File: lsode.cc

package info (click to toggle)
octave 4.0.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 94,200 kB
  • ctags: 52,925
  • sloc: cpp: 316,850; ansic: 43,469; fortran: 23,670; sh: 13,805; yacc: 8,204; objc: 7,939; lex: 3,631; java: 2,127; makefile: 1,746; perl: 1,022; awk: 988
file content (550 lines) | stat: -rw-r--r-- 15,070 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/*

Copyright (C) 1996-2015 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <string>

#include <iomanip>
#include <iostream>

#include "LSODE.h"
#include "lo-mappers.h"

#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "ov-fcn.h"
#include "ov-cell.h"
#include "pager.h"
#include "pr-output.h"
#include "unwind-prot.h"
#include "utils.h"
#include "variables.h"

#include "LSODE-opts.cc"

// Global pointer for user defined function required by lsode.
static octave_function *lsode_fcn;

// Global pointer for optional user defined jacobian function used by lsode.
static octave_function *lsode_jac;

// Have we warned about imaginary values returned from user function?
static bool warned_fcn_imaginary = false;
static bool warned_jac_imaginary = false;

// Is this a recursive call?
static int call_depth = 0;

ColumnVector
lsode_user_function (const ColumnVector& x, double t)
{
  ColumnVector retval;

  octave_value_list args;
  args(1) = t;
  args(0) = x;

  if (lsode_fcn)
    {
      octave_value_list tmp = lsode_fcn->do_multi_index_op (1, args);

      if (error_state)
        {
          gripe_user_supplied_eval ("lsode");
          return retval;
        }

      if (tmp.length () > 0 && tmp(0).is_defined ())
        {
          if (! warned_fcn_imaginary && tmp(0).is_complex_type ())
            {
              warning ("lsode: ignoring imaginary part returned from user-supplied function");
              warned_fcn_imaginary = true;
            }

          retval = ColumnVector (tmp(0).vector_value ());

          if (error_state || retval.length () == 0)
            gripe_user_supplied_eval ("lsode");
        }
      else
        gripe_user_supplied_eval ("lsode");
    }

  return retval;
}

Matrix
lsode_user_jacobian (const ColumnVector& x, double t)
{
  Matrix retval;

  octave_value_list args;
  args(1) = t;
  args(0) = x;

  if (lsode_jac)
    {
      octave_value_list tmp = lsode_jac->do_multi_index_op (1, args);

      if (error_state)
        {
          gripe_user_supplied_eval ("lsode");
          return retval;
        }

      if (tmp.length () > 0 && tmp(0).is_defined ())
        {
          if (! warned_jac_imaginary && tmp(0).is_complex_type ())
            {
              warning ("lsode: ignoring imaginary part returned from user-supplied jacobian function");
              warned_jac_imaginary = true;
            }

          retval = tmp(0).matrix_value ();

          if (error_state || retval.length () == 0)
            gripe_user_supplied_eval ("lsode");
        }
      else
        gripe_user_supplied_eval ("lsode");
    }

  return retval;
}

#define LSODE_ABORT() \
  return retval

#define LSODE_ABORT1(msg) \
  do \
    { \
      ::error ("lsode: " msg); \
      LSODE_ABORT (); \
    } \
  while (0)

#define LSODE_ABORT2(fmt, arg) \
  do \
    { \
      ::error ("lsode: " fmt, arg); \
      LSODE_ABORT (); \
    } \
  while (0)

