.m
@anchor{XREFempirical_cdf}
@deftypefn {Function File} {} empirical_cdf (@var{x}, @var{data})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the empirical distribution obtained from
the univariate sample @var{data}.
@end deftypefn
@c empirical_inv scripts/statistics/distributions/empirical_inv.m
@anchor{XREFempirical_inv}
@deftypefn {Function File} {} empirical_inv (@var{x}, @var{data})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the empirical distribution obtained from the
univariate sample @var{data}.
@end deftypefn
@c exppdf scripts/statistics/distributions/exppdf.m
@anchor{XREFexppdf}
@deftypefn {Function File} {} exppdf (@var{x}, @var{lambda})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the exponential distribution with mean @var{lambda}.
@end deftypefn
@c expcdf scripts/statistics/distributions/expcdf.m
@anchor{XREFexpcdf}
@deftypefn {Function File} {} expcdf (@var{x}, @var{lambda})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the exponential distribution with mean @var{lambda}.
The arguments can be of common size or scalars.
@end deftypefn
@c expinv scripts/statistics/distributions/expinv.m
@anchor{XREFexpinv}
@deftypefn {Function File} {} expinv (@var{x}, @var{lambda})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the exponential distribution with mean @var{lambda}.
@end deftypefn
@c fpdf scripts/statistics/distributions/fpdf.m
@anchor{XREFfpdf}
@deftypefn {Function File} {} fpdf (@var{x}, @var{m}, @var{n})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the F distribution with @var{m} and @var{n} degrees of freedom.
@end deftypefn
@c fcdf scripts/statistics/distributions/fcdf.m
@anchor{XREFfcdf}
@deftypefn {Function File} {} fcdf (@var{x}, @var{m}, @var{n})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the F distribution with @var{m} and @var{n} degrees of
freedom.
@end deftypefn
@c finv scripts/statistics/distributions/finv.m
@anchor{XREFfinv}
@deftypefn {Function File} {} finv (@var{x}, @var{m}, @var{n})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the F distribution with @var{m} and @var{n} degrees of freedom.
@end deftypefn
@c gampdf scripts/statistics/distributions/gampdf.m
@anchor{XREFgampdf}
@deftypefn {Function File} {} gampdf (@var{x}, @var{a}, @var{b})
For each element of @var{x}, return the probability density function
(PDF) at @var{x} of the Gamma distribution with shape parameter @var{a} and
scale @var{b}.
@end deftypefn
@c gamcdf scripts/statistics/distributions/gamcdf.m
@anchor{XREFgamcdf}
@deftypefn {Function File} {} gamcdf (@var{x}, @var{a}, @var{b})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the Gamma distribution with shape parameter @var{a} and
scale @var{b}.
@end deftypefn
@c gaminv scripts/statistics/distributions/gaminv.m
@anchor{XREFgaminv}
@deftypefn {Function File} {} gaminv (@var{x}, @var{a}, @var{b})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the Gamma distribution with shape parameter @var{a} and
scale @var{b}.
@end deftypefn
@c geopdf scripts/statistics/distributions/geopdf.m
@anchor{XREFgeopdf}
@deftypefn {Function File} {} geopdf (@var{x}, @var{p})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the geometric distribution with parameter @var{p}.
The geometric distribution models the number of failures (@var{x}-1) of a
Bernoulli trial with probability @var{p} before the first success (@var{x}).
@end deftypefn
@c geocdf scripts/statistics/distributions/geocdf.m
@anchor{XREFgeocdf}
@deftypefn {Function File} {} geocdf (@var{x}, @var{p})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the geometric distribution with parameter @var{p}.
The geometric distribution models the number of failures (@var{x}-1) of a
Bernoulli trial with probability @var{p} before the first success (@var{x}).
@end deftypefn
@c geoinv scripts/statistics/distributions/geoinv.m
@anchor{XREFgeoinv}
@deftypefn {Function File} {} geoinv (@var{x}, @var{p})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the geometric distribution with parameter @var{p}.
The geometric distribution models the number of failures (@var{x}-1) of a
Bernoulli trial with probability @var{p} before the first success (@var{x}).
@end deftypefn
@c hygepdf scripts/statistics/distributions/hygepdf.m
@anchor{XREFhygepdf}
@deftypefn {Function File} {} hygepdf (@var{x}, @var{t}, @var{m}, @var{n})
Compute the probability density function (PDF) at @var{x} of the
hypergeometric distribution with parameters @var{t}, @var{m}, and @var{n}.
This is the probability of obtaining @var{x} marked items when randomly
drawing a sample of size @var{n} without replacement from a population of
total size @var{t} containing @var{m} marked items.
The parameters @var{t}, @var{m}, and @var{n} must be positive integers
with @var{m} and @var{n} not greater than @var{t}.
@end deftypefn
@c hygecdf scripts/statistics/distributions/hygecdf.m
@anchor{XREFhygecdf}
@deftypefn {Function File} {} hygecdf (@var{x}, @var{t}, @var{m}, @var{n})
Compute the cumulative distribution function (CDF) at @var{x} of the
hypergeometric distribution with parameters @var{t}, @var{m}, and @var{n}.
This is the probability of obtaining not more than @var{x} marked items
when randomly drawing a sample of size @var{n} without replacement from a
population of total size @var{t} containing @var{m} marked items.
The parameters @var{t}, @var{m}, and @var{n} must be positive integers
with @var{m} and @var{n} not greater than @var{t}.
@end deftypefn
@c hygeinv scripts/statistics/distributions/hygeinv.m
@anchor{XREFhygeinv}
@deftypefn {Function File} {} hygeinv (@var{x}, @var{t}, @var{m}, @var{n})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the hypergeometric distribution with parameters
@var{t}, @var{m}, and @var{n}.
This is the probability of obtaining @var{x} marked items when randomly
drawing a sample of size @var{n} without replacement from a population of
total size @var{t} containing @var{m} marked items.
The parameters @var{t}, @var{m}, and @var{n} must be positive integers
with @var{m} and @var{n} not greater than @var{t}.
@end deftypefn
@c kolmogorov_smirnov_cdf scripts/statistics/distributions/kolmogorov_smirnov_cdf.m
@anchor{XREFkolmogorov_smirnov_cdf}
@deftypefn {Function File} {} kolmogorov_smirnov_cdf (@var{x}, @var{tol})
Return the cumulative distribution function (CDF) at @var{x} of the
Kolmogorov-Smirnov distribution.
This is defined as
@tex
$$ Q(x) = \sum_{k=-\infty}^\infty (-1)^k \exp (-2 k^2 x^2) $$
@end tex
@ifnottex
@example
@group
Inf
Q(x) = SUM (-1)^k exp (-2 k^2 x^2)
k = -Inf
@end group
@end example
@end ifnottex
@noindent
for @var{x} > 0.
The optional parameter @var{tol} specifies the precision up to which
the series should be evaluated; the default is @var{tol} = @code{eps}.
@end deftypefn
@c laplace_pdf scripts/statistics/distributions/laplace_pdf.m
@anchor{XREFlaplace_pdf}
@deftypefn {Function File} {} laplace_pdf (@var{x})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the Laplace distribution.
@end deftypefn
@c laplace_cdf scripts/statistics/distributions/laplace_cdf.m
@anchor{XREFlaplace_cdf}
@deftypefn {Function File} {} laplace_cdf (@var{x})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the Laplace distribution.
@end deftypefn
@c laplace_inv scripts/statistics/distributions/laplace_inv.m
@anchor{XREFlaplace_inv}
@deftypefn {Function File} {} laplace_inv (@var{x})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the Laplace distribution.
@end deftypefn
@c logistic_pdf scripts/statistics/distributions/logistic_pdf.m
@anchor{XREFlogistic_pdf}
@deftypefn {Function File} {} logistic_pdf (@var{x})
For each element of @var{x}, compute the PDF at @var{x} of the
logistic distribution.
@end deftypefn
@c logistic_cdf scripts/statistics/distributions/logistic_cdf.m
@anchor{XREFlogistic_cdf}
@deftypefn {Function File} {} logistic_cdf (@var{x})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the logistic distribution.
@end deftypefn
@c logistic_inv scripts/statistics/distributions/logistic_inv.m
@anchor{XREFlogistic_inv}
@deftypefn {Function File} {} logistic_inv (@var{x})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the logistic distribution.
@end deftypefn
@c lognpdf scripts/statistics/distributions/lognpdf.m
@anchor{XREFlognpdf}
@deftypefn {Function File} {} lognpdf (@var{x})
@deftypefnx {Function File} {} lognpdf (@var{x}, @var{mu}, @var{sigma})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the lognormal distribution with parameters
@var{mu} and @var{sigma}.
If a random variable follows this distribution, its logarithm is normally
distributed with mean @var{mu} and standard deviation @var{sigma}.
Default values are @var{mu} = 0, @var{sigma} = 1.
@end deftypefn
@c logncdf scripts/statistics/distributions/logncdf.m
@anchor{XREFlogncdf}
@deftypefn {Function File} {} logncdf (@var{x})
@deftypefnx {Function File} {} logncdf (@var{x}, @var{mu}, @var{sigma})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the lognormal distribution with parameters
@var{mu} and @var{sigma}.
If a random variable follows this distribution, its logarithm is normally
distributed with mean @var{mu} and standard deviation @var{sigma}.
Default values are @var{mu} = 0, @var{sigma} = 1.
@end deftypefn
@c logninv scripts/statistics/distributions/logninv.m
@anchor{XREFlogninv}
@deftypefn {Function File} {} logninv (@var{x})
@deftypefnx {Function File} {} logninv (@var{x}, @var{mu}, @var{sigma})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the lognormal distribution with parameters
@var{mu} and @var{sigma}.
If a random variable follows this distribution, its logarithm is normally
distributed with mean @var{mu} and standard deviation @var{sigma}.
Default values are @var{mu} = 0, @var{sigma} = 1.
@end deftypefn
@c nbinpdf scripts/statistics/distributions/nbinpdf.m
@anchor{XREFnbinpdf}
@deftypefn {Function File} {} nbinpdf (@var{x}, @var{n}, @var{p})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the negative binomial distribution with parameters
@var{n} and @var{p}.
When @var{n} is integer this is the Pascal distribution.
When @var{n} is extended to real numbers this is the Polya distribution.
The number of failures in a Bernoulli experiment with success probability
@var{p} before the @var{n}-th success follows this distribution.
@end deftypefn
@c nbincdf scripts/statistics/distributions/nbincdf.m
@anchor{XREFnbincdf}
@deftypefn {Function File} {} nbincdf (@var{x}, @var{n}, @var{p})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the negative binomial distribution with parameters
@var{n} and @var{p}.
When @var{n} is integer this is the Pascal distribution.
When @var{n} is extended to real numbers this is the Polya distribution.
The number of failures in a Bernoulli experiment with success probability
@var{p} before the @var{n}-th success follows this distribution.
@end deftypefn
@c nbininv scripts/statistics/distributions/nbininv.m
@anchor{XREFnbininv}
@deftypefn {Function File} {} nbininv (@var{x}, @var{n}, @var{p})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the negative binomial distribution with parameters
@var{n} and @var{p}.
When @var{n} is integer this is the Pascal distribution.
When @var{n} is extended to real numbers this is the Polya distribution.
The number of failures in a Bernoulli experiment with success probability
@var{p} before the @var{n}-th success follows this distribution.
@end deftypefn
@c normpdf scripts/statistics/distributions/normpdf.m
@anchor{XREFnormpdf}
@deftypefn {Function File} {} normpdf (@var{x})
@deftypefnx {Function File} {} normpdf (@var{x}, @var{mu}, @var{sigma})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the normal distribution with mean @var{mu} and
standard deviation @var{sigma}.
Default values are @var{mu} = 0, @var{sigma} = 1.
@end deftypefn
@c normcdf scripts/statistics/distributions/normcdf.m
@anchor{XREFnormcdf}
@deftypefn {Function File} {} normcdf (@var{x})
@deftypefnx {Function File} {} normcdf (@var{x}, @var{mu}, @var{sigma})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the normal distribution with mean @var{mu} and
standard deviation @var{sigma}.
Default values are @var{mu} = 0, @var{sigma} = 1.
@end deftypefn
@c norminv scripts/statistics/distributions/norminv.m
@anchor{XREFnorminv}
@deftypefn {Function File} {} norminv (@var{x})
@deftypefnx {Function File} {} norminv (@var{x}, @var{mu}, @var{sigma})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the normal distribution with mean @var{mu} and
standard deviation @var{sigma}.
Default values are @var{mu} = 0, @var{sigma} = 1.
@end deftypefn
@c poisspdf scripts/statistics/distributions/poisspdf.m
@anchor{XREFpoisspdf}
@deftypefn {Function File} {} poisspdf (@var{x}, @var{lambda})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the Poisson distribution with parameter @var{lambda}.
@end deftypefn
@c poisscdf scripts/statistics/distributions/poisscdf.m
@anchor{XREFpoisscdf}
@deftypefn {Function File} {} poisscdf (@var{x}, @var{lambda})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the Poisson distribution with parameter @var{lambda}.
@end deftypefn
@c poissinv scripts/statistics/distributions/poissinv.m
@anchor{XREFpoissinv}
@deftypefn {Function File} {} poissinv (@var{x}, @var{lambda})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the Poisson distribution with parameter @var{lambda}.
@end deftypefn
@c stdnormal_pdf scripts/statistics/distributions/stdnormal_pdf.m
@anchor{XREFstdnormal_pdf}
@deftypefn {Function File} {} stdnormal_pdf (@var{x})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the standard normal distribution
(mean = 0, standard deviation = 1).
@end deftypefn
@c stdnormal_cdf scripts/statistics/distributions/stdnormal_cdf.m
@anchor{XREFstdnormal_cdf}
@deftypefn {Function File} {} stdnormal_cdf (@var{x})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the standard normal distribution
(mean = 0, standard deviation = 1).
@end deftypefn
@c stdnormal_inv scripts/statistics/distributions/stdnormal_inv.m
@anchor{XREFstdnormal_inv}
@deftypefn {Function File} {} stdnormal_inv (@var{x})
For each element of @var{x}, compute the quantile (the
inverse of the CDF) at @var{x} of the standard normal distribution
(mean = 0, standard deviation = 1).
@end deftypefn
@c tpdf scripts/statistics/distributions/tpdf.m
@anchor{XREFtpdf}
@deftypefn {Function File} {} tpdf (@var{x}, @var{n})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the @var{t} (Student) distribution with
@var{n} degrees of freedom.
@end deftypefn
@c tcdf scripts/statistics/distributions/tcdf.m
@anchor{XREFtcdf}
@deftypefn {Function File} {} tcdf (@var{x}, @var{n})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the t (Student) distribution with
@var{n} degrees of freedom.
@end deftypefn
@c tinv scripts/statistics/distributions/tinv.m
@anchor{XREFtinv}
@deftypefn {Function File} {} tinv (@var{x}, @var{n})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the t (Student) distribution with @var{n}
degrees of freedom.
This function is analogous to looking in a table for the t-value of a
single-tailed distribution.
@end deftypefn
@c unidpdf scripts/statistics/distributions/unidpdf.m
@anchor{XREFunidpdf}
@deftypefn {Function File} {} unidpdf (@var{x}, @var{n})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of a discrete uniform distribution which assumes
the integer values 1--@var{n} with equal probability.
Warning: The underlying implementation uses the double class and will only
be accurate for @var{n} @leq{} @code{bitmax} (@w{@math{2^{53} - 1}} on
IEEE 754 compatible systems).
@end deftypefn
@c unidcdf scripts/statistics/distributions/unidcdf.m
@anchor{XREFunidcdf}
@deftypefn {Function File} {} unidcdf (@var{x}, @var{n})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of a discrete uniform distribution which assumes
the integer values 1--@var{n} with equal probability.