DEFUN (lsode, args, nargout,
       "-*- texinfo -*-\n\
@deftypefn  {Built-in Function} {[@var{x}, @var{istate}, @var{msg}] =} lsode (@var{fcn}, @var{x_0}, @var{t})\n\
@deftypefnx {Built-in Function} {[@var{x}, @var{istate}, @var{msg}] =} lsode (@var{fcn}, @var{x_0}, @var{t}, @var{t_crit})\n\
Ordinary Differential Equation (ODE) solver.\n\
\n\
The set of differential equations to solve is\n\
@tex\n\
$$ {dx \\over dt} = f (x, t) $$\n\
with\n\
$$ x(t_0) = x_0 $$\n\
@end tex\n\
@ifnottex\n\
\n\
@example\n\
@group\n\
dx\n\
-- = f (x, t)\n\
dt\n\
@end group\n\
@end example\n\
\n\
@noindent\n\
with\n\
\n\
@example\n\
x(t_0) = x_0\n\
@end example\n\
\n\
@end ifnottex\n\
The solution is returned in the matrix @var{x}, with each row\n\
corresponding to an element of the vector @var{t}.  The first element\n\
of @var{t} should be @math{t_0} and should correspond to the initial\n\
state of the system @var{x_0}, so that the first row of the output\n\
is @var{x_0}.\n\
\n\
The first argument, @var{fcn}, is a string, inline, or function handle\n\
that names the function @math{f} to call to compute the vector of right\n\
hand sides for the set of equations.  The function must have the form\n\
\n\
@example\n\
@var{xdot} = f (@var{x}, @var{t})\n\
@end example\n\
\n\
@noindent\n\
in which @var{xdot} and @var{x} are vectors and @var{t} is a scalar.\n\
\n\
If @var{fcn} is a two-element string array or a two-element cell array\n\
of strings, inline functions, or function handles, the first element names\n\
the function @math{f} described above, and the second element names a\n\
function to compute the Jacobian of @math{f}.  The Jacobian function\n\
must have the form\n\
\n\
@example\n\
@var{jac} = j (@var{x}, @var{t})\n\
@end example\n\
\n\
@noindent\n\
in which @var{jac} is the matrix of partial derivatives\n\
@tex\n\
$$ J = {\\partial f_i \\over \\partial x_j} = \\left[\\matrix{\n\
{\\partial f_1 \\over \\partial x_1}\n\
  & {\\partial f_1 \\over \\partial x_2}\n\
  & \\cdots\n\
  & {\\partial f_1 \\over \\partial x_N} \\cr\n\
{\\partial f_2 \\over \\partial x_1}\n\
  & {\\partial f_2 \\over \\partial x_2}\n\
  & \\cdots\n\
  & {\\partial f_2 \\over \\partial x_N} \\cr\n\
 \\vdots & \\vdots & \\ddots & \\vdots \\cr\n\
{\\partial f_3 \\over \\partial x_1}\n\
  & {\\partial f_3 \\over \\partial x_2}\n\
  & \\cdots\n\
  & {\\partial f_3 \\over \\partial x_N} \\cr}\\right]$$\n\
@end tex\n\
@ifnottex\n\
\n\
@example\n\
@group\n\
             | df_1  df_1       df_1 |\n\
             | ----  ----  ...  ---- |\n\
             | dx_1  dx_2       dx_N |\n\
             |                       |\n\
             | df_2  df_2       df_2 |\n\
             | ----  ----  ...  ---- |\n\
      df_i   | dx_1  dx_2       dx_N |\n\
jac = ---- = |                       |\n\
      dx_j   |  .    .     .    .    |\n\
             |  .    .      .   .    |\n\
             |  .    .       .  .    |\n\
             |                       |\n\
             | df_N  df_N       df_N |\n\
             | ----  ----  ...  ---- |\n\
             | dx_1  dx_2       dx_N |\n\
@end group\n\
@end example\n\
\n\
@end ifnottex\n\
\n\
The second and third arguments specify the initial state of the system,\n\
@math{x_0}, and the initial value of the independent variable @math{t_0}.\n\
\n\
The fourth argument is optional, and may be used to specify a set of\n\
times that the ODE solver should not integrate past.  It is useful for\n\
avoiding difficulties with singularities and points where there is a\n\
discontinuity in the derivative.\n\
\n\
After a successful computation, the value of @var{istate} will be 2\n\
(consistent with the Fortran version of @sc{lsode}).\n\
\n\
If the computation is not successful, @var{istate} will be something\n\
other than 2 and @var{msg} will contain additional information.\n\
\n\
You can use the function @code{lsode_options} to set optional\n\
parameters for @code{lsode}.\n\
@seealso{daspk, dassl, dasrt}\n\
@end deftypefn")
{
  octave_value_list retval;

  warned_fcn_imaginary = false;
  warned_jac_imaginary = false;

  unwind_protect frame;

  frame.protect_var (call_depth);
  call_depth++;

  if (call_depth > 1)
    LSODE_ABORT1 ("invalid recursive call");

  int nargin = args.length ();

  if (nargin > 2 && nargin < 5 && nargout < 4)
    {
      std::string fcn_name, fname, jac_name, jname;
      lsode_fcn = 0;
      lsode_jac = 0;

      octave_value f_arg = args(0);

      if (f_arg.is_cell ())
        {
          Cell c = f_arg.cell_value ();
          if (c.length () == 1)
            f_arg = c(0);
          else if (c.length () == 2)
            {
              if (c(0).is_function_handle () || c(0).is_inline_function ())
                lsode_fcn = c(0).function_value ();
              else
                {
                  fcn_name = unique_symbol_name ("__lsode_fcn__");
                  fname = "function y = ";
                  fname.append (fcn_name);
                  fname.append (" (x, t) y = ");
                  lsode_fcn = extract_function (c(0), "lsode", fcn_name, fname,
                                                "; endfunction");
                }

              if (lsode_fcn)
                {
                  if (c(1).is_function_handle () || c(1).is_inline_function ())
                    lsode_jac = c(1).function_value ();
                  else
                    {
                      jac_name = unique_symbol_name ("__lsode_jac__");
                      jname = "function jac = ";
                      jname.append (jac_name);
                      jname.append (" (x, t) jac = ");
                      lsode_jac = extract_function (c(1), "lsode", jac_name,
                                                    jname, "; endfunction");

                      if (!lsode_jac)
                        {
                          if (fcn_name.length ())
                            clear_function (fcn_name);
                          lsode_fcn = 0;
                        }
                    }
                }
            }
          else
            LSODE_ABORT1 ("incorrect number of elements in cell array");
        }