@end deftypefn
@c unidinv scripts/statistics/distributions/unidinv.m
@anchor{XREFunidinv}
@deftypefn {Function File} {} unidinv (@var{x}, @var{n})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the discrete uniform distribution which assumes
the integer values 1--@var{n} with equal probability.
@end deftypefn
@c unifpdf scripts/statistics/distributions/unifpdf.m
@anchor{XREFunifpdf}
@deftypefn {Function File} {} unifpdf (@var{x})
@deftypefnx {Function File} {} unifpdf (@var{x}, @var{a}, @var{b})
For each element of @var{x}, compute the probability density function (PDF)
at @var{x} of the uniform distribution on the interval [@var{a}, @var{b}].
Default values are @var{a} = 0, @var{b} = 1.
@end deftypefn
@c unifcdf scripts/statistics/distributions/unifcdf.m
@anchor{XREFunifcdf}
@deftypefn {Function File} {} unifcdf (@var{x})
@deftypefnx {Function File} {} unifcdf (@var{x}, @var{a}, @var{b})
For each element of @var{x}, compute the cumulative distribution function
(CDF) at @var{x} of the uniform distribution on the interval
[@var{a}, @var{b}].
Default values are @var{a} = 0, @var{b} = 1.
@end deftypefn
@c unifinv scripts/statistics/distributions/unifinv.m
@anchor{XREFunifinv}
@deftypefn {Function File} {} unifinv (@var{x})
@deftypefnx {Function File} {} unifinv (@var{x}, @var{a}, @var{b})
For each element of @var{x}, compute the quantile (the inverse of the CDF)
at @var{x} of the uniform distribution on the interval [@var{a}, @var{b}].
Default values are @var{a} = 0, @var{b} = 1.
@end deftypefn
@c wblpdf scripts/statistics/distributions/wblpdf.m
@anchor{XREFwblpdf}
@deftypefn {Function File} {} wblpdf (@var{x})
@deftypefnx {Function File} {} wblpdf (@var{x}, @var{scale})
@deftypefnx {Function File} {} wblpdf (@var{x}, @var{scale}, @var{shape})
Compute the probability density function (PDF) at @var{x} of the
Weibull distribution with scale parameter @var{scale} and
shape parameter @var{shape}.
This is given by
@tex
$$ {shape \over scale^{shape}} \cdot x^{shape-1} \cdot e^{-({x \over scale})^{shape}} $$
@end tex
@ifnottex
@example
shape * scale^(-shape) * x^(shape-1) * exp (-(x/scale)^shape)
@end example
@end ifnottex
@noindent
for @var{x} @geq{} 0.
Default values are @var{scale} = 1, @var{shape} = 1.
@end deftypefn
@c wblcdf scripts/statistics/distributions/wblcdf.m
@anchor{XREFwblcdf}
@deftypefn {Function File} {} wblcdf (@var{x})
@deftypefnx {Function File} {} wblcdf (@var{x}, @var{scale})
@deftypefnx {Function File} {} wblcdf (@var{x}, @var{scale}, @var{shape})
Compute the cumulative distribution function (CDF) at @var{x} of the
Weibull distribution with scale parameter @var{scale} and shape
parameter @var{shape}.
This is defined as
@tex
$$ 1 - e^{-({x \over scale})^{shape}} $$
for $x \geq 0$.
@end tex
@ifnottex
@example
1 - exp (-(x/scale)^shape)
@end example
@noindent
for @var{x} @geq{} 0.
Default values are @var{scale} = 1, @var{shape} = 1.
@end ifnottex
@end deftypefn
@c wblinv scripts/statistics/distributions/wblinv.m
@anchor{XREFwblinv}
@deftypefn {Function File} {} wblinv (@var{x})
@deftypefnx {Function File} {} wblinv (@var{x}, @var{scale})
@deftypefnx {Function File} {} wblinv (@var{x}, @var{scale}, @var{shape})
Compute the quantile (the inverse of the CDF) at @var{x} of the
Weibull distribution with scale parameter @var{scale} and
shape parameter @var{shape}.
Default values are @var{scale} = 1, @var{shape} = 1.
@end deftypefn
@node Tests
@section Tests
Octave can perform many different statistical tests. The following
table summarizes the available tests.
@tex
\vskip 6pt
{\hbox to \hsize {\hfill\vbox{\offinterlineskip \tabskip=0pt
\halign{
\vrule height2.0ex depth1.ex width 0.6pt #\tabskip=0.3em &
# \hfil & \vrule # & # \hfil & # \vrule width 0.6pt \tabskip=0pt\cr
\noalign{\hrule height 0.6pt}
& @strong{Hypothesis} && {\bf Test Functions} &\cr
\noalign{\hrule}
& Equal mean values && anova, hotelling\_test2, t\_test\_2, &\cr
& && welch\_test, wilcoxon\_test, z\_test\_2 &\cr
& Equal medians && kruskal\_wallis\_test, sign\_test &\cr
& Equal variances && bartlett\_test, manova, var\_test &\cr
& Equal distributions && chisquare\_test\_homogeneity, &\cr
& && kolmogorov\_smirnov\_test\_2, u\_test &\cr
& Equal marginal frequencies && mcnemar\_test &\cr
& Equal success probabilities && prop\_test\_2 &\cr
& Independent observations && chisquare\_test\_independence, &\cr
& && run\_test &\cr
& Uncorrelated observations && cor\_test &\cr
& Given mean value && hotelling\_test, t\_test, z\_test &\cr
& Observations from distribution && kolmogorov\_smirnov\_test &\cr
& Regression && f\_test\_regression, t\_test\_regression &\cr
\noalign{\hrule height 0.6pt}
}}\hfill}}
@end tex
@ifnottex
@multitable @columnfractions .4 .5
@headitem Hypothesis
@tab Test Functions
@item Equal mean values
@tab @code{anova}, @code{hotelling_test2}, @code{t_test_2},
@code{welch_test}, @code{wilcoxon_test}, @code{z_test_2}
@item Equal medians
@tab @code{kruskal_wallis_test}, @code{sign_test}
@item Equal variances
@tab @code{bartlett_test}, @code{manova}, @code{var_test}
@item Equal distributions
@tab @code{chisquare_test_homogeneity}, @code{kolmogorov_smirnov_test_2},
@code{u_test}
@item Equal marginal frequencies
@tab @code{mcnemar_test}
@item Equal success probabilities
@tab @code{prop_test_2}
@item Independent observations
@tab @code{chisquare_test_independence}, @code{run_test}
@item Uncorrelated observations
@tab @code{cor_test}
@item Given mean value
@tab @code{hotelling_test}, @code{t_test}, @code{z_test}
@item Observations from given distribution
@tab @code{kolmogorov_smirnov_test}
@item Regression
@tab @code{f_test_regression}, @code{t_test_regression}
@end multitable
@end ifnottex
The tests return a p-value that describes the outcome of the test.
Assuming that the test hypothesis is true, the p-value is the probability
of obtaining a worse result than the observed one. So large p-values
corresponds to a successful test. Usually a test hypothesis is accepted
if the p-value exceeds 0.05.
@c anova scripts/statistics/tests/anova.m
@anchor{XREFanova}
@deftypefn {Function File} {[@var{pval}, @var{f}, @var{df_b}, @var{df_w}] =} anova (@var{y}, @var{g})
Perform a one-way analysis of variance (ANOVA).
The goal is to test whether the population means of data taken from
@var{k} different groups are all equal.
Data may be given in a single vector @var{y} with groups specified by a
corresponding vector of group labels @var{g} (e.g., numbers from 1 to
@var{k}). This is the general form which does not impose any restriction
on the number of data in each group or the group labels.
If @var{y} is a matrix and @var{g} is omitted, each column of @var{y} is
treated as a group. This form is only appropriate for balanced ANOVA in
which the numbers of samples from each group are all equal.
Under the null of constant means, the statistic @var{f} follows an F
distribution with @var{df_b} and @var{df_w} degrees of freedom.
The p-value (1 minus the CDF of this distribution at @var{f}) is returned
in @var{pval}.
If no output argument is given, the standard one-way ANOVA table is printed.
@seealso{@ref{XREFmanova,,manova}}
@end deftypefn
@c bartlett_test scripts/statistics/tests/bartlett_test.m
@anchor{XREFbartlett_test}
@deftypefn {Function File} {[@var{pval}, @var{chisq}, @var{df}] =} bartlett_test (@var{x1}, @dots{})
Perform a Bartlett test for the homogeneity of variances in the data
vectors @var{x1}, @var{x2}, @dots{}, @var{xk}, where @var{k} > 1.
Under the null of equal variances, the test statistic @var{chisq}
approximately follows a chi-square distribution with @var{df} degrees of
freedom.
The p-value (1 minus the CDF of this distribution at @var{chisq}) is
returned in @var{pval}.
If no output argument is given, the p-value is displayed.
@end deftypefn
@c chisquare_test_homogeneity scripts/statistics/tests/chisquare_test_homogeneity.m
@anchor{XREFchisquare_test_homogeneity}
@deftypefn {Function File} {[@var{pval}, @var{chisq}, @var{df}] =} chisquare_test_homogeneity (@var{x}, @var{y}, @var{c})
Given two samples @var{x} and @var{y}, perform a chisquare test for
homogeneity of the null hypothesis that @var{x} and @var{y} come from
the same distribution, based on the partition induced by the
(strictly increasing) entries of @var{c}.
For large samples, the test statistic @var{chisq} approximately follows a
chisquare distribution with @var{df} = @code{length (@var{c})} degrees of
freedom.
The p-value (1 minus the CDF of this distribution at @var{chisq}) is
returned in @var{pval}.
If no output argument is given, the p-value is displayed.
@end deftypefn
@c chisquare_test_independence scripts/statistics/tests/chisquare_test_independence.m
@anchor{XREFchisquare_test_independence}
@deftypefn {Function File} {[@var{pval}, @var{chisq}, @var{df}] =} chisquare_test_independence (@var{x})
Perform a chi-square test for independence based on the contingency table
@var{x}.
Under the null hypothesis of independence, @var{chisq} approximately has a
chi-square distribution with @var{df} degrees of freedom.
The p-value (1 minus the CDF of this distribution at chisq) of the test is
returned in @var{pval}.
If no output argument is given, the p-value is displayed.
@end deftypefn
@c cor_test scripts/statistics/tests/cor_test.m
@anchor{XREFcor_test}
@deftypefn {Function File} {} cor_test (@var{x}, @var{y}, @var{alt}, @var{method})
Test whether two samples @var{x} and @var{y} come from uncorrelated
populations.
The optional argument string @var{alt} describes the alternative
hypothesis, and can be @qcode{"!="} or @qcode{"<>"} (nonzero), @qcode{">"}
(greater than 0), or @qcode{"<"} (less than 0). The default is the
two-sided case.
The optional argument string @var{method} specifies which correlation
coefficient to use for testing. If @var{method} is @qcode{"pearson"}
(default), the (usual) Pearson's produt moment correlation coefficient is
used. In this case, the data should come from a bivariate normal
distribution. Otherwise, the other two methods offer nonparametric
alternatives. If @var{method} is @qcode{"kendall"}, then Kendall's rank
correlation tau is used. If @var{method} is @qcode{"spearman"}, then
Spearman's rank correlation rho is used. Only the first character is
necessary.
The output is a structure with the following elements:
@table @var
@item pval
The p-value of the test.
@item stat
The value of the test statistic.
@item dist
The distribution of the test statistic.
@item params
The parameters of the null distribution of the test statistic.
@item alternative
The alternative hypothesis.
@item method
The method used for testing.
@end table
If no output argument is given, the p-value is displayed.
@end deftypefn
@c f_test_regression scripts/statistics/tests/f_test_regression.m
@anchor{XREFf_test_regression}
@deftypefn {Function File} {[@var{pval}, @var{f}, @var{df_num}, @var{df_den}] =} f_test_regression (@var{y}, @var{x}, @var{rr}, @var{r})
Perform an F test for the null hypothesis @nospell{rr * b = r} in a
classical normal regression model y = X * b + e.
Under the null, the test statistic @var{f} follows an F distribution with
@var{df_num} and @var{df_den} degrees of freedom.
The p-value (1 minus the CDF of this distribution at @var{f}) is returned
in @var{pval}.
If not given explicitly, @var{r} = 0.
If no output argument is given, the p-value is displayed.
@end deftypefn
@c hotelling_test scripts/statistics/tests/hotelling_test.m
@anchor{XREFhotelling_test}
@deftypefn {Function File} {[@var{pval}, @var{tsq}] =} hotelling_test (@var{x}, @var{m})
For a sample @var{x} from a multivariate normal distribution with unknown
mean and covariance matrix, test the null hypothesis that
@code{mean (@var{x}) == @var{m}}.
Hotelling's @math{T^2} is returned in @var{tsq}. Under the null,
@math{(n-p) T^2 / (p(n-1))} has an F distribution with @math{p} and
@math{n-p} degrees of freedom, where @math{n} and @math{p} are the
numbers of samples and variables, respectively.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed.
@end deftypefn
@c hotelling_test_2 scripts/statistics/tests/hotelling_test_2.m
@anchor{XREFhotelling_test_2}
@deftypefn {Function File} {[@var{pval}, @var{tsq}] =} hotelling_test_2 (@var{x}, @var{y})
For two samples @var{x} from multivariate normal distributions with
the same number of variables (columns), unknown means and unknown
equal covariance matrices, test the null hypothesis @code{mean
(@var{x}) == mean (@var{y})}.
Hotelling's two-sample @math{T^2} is returned in @var{tsq}. Under the null,
@tex
$$
{(n_x+n_y-p-1) T^2 \over p(n_x+n_y-2)}
$$
@end tex
@ifnottex
@example
(n_x+n_y-p-1) T^2 / (p(n_x+n_y-2))
@end example
@end ifnottex
@noindent
has an F distribution with @math{p} and @math{n_x+n_y-p-1} degrees of
freedom, where @math{n_x} and @math{n_y} are the sample sizes and
@math{p} is the number of variables.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed.
@end deftypefn
@c kolmogorov_smirnov_test scripts/statistics/tests/kolmogorov_smirnov_test.m
@anchor{XREFkolmogorov_smirnov_test}
@deftypefn {Function File} {[@var{pval}, @var{ks}] =} kolmogorov_smirnov_test (@var{x}, @var{dist}, @var{params}, @var{alt})
Perform a Kolmogorov-Smirnov test of the null hypothesis that the
sample @var{x} comes from the (continuous) distribution @var{dist}.
if F and G are the CDFs corresponding to the sample and dist,
respectively, then the null is that F == G.
The optional argument @var{params} contains a list of parameters of
@var{dist}. For example, to test whether a sample @var{x} comes from
a uniform distribution on [2,4], use
@example
kolmogorov_smirnov_test (x, "unif", 2, 4)
@end example
@noindent
@var{dist} can be any string for which a function @var{distcdf}
that calculates the CDF of distribution @var{dist} exists.
With the optional argument string @var{alt}, the alternative of interest
can be selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
is tested against the two-sided alternative F != G@. In this case, the
test statistic @var{ks} follows a two-sided Kolmogorov-Smirnov
distribution. If @var{alt} is @qcode{">"}, the one-sided alternative F >
G is considered. Similarly for @qcode{"<"}, the one-sided alternative F >
G is considered. In this case, the test statistic @var{ks} has a
one-sided Kolmogorov-Smirnov distribution. The default is the two-sided
case.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value is displayed.
@end deftypefn
@c kolmogorov_smirnov_test_2 scripts/statistics/tests/kolmogorov_smirnov_test_2.m
@anchor{XREFkolmogorov_smirnov_test_2}
@deftypefn {Function File} {[@var{pval}, @var{ks}, @var{d}] =} kolmogorov_smirnov_test_2 (@var{x}, @var{y}, @var{alt})
Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the
samples @var{x} and @var{y} come from the same (continuous) distribution.