      if (!lsode_fcn && ! f_arg.is_cell ())
        {
          if (f_arg.is_function_handle () || f_arg.is_inline_function ())
            lsode_fcn = f_arg.function_value ();
          else
            {
              switch (f_arg.rows ())
                {
                case 1:
                  do
                    {
                      fcn_name = unique_symbol_name ("__lsode_fcn__");
                      fname = "function y = ";
                      fname.append (fcn_name);
                      fname.append (" (x, t) y = ");
                      lsode_fcn = extract_function (f_arg, "lsode", fcn_name,
                                                    fname, "; endfunction");
                    }
                  while (0);
                  break;

                case 2:
                  {
                    string_vector tmp = f_arg.all_strings ();

                    if (! error_state)
                      {
                        fcn_name = unique_symbol_name ("__lsode_fcn__");
                        fname = "function y = ";
                        fname.append (fcn_name);
                        fname.append (" (x, t) y = ");
                        lsode_fcn = extract_function (tmp(0), "lsode", fcn_name,
                                                      fname, "; endfunction");

                        if (lsode_fcn)
                          {
                            jac_name = unique_symbol_name ("__lsode_jac__");
                            jname = "function jac = ";
                            jname.append (jac_name);
                            jname.append (" (x, t) jac = ");
                            lsode_jac = extract_function (tmp(1), "lsode",
                                                          jac_name, jname,
                                                          "; endfunction");

                            if (!lsode_jac)
                              {
                                if (fcn_name.length ())
                                  clear_function (fcn_name);
                                lsode_fcn = 0;
                              }
                          }
                      }
                  }
                  break;

                default:
                  LSODE_ABORT1
                  ("first arg should be a string or 2-element string array");
                }
            }
        }

      if (error_state || ! lsode_fcn)
        LSODE_ABORT ();

      ColumnVector state (args(1).vector_value ());

      if (error_state)
        LSODE_ABORT1 ("expecting state vector as second argument");

      ColumnVector out_times (args(2).vector_value ());

      if (error_state)
        LSODE_ABORT1 ("expecting output time vector as third argument");

      ColumnVector crit_times;

      int crit_times_set = 0;
      if (nargin > 3)
        {
          crit_times = ColumnVector (args(3).vector_value ());

          if (error_state)
            LSODE_ABORT1 ("expecting critical time vector as fourth argument");

          crit_times_set = 1;
        }

      double tzero = out_times (0);

      ODEFunc func (lsode_user_function);
      if (lsode_jac)
        func.set_jacobian_function (lsode_user_jacobian);

      LSODE ode (state, tzero, func);

      ode.set_options (lsode_opts);

      Matrix output;
      if (crit_times_set)
        output = ode.integrate (out_times, crit_times);
      else
        output = ode.integrate (out_times);

      if (fcn_name.length ())
        clear_function (fcn_name);
      if (jac_name.length ())
        clear_function (jac_name);

      if (! error_state)
        {
          std::string msg = ode.error_message ();

          retval(2) = msg;
          retval(1) = static_cast<double> (ode.integration_state ());

          if (ode.integration_ok ())
            retval(0) = output;
          else
            {
              retval(0) = Matrix ();

              if (nargout < 2)
                error ("lsode: %s", msg.c_str ());
            }
        }
    }
  else
    print_usage ();

  return retval;
}

/*

## dassl-1.m
##
## Test lsode() function
##
## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         20 May 1998
##
## Problem
##
##    y1' = -y2,   y1(0) = 1
##    y2' =  y1,   y2(0) = 0
##
## Solution
##
##    y1(t) = cos(t)
##    y2(t) = sin(t)
##
%!function xdot = __f (x, t)
%!  xdot = [-x(2); x(1)];
%!endfunction
%!test
%!
%! x0 = [1; 0];
%! xdot0 = [0; 1];
%! t = (0:1:10)';
%!
%! tol = 500 * lsode_options ("relative tolerance");
%!
%! x = lsode ("__f", x0, t);
%!
%! y = [cos(t), sin(t)];
%!
%! assert (x, y, tol);

%!function xdotdot = __f (x, t)
%!  xdotdot = [x(2); -x(1)];
%!endfunction
%!test
%!
%! x0 = [1; 0];
%! t = [0; 2*pi];
%! tol = 100 * dassl_options ("relative tolerance");
%!
%! x = lsode ("__f", x0, t);
%!
%! y = [1, 0; 1, 0];
%!
%! assert (x, y, tol);

%!function xdot = __f (x, t)
%!  xdot = x;
%!endfunction
%!test
%!
%! x0 = 1;
%! t = [0; 1];
%! tol = 100 * dassl_options ("relative tolerance");
%!
%! x = lsode ("__f", x0, t);
%!
%! y = [1; e];
%!
%! assert (x, y, tol);

%!test
%! lsode_options ("absolute tolerance", eps);
%! assert (lsode_options ("absolute tolerance") == eps);

%!error lsode_options ("foo", 1, 2)
*/