If F and G are the CDFs corresponding to the @var{x} and @var{y} samples,
respectively, then the null is that F == G.
With the optional argument string @var{alt}, the alternative of interest
can be selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
is tested against the two-sided alternative F != G@. In this case, the
test statistic @var{ks} follows a two-sided Kolmogorov-Smirnov
distribution. If @var{alt} is @qcode{">"}, the one-sided alternative F >
G is considered. Similarly for @qcode{"<"}, the one-sided alternative F <
G is considered. In this case, the test statistic @var{ks} has a
one-sided Kolmogorov-Smirnov distribution. The default is the two-sided
case.
The p-value of the test is returned in @var{pval}.
The third returned value, @var{d}, is the test statistic, the maximum
vertical distance between the two cumulative distribution functions.
If no output argument is given, the p-value is displayed.
@end deftypefn
@c kruskal_wallis_test scripts/statistics/tests/kruskal_wallis_test.m
@anchor{XREFkruskal_wallis_test}
@deftypefn {Function File} {[@var{pval}, @var{k}, @var{df}] =} kruskal_wallis_test (@var{x1}, @dots{})
Perform a @nospell{Kruskal-Wallis} one-factor analysis of variance.
Suppose a variable is observed for @var{k} > 1 different groups, and let
@var{x1}, @dots{}, @var{xk} be the corresponding data vectors.
Under the null hypothesis that the ranks in the pooled sample are not
affected by the group memberships, the test statistic @var{k} is
approximately chi-square with @var{df} = @var{k} - 1 degrees of freedom.
If the data contains ties (some value appears more than once)
@var{k} is divided by
1 - @var{sum_ties} / (@var{n}^3 - @var{n})
where @var{sum_ties} is the sum of @var{t}^2 - @var{t} over each group of
ties where @var{t} is the number of ties in the group and @var{n} is the
total number of values in the input data. For more info on this
adjustment see @nospell{William H. Kruskal and W. Allen Wallis},
@cite{Use of Ranks in One-Criterion Variance Analysis},
Journal of the American Statistical Association, Vol. 47, No. 260 (Dec 1952).
The p-value (1 minus the CDF of this distribution at @var{k}) is returned
in @var{pval}.
If no output argument is given, the p-value is displayed.
@end deftypefn
@c manova scripts/statistics/tests/manova.m
@anchor{XREFmanova}
@deftypefn {Function File} {} manova (@var{x}, @var{g})
Perform a one-way multivariate analysis of variance (MANOVA).
The goal is to test whether the p-dimensional population means of data
taken from @var{k} different groups are all equal. All data are assumed
drawn independently from p-dimensional normal distributions with the same
covariance matrix.
The data matrix is given by @var{x}. As usual, rows are observations and
columns are variables. The vector @var{g} specifies the corresponding
group labels (e.g., numbers from 1 to @var{k}).
The LR test statistic (@nospell{Wilks' Lambda}) and approximate p-values are
computed and displayed.
@seealso{@ref{XREFanova,,anova}}
@end deftypefn
@c mcnemar_test scripts/statistics/tests/mcnemar_test.m
@anchor{XREFmcnemar_test}
@deftypefn {Function File} {[@var{pval}, @var{chisq}, @var{df}] =} mcnemar_test (@var{x})
For a square contingency table @var{x} of data cross-classified on the row
and column variables, @nospell{McNemar's} test can be used for testing the
null hypothesis of symmetry of the classification probabilities.
Under the null, @var{chisq} is approximately distributed as chisquare with
@var{df} degrees of freedom.
The p-value (1 minus the CDF of this distribution at @var{chisq}) is
returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed.
@end deftypefn
@c prop_test_2 scripts/statistics/tests/prop_test_2.m
@anchor{XREFprop_test_2}
@deftypefn {Function File} {[@var{pval}, @var{z}] =} prop_test_2 (@var{x1}, @var{n1}, @var{x2}, @var{n2}, @var{alt})
If @var{x1} and @var{n1} are the counts of successes and trials in one
sample, and @var{x2} and @var{n2} those in a second one, test the null
hypothesis that the success probabilities @var{p1} and @var{p2} are the
same.
Under the null, the test statistic @var{z} approximately follows a
standard normal distribution.
With the optional argument string @var{alt}, the alternative of interest
can be selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
is tested against the two-sided alternative @var{p1} != @var{p2}. If
@var{alt} is @qcode{">"}, the one-sided alternative @var{p1} > @var{p2} is
used. Similarly for @qcode{"<"}, the one-sided alternative
@var{p1} < @var{p2} is used. The default is the two-sided case.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed.
@end deftypefn
@c run_test scripts/statistics/tests/run_test.m
@anchor{XREFrun_test}
@deftypefn {Function File} {[@var{pval}, @var{chisq}] =} run_test (@var{x})
Perform a chi-square test with 6 degrees of freedom based on the upward
runs in the columns of @var{x}.
@code{run_test} can be used to decide whether @var{x} contains independent
data.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value is displayed.
@end deftypefn
@c sign_test scripts/statistics/tests/sign_test.m
@anchor{XREFsign_test}
@deftypefn {Function File} {[@var{pval}, @var{b}, @var{n}] =} sign_test (@var{x}, @var{y}, @var{alt})
For two matched-pair samples @var{x} and @var{y}, perform a sign test
of the null hypothesis
PROB (@var{x} > @var{y}) == PROB (@var{x} < @var{y}) == 1/2.
Under the null, the test statistic @var{b} roughly follows a
binomial distribution with parameters
@code{@var{n} = sum (@var{x} != @var{y})} and @var{p} = 1/2.
With the optional argument @code{alt}, the alternative of interest can be
selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
hypothesis is tested against the two-sided alternative
PROB (@var{x} < @var{y}) != 1/2. If @var{alt} is @qcode{">"}, the one-sided
alternative PROB (@var{x} > @var{y}) > 1/2 ("x is stochastically greater
than y") is considered. Similarly for @qcode{"<"}, the one-sided
alternative PROB (@var{x} > @var{y}) < 1/2 ("x is stochastically less than
y") is considered. The default is the two-sided case.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed.
@end deftypefn
@c t_test scripts/statistics/tests/t_test.m
@anchor{XREFt_test}
@deftypefn {Function File} {[@var{pval}, @var{t}, @var{df}] =} t_test (@var{x}, @var{m}, @var{alt})
For a sample @var{x} from a normal distribution with unknown mean and
variance, perform a t-test of the null hypothesis
@code{mean (@var{x}) == @var{m}}.
Under the null, the test statistic @var{t} follows a Student distribution
with @code{@var{df} = length (@var{x}) - 1} degrees of freedom.
With the optional argument string @var{alt}, the alternative of interest
can be selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
is tested against the two-sided alternative @code{mean (@var{x}) !=
@var{m}}. If @var{alt} is @qcode{">"}, the one-sided alternative
@code{mean (@var{x}) > @var{m}} is considered. Similarly for @var{"<"},
the one-sided alternative @code{mean (@var{x}) < @var{m}} is considered.
The default is the two-sided case.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed.
@end deftypefn
@c t_test_2 scripts/statistics/tests/t_test_2.m
@anchor{XREFt_test_2}
@deftypefn {Function File} {[@var{pval}, @var{t}, @var{df}] =} t_test_2 (@var{x}, @var{y}, @var{alt})
For two samples x and y from normal distributions with unknown means and
unknown equal variances, perform a two-sample t-test of the null
hypothesis of equal means.
Under the null, the test statistic @var{t} follows a Student distribution
with @var{df} degrees of freedom.
With the optional argument string @var{alt}, the alternative of interest
can be selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
is tested against the two-sided alternative @code{mean (@var{x}) != mean
(@var{y})}. If @var{alt} is @qcode{">"}, the one-sided alternative
@code{mean (@var{x}) > mean (@var{y})} is used. Similarly for
@qcode{"<"}, the one-sided alternative @code{mean (@var{x}) < mean
(@var{y})} is used. The default is the two-sided case.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed.
@end deftypefn
@c t_test_regression scripts/statistics/tests/t_test_regression.m
@anchor{XREFt_test_regression}
@deftypefn {Function File} {[@var{pval}, @var{t}, @var{df}] =} t_test_regression (@var{y}, @var{x}, @var{rr}, @var{r}, @var{alt})
Perform a t test for the null hypothesis
@nospell{@code{@var{rr} * @var{b} = @var{r}}} in a classical normal
regression model @code{@var{y} = @var{x} * @var{b} + @var{e}}.
Under the null, the test statistic @var{t} follows a @var{t} distribution
with @var{df} degrees of freedom.
If @var{r} is omitted, a value of 0 is assumed.
With the optional argument string @var{alt}, the alternative of interest
can be selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
is tested against the two-sided alternative @nospell{@code{@var{rr} *
@var{b} != @var{r}}}. If @var{alt} is @qcode{">"}, the one-sided
alternative @nospell{@code{@var{rr} * @var{b} > @var{r}}} is used.
Similarly for @var{"<"}, the one-sided alternative @nospell{@code{@var{rr}
* @var{b} < @var{r}}} is used. The default is the two-sided case.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed.
@end deftypefn
@c u_test scripts/statistics/tests/u_test.m
@anchor{XREFu_test}
@deftypefn {Function File} {[@var{pval}, @var{z}] =} u_test (@var{x}, @var{y}, @var{alt})
For two samples @var{x} and @var{y}, perform a Mann-Whitney U-test of
the null hypothesis
PROB (@var{x} > @var{y}) == 1/2 == PROB (@var{x} < @var{y}).
Under the null, the test statistic @var{z} approximately follows a
standard normal distribution. Note that this test is equivalent to the
Wilcoxon rank-sum test.
With the optional argument string @var{alt}, the alternative of interest
can be selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
is tested against the two-sided alternative
PROB (@var{x} > @var{y}) != 1/2. If @var{alt} is @qcode{">"}, the one-sided
alternative PROB (@var{x} > @var{y}) > 1/2 is considered. Similarly for
@qcode{"<"}, the one-sided alternative PROB (@var{x} > @var{y}) < 1/2 is
considered. The default is the two-sided case.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed.
@end deftypefn
@c var_test scripts/statistics/tests/var_test.m
@anchor{XREFvar_test}
@deftypefn {Function File} {[@var{pval}, @var{f}, @var{df_num}, @var{df_den}] =} var_test (@var{x}, @var{y}, @var{alt})
For two samples @var{x} and @var{y} from normal distributions with
unknown means and unknown variances, perform an F-test of the null
hypothesis of equal variances.
Under the null, the test statistic @var{f} follows an F-distribution with
@var{df_num} and @var{df_den} degrees of freedom.
With the optional argument string @var{alt}, the alternative of interest
can be selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
is tested against the two-sided alternative @code{var (@var{x}) != var
(@var{y})}. If @var{alt} is @qcode{">"}, the one-sided alternative
@code{var (@var{x}) > var (@var{y})} is used. Similarly for "<", the
one-sided alternative @code{var (@var{x}) > var (@var{y})} is used. The
default is the two-sided case.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed.
@end deftypefn
@c welch_test scripts/statistics/tests/welch_test.m
@anchor{XREFwelch_test}
@deftypefn {Function File} {[@var{pval}, @var{t}, @var{df}] =} welch_test (@var{x}, @var{y}, @var{alt})
For two samples @var{x} and @var{y} from normal distributions with
unknown means and unknown and not necessarily equal variances,
perform a Welch test of the null hypothesis of equal means.
Under the null, the test statistic @var{t} approximately follows a
Student distribution with @var{df} degrees of freedom.
With the optional argument string @var{alt}, the alternative of interest
can be selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
is tested against the two-sided alternative
@code{mean (@var{x}) != @var{m}}. If @var{alt} is @qcode{">"}, the
one-sided alternative mean(x) > @var{m} is considered. Similarly for
@qcode{"<"}, the one-sided alternative mean(x) < @var{m} is considered.
The default is the two-sided case.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed.
@end deftypefn
@c wilcoxon_test scripts/statistics/tests/wilcoxon_test.m
@anchor{XREFwilcoxon_test}
@deftypefn {Function File} {[@var{pval}, @var{z}] =} wilcoxon_test (@var{x}, @var{y}, @var{alt})
For two matched-pair sample vectors @var{x} and @var{y}, perform a
Wilcoxon signed-rank test of the null hypothesis
PROB (@var{x} > @var{y}) == 1/2.
Under the null, the test statistic @var{z} approximately follows a
standard normal distribution when @var{n} > 25.
@strong{Caution:} This function assumes a normal distribution for @var{z}
and thus is invalid for @var{n} @leq{} 25.
With the optional argument string @var{alt}, the alternative of interest
can be selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
is tested against the two-sided alternative
PROB (@var{x} > @var{y}) != 1/2. If alt is @qcode{">"}, the one-sided
alternative PROB (@var{x} > @var{y}) > 1/2 is considered. Similarly for
@qcode{"<"}, the one-sided alternative PROB (@var{x} > @var{y}) < 1/2 is
considered. The default is the two-sided case.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed.
@end deftypefn
@c z_test scripts/statistics/tests/z_test.m
@anchor{XREFz_test}
@deftypefn {Function File} {[@var{pval}, @var{z}] =} z_test (@var{x}, @var{m}, @var{v}, @var{alt})
Perform a Z-test of the null hypothesis @code{mean (@var{x}) == @var{m}}
for a sample @var{x} from a normal distribution with unknown mean and known
variance @var{v}.
Under the null, the test statistic @var{z} follows a standard normal
distribution.
With the optional argument string @var{alt}, the alternative of interest
can be selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
is tested against the two-sided alternative
@code{mean (@var{x}) != @var{m}}. If @var{alt} is @qcode{">"}, the
one-sided alternative @code{mean (@var{x}) > @var{m}} is considered.
Similarly for @qcode{"<"}, the one-sided alternative
@code{mean (@var{x}) < @var{m}} is considered. The default is the two-sided
case.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed along
with some information.
@end deftypefn
@c z_test_2 scripts/statistics/tests/z_test_2.m
@anchor{XREFz_test_2}
@deftypefn {Function File} {[@var{pval}, @var{z}] =} z_test_2 (@var{x}, @var{y}, @var{v_x}, @var{v_y}, @var{alt})
For two samples @var{x} and @var{y} from normal distributions with unknown
means and known variances @var{v_x} and @var{v_y}, perform a Z-test of the
hypothesis of equal means.
Under the null, the test statistic @var{z} follows a standard normal
distribution.
With the optional argument string @var{alt}, the alternative of interest
can be selected. If @var{alt} is @qcode{"!="} or @qcode{"<>"}, the null
is tested against the two-sided alternative
@code{mean (@var{x}) != mean (@var{y})}. If alt is @qcode{">"}, the
one-sided alternative @code{mean (@var{x}) > mean (@var{y})} is used.
Similarly for @qcode{"<"}, the one-sided alternative
@code{mean (@var{x}) < mean (@var{y})} is used. The default is the
two-sided case.
The p-value of the test is returned in @var{pval}.
If no output argument is given, the p-value of the test is displayed along
with some information.
@end deftypefn
@node Random Number Generation
@section Random Number Generation
Octave can generate random numbers from a large number of distributions.
The random number generators are based on the random number generators
described in @ref{Special Utility Matrices}.
@c Should rand, randn, rande, randp, and randg be moved to here?
The following table summarizes the available random number generators
(in alphabetical order).
@tex
\vskip 6pt
{\hbox to \hsize {\hfill\vbox{\offinterlineskip \tabskip=0pt
\halign{
\vrule height2.0ex depth1.ex width 0.6pt #\tabskip=0.3em &
# \hfil & \vrule # & # \hfil & # \vrule width 0.6pt \tabskip=0pt\cr
\noalign{\hrule height 0.6pt}
& {\bf Distribution} && {\bf Function} &\cr
\noalign{\hrule}
& Beta Distribution && betarnd &\cr
& Binomial Distribution && binornd &\cr
& Cauchy Distribution && cauchy\_rnd &\cr
& Chi-Square Distribution && chi2rnd &\cr
& Univariate Discrete Distribution && discrete\_rnd &\cr
& Empirical Distribution && empirical\_rnd &\cr
& Exponential Distribution && exprnd &\cr
& F Distribution && frnd &\cr
& Gamma Distribution && gamrnd &\cr
& Geometric Distribution && geornd &\cr
& Hypergeometric Distribution && hygernd &\cr
& Laplace Distribution && laplace\_rnd &\cr
& Logistic Distribution && logistic\_rnd &\cr
& Log-Normal Distribution && lognrnd &\cr
& Pascal Distribution && nbinrnd &\cr
& Univariate Normal Distribution && normrnd &\cr
& Poisson Distribution && poissrnd &\cr
& Standard Normal Distribution && stdnormal\_rnd &\cr
& t (Student) Distribution && trnd &\cr
& Univariate Discrete Distribution && unidrnd &\cr
& Uniform Distribution && unifrnd &\cr
& Weibull Distribution && wblrnd &\cr
& Wiener Process && wienrnd &\cr
\noalign{\hrule height 0.6pt}
}}\hfill}}
@end tex
@ifnottex
@multitable @columnfractions .4 .3
@headitem Distribution @tab Function
@item Beta Distribution @tab @code{betarnd}
@item Binomial Distribution @tab @code{binornd}
@item Cauchy Distribution @tab @code{cauchy_rnd}
@item Chi-Square Distribution @tab @code{chi2rnd}
@item Univariate Discrete Distribution @tab @code{discrete_rnd}
@item Empirical Distribution @tab @code{empirical_rnd}
@item Exponential Distribution @tab @code{exprnd}
@item F Distribution @tab @code{frnd}
@item Gamma Distribution @tab @code{gamrnd}
@item Geometric Distribution @tab @code{geornd}
@item Hypergeometric Distribution @tab @code{hygernd}
@item Laplace Distribution @tab @code{laplace_rnd}
@item Logistic Distribution @tab @code{logistic_rnd}
@item Log-Normal Distribution @tab @code{lognrnd}
@item Pascal Distribution @tab @code{nbinrnd}
@item Univariate Normal Distribution @tab @code{normrnd}
@item Poisson Distribution @tab @code{poissrnd}
@item Standard Normal Distribution @tab @code{stdnormal_rnd}
@item t (Student) Distribution @tab @code{trnd}
@item Univariate Discrete Distribution @tab @code{unidrnd}
@item Uniform Distribution @tab @code{unifrnd}
@item Weibull Distribution @tab @code{wblrnd}
@item Wiener Process @tab @code{wienrnd}
@end multitable
@end ifnottex
@c betarnd scripts/statistics/distributions/betarnd.m
@anchor{XREFbetarnd}
@deftypefn {Function File} {} betarnd (@var{a}, @var{b})
@deftypefnx {Function File} {} betarnd (@var{a}, @var{b}, @var{r})
@deftypefnx {Function File} {} betarnd (@var{a}, @var{b}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} betarnd (@var{a}, @var{b}, [@var{sz}])
Return a matrix of random samples from the Beta distribution with parameters
@var{a} and @var{b}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the common size of
@var{a} and @var{b}.
@end deftypefn
@c binornd scripts/statistics/distributions/binornd.m
@anchor{XREFbinornd}
@deftypefn {Function File} {} binornd (@var{n}, @var{p})
@deftypefnx {Function File} {} binornd (@var{n}, @var{p}, @var{r})
@deftypefnx {Function File} {} binornd (@var{n}, @var{p}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} binornd (@var{n}, @var{p}, [@var{sz}])
Return a matrix of random samples from the binomial distribution with
parameters @var{n} and @var{p}, where @var{n} is the number of trials
and @var{p} is the probability of success.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the common size of
@var{n} and @var{p}.
@end deftypefn
@c cauchy_rnd scripts/statistics/distributions/cauchy_rnd.m
@anchor{XREFcauchy_rnd}
@deftypefn {Function File} {} cauchy_rnd (@var{location}, @var{scale})
@deftypefnx {Function File} {} cauchy_rnd (@var{location}, @var{scale}, @var{r})
@deftypefnx {Function File} {} cauchy_rnd (@var{location}, @var{scale}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} cauchy_rnd (@var{location}, @var{scale}, [@var{sz}])
Return a matrix of random samples from the Cauchy distribution with
parameters @var{location} and @var{scale}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the common size of
@var{location} and @var{scale}.
@end deftypefn
@c chi2rnd scripts/statistics/distributions/chi2rnd.m
@anchor{XREFchi2rnd}
@deftypefn {Function File} {} chi2rnd (@var{n})
@deftypefnx {Function File} {} chi2rnd (@var{n}, @var{r})
@deftypefnx {Function File} {} chi2rnd (@var{n}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} chi2rnd (@var{n}, [@var{sz}])
Return a matrix of random samples from the chi-square distribution with
@var{n} degrees of freedom.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the size of
@var{n}.
@end deftypefn
@c discrete_rnd scripts/statistics/distributions/discrete_rnd.m
@anchor{XREFdiscrete_rnd}
@deftypefn {Function File} {} discrete_rnd (@var{v}, @var{p})
@deftypefnx {Function File} {} discrete_rnd (@var{v}, @var{p}, @var{r})
@deftypefnx {Function File} {} discrete_rnd (@var{v}, @var{p}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} discrete_rnd (@var{v}, @var{p}, [@var{sz}])
Return a matrix of random samples from the univariate distribution which
assumes the values in @var{v} with probabilities @var{p}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the common size of
@var{v} and @var{p}.
@end deftypefn
@c empirical_rnd scripts/statistics/distributions/empirical_rnd.m
@anchor{XREFempirical_rnd}
@deftypefn {Function File} {} empirical_rnd (@var{data})
@deftypefnx {Function File} {} empirical_rnd (@var{data}, @var{r})
@deftypefnx {Function File} {} empirical_rnd (@var{data}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} empirical_rnd (@var{data}, [@var{sz}])
Return a matrix of random samples from the empirical distribution obtained
from the univariate sample @var{data}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is a random ordering
of the sample @var{data}.
@end deftypefn
@c exprnd scripts/statistics/distributions/exprnd.m
@anchor{XREFexprnd}
@deftypefn {Function File} {} exprnd (@var{lambda})
@deftypefnx {Function File} {} exprnd (@var{lambda}, @var{r})
@deftypefnx {Function File} {} exprnd (@var{lambda}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} exprnd (@var{lambda}, [@var{sz}])
Return a matrix of random samples from the exponential distribution with
mean @var{lambda}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the size of
@var{lambda}.
@end deftypefn
@c frnd scripts/statistics/distributions/frnd.m
@anchor{XREFfrnd}
@deftypefn {Function File} {} frnd (@var{m}, @var{n})
@deftypefnx {Function File} {} frnd (@var{m}, @var{n}, @var{r})
@deftypefnx {Function File} {} frnd (@var{m}, @var{n}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} frnd (@var{m}, @var{n}, [@var{sz}])
Return a matrix of random samples from the F distribution with
@var{m} and @var{n} degrees of freedom.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the common size of
@var{m} and @var{n}.
@end deftypefn
@c gamrnd scripts/statistics/distributions/gamrnd.m
@anchor{XREFgamrnd}
@deftypefn {Function File} {} gamrnd (@var{a}, @var{b})
@deftypefnx {Function File} {} gamrnd (@var{a}, @var{b}, @var{r})
@deftypefnx {Function File} {} gamrnd (@var{a}, @var{b}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} gamrnd (@var{a}, @var{b}, [@var{sz}])
Return a matrix of random samples from the Gamma distribution with
shape parameter @var{a} and scale @var{b}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the common size of
@var{a} and @var{b}.
@end deftypefn
@c geornd scripts/statistics/distributions/geornd.m
@anchor{XREFgeornd}
@deftypefn {Function File} {} geornd (@var{p})
@deftypefnx {Function File} {} geornd (@var{p}, @var{r})
@deftypefnx {Function File} {} geornd (@var{p}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} geornd (@var{p}, [@var{sz}])
Return a matrix of random samples from the geometric distribution with
parameter @var{p}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the size of
@var{p}.
The geometric distribution models the number of failures (@var{x}-1) of a
Bernoulli trial with probability @var{p} before the first success (@var{x}).
@end deftypefn
@c hygernd scripts/statistics/distributions/hygernd.m
@anchor{XREFhygernd}
@deftypefn {Function File} {} hygernd (@var{t}, @var{m}, @var{n})
@deftypefnx {Function File} {} hygernd (@var{t}, @var{m}, @var{n}, @var{r})
@deftypefnx {Function File} {} hygernd (@var{t}, @var{m}, @var{n}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} hygernd (@var{t}, @var{m}, @var{n}, [@var{sz}])
Return a matrix of random samples from the hypergeometric distribution
with parameters @var{t}, @var{m}, and @var{n}.
The parameters @var{t}, @var{m}, and @var{n} must be positive integers
with @var{m} and @var{n} not greater than @var{t}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the common size of
@var{t}, @var{m}, and @var{n}.
@end deftypefn
@c laplace_rnd scripts/statistics/distributions/laplace_rnd.m
@anchor{XREFlaplace_rnd}
@deftypefn {Function File} {} laplace_rnd (@var{r})
@deftypefnx {Function File} {} laplace_rnd (@var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} laplace_rnd ([@var{sz}])
Return a matrix of random samples from the Laplace distribution.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
@end deftypefn
@c logistic_rnd scripts/statistics/distributions/logistic_rnd.m
@anchor{XREFlogistic_rnd}
@deftypefn {Function File} {} logistic_rnd (@var{r})
@deftypefnx {Function File} {} logistic_rnd (@var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} logistic_rnd ([@var{sz}])
Return a matrix of random samples from the logistic distribution.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
@end deftypefn
@c lognrnd scripts/statistics/distributions/lognrnd.m
@anchor{XREFlognrnd}
@deftypefn {Function File} {} lognrnd (@var{mu}, @var{sigma})
@deftypefnx {Function File} {} lognrnd (@var{mu}, @var{sigma}, @var{r})
@deftypefnx {Function File} {} lognrnd (@var{mu}, @var{sigma}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} lognrnd (@var{mu}, @var{sigma}, [@var{sz}])
Return a matrix of random samples from the lognormal distribution with
parameters @var{mu} and @var{sigma}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the common size of
@var{mu} and @var{sigma}.
@end deftypefn
@c nbinrnd scripts/statistics/distributions/nbinrnd.m
@anchor{XREFnbinrnd}
@deftypefn {Function File} {} nbinrnd (@var{n}, @var{p})
@deftypefnx {Function File} {} nbinrnd (@var{n}, @var{p}, @var{r})
@deftypefnx {Function File} {} nbinrnd (@var{n}, @var{p}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} nbinrnd (@var{n}, @var{p}, [@var{sz}])
Return a matrix of random samples from the negative binomial distribution
with parameters @var{n} and @var{p}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the common size of
@var{n} and @var{p}.
@end deftypefn
@c normrnd scripts/statistics/distributions/normrnd.m
@anchor{XREFnormrnd}
@deftypefn {Function File} {} normrnd (@var{mu}, @var{sigma})
@deftypefnx {Function File} {} normrnd (@var{mu}, @var{sigma}, @var{r})
@deftypefnx {Function File} {} normrnd (@var{mu}, @var{sigma}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} normrnd (@var{mu}, @var{sigma}, [@var{sz}])
Return a matrix of random samples from the normal distribution with
parameters mean @var{mu} and standard deviation @var{sigma}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the common size of
@var{mu} and @var{sigma}.
@end deftypefn
@c poissrnd scripts/statistics/distributions/poissrnd.m
@anchor{XREFpoissrnd}
@deftypefn {Function File} {} poissrnd (@var{lambda})
@deftypefnx {Function File} {} poissrnd (@var{lambda}, @var{r})
@deftypefnx {Function File} {} poissrnd (@var{lambda}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} poissrnd (@var{lambda}, [@var{sz}])
Return a matrix of random samples from the Poisson distribution with
parameter @var{lambda}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the size of
@var{lambda}.
@end deftypefn
@c stdnormal_rnd scripts/statistics/distributions/stdnormal_rnd.m
@anchor{XREFstdnormal_rnd}
@deftypefn {Function File} {} stdnormal_rnd (@var{r})
@deftypefnx {Function File} {} stdnormal_rnd (@var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} stdnormal_rnd ([@var{sz}])
Return a matrix of random samples from the standard normal distribution
(mean = 0, standard deviation = 1).
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
@end deftypefn
@c trnd scripts/statistics/distributions/trnd.m
@anchor{XREFtrnd}
@deftypefn {Function File} {} trnd (@var{n})
@deftypefnx {Function File} {} trnd (@var{n}, @var{r})
@deftypefnx {Function File} {} trnd (@var{n}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} trnd (@var{n}, [@var{sz}])
Return a matrix of random samples from the t (Student) distribution with
@var{n} degrees of freedom.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the size of
@var{n}.
@end deftypefn
@c unidrnd scripts/statistics/distributions/unidrnd.m
@anchor{XREFunidrnd}
@deftypefn {Function File} {} unidrnd (@var{n})
@deftypefnx {Function File} {} unidrnd (@var{n}, @var{r})
@deftypefnx {Function File} {} unidrnd (@var{n}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} unidrnd (@var{n}, [@var{sz}])
Return a matrix of random samples from the discrete uniform distribution
which assumes the integer values 1--@var{n} with equal probability.
@var{n} may be a scalar or a multi-dimensional array.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the size of
@var{n}.
@end deftypefn
@c unifrnd scripts/statistics/distributions/unifrnd.m
@anchor{XREFunifrnd}
@deftypefn {Function File} {} unifrnd (@var{a}, @var{b})
@deftypefnx {Function File} {} unifrnd (@var{a}, @var{b}, @var{r})
@deftypefnx {Function File} {} unifrnd (@var{a}, @var{b}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} unifrnd (@var{a}, @var{b}, [@var{sz}])
Return a matrix of random samples from the uniform distribution on
[@var{a}, @var{b}].
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the common size of
@var{a} and @var{b}.
@end deftypefn
@c wblrnd scripts/statistics/distributions/wblrnd.m
@anchor{XREFwblrnd}
@deftypefn {Function File} {} wblrnd (@var{scale}, @var{shape})
@deftypefnx {Function File} {} wblrnd (@var{scale}, @var{shape}, @var{r})
@deftypefnx {Function File} {} wblrnd (@var{scale}, @var{shape}, @var{r}, @var{c}, @dots{})
@deftypefnx {Function File} {} wblrnd (@var{scale}, @var{shape}, [@var{sz}])
Return a matrix of random samples from the Weibull distribution with
parameters @var{scale} and @var{shape}.
When called with a single size argument, return a square matrix with
the dimension specified. When called with more than one scalar argument the
first two arguments are taken as the number of rows and columns and any
further arguments specify additional matrix dimensions. The size may also
be specified with a vector of dimensions @var{sz}.
If no size arguments are given then the result matrix is the common size of
@var{scale} and @var{shape}.
@end deftypefn
@c wienrnd scripts/statistics/distributions/wienrnd.m
@anchor{XREFwienrnd}
@deftypefn {Function File} {} wienrnd (@var{t}, @var{d}, @var{n})
Return a simulated realization of the @var{d}-dimensional Wiener Process
on the interval [0, @var{t}].
If @var{d} is omitted, @var{d} = 1 is used. The first column of the
return matrix contains time, the remaining columns contain the Wiener
process.
The optional parameter @var{n} defines the number of summands used for
simulating the process over an interval of length 1. If @var{n} is
omitted, @var{n} = 1000 is used.
@end deftypefn
|