File: luinc.cc

package info (click to toggle)
octave 4.0.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 94,200 kB
  • ctags: 52,925
  • sloc: cpp: 316,850; ansic: 43,469; fortran: 23,670; sh: 13,805; yacc: 8,204; objc: 7,939; lex: 3,631; java: 2,127; makefile: 1,746; perl: 1,022; awk: 988
file content (397 lines) | stat: -rw-r--r-- 14,293 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
/*

Copyright (C) 2005-2015 David Bateman

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"
#include "oct-map.h"

#include "MatrixType.h"
#include "SparseCmplxLU.h"
#include "SparsedbleLU.h"
#include "ov-re-sparse.h"
#include "ov-cx-sparse.h"

// FIXME: Deprecated in 4.0 and should be removed in 4.4.
DEFUN (__luinc__, args, nargout,
       "-*- texinfo -*-\n\
@deftypefn  {Built-in Function} {[@var{L}, @var{U}, @var{P}, @var{Q}] =} luinc (@var{A}, '0')\n\
@deftypefnx {Built-in Function} {[@var{L}, @var{U}, @var{P}, @var{Q}] =} luinc (@var{A}, @var{droptol})\n\
@deftypefnx {Built-in Function} {[@var{L}, @var{U}, @var{P}, @var{Q}] =} luinc (@var{A}, @var{opts})\n\
@cindex LU decomposition\n\
Produce the incomplete LU@tie{}factorization of the sparse matrix @var{A}.\n\
\n\
Two types of incomplete factorization are possible, and the type\n\
is determined by the second argument to @code{luinc}.\n\
\n\
Called with a second argument of @qcode{'0'}, the zero-level incomplete\n\
LU@tie{}factorization is produced.  This creates a factorization of @var{A}\n\
where the position of the nonzero arguments correspond to the same\n\
positions as in the matrix @var{A}.\n\
\n\
Alternatively, the fill-in of the incomplete LU@tie{}factorization can\n\
be controlled through the variable @var{droptol} or the structure\n\
@var{opts}.  The @sc{umfpack} multifrontal factorization code by Tim A.\n\
Davis is used for the incomplete LU@tie{}factorization, (availability\n\
@url{http://www.cise.ufl.edu/research/sparse/umfpack/})\n\
\n\
@var{droptol} determines the values below which the values in the\n\
LU@tie{} factorization are dropped and replaced by zero.  It must be a\n\
positive scalar, and any values in the factorization whose absolute value\n\
are less than this value are dropped, expect if leaving them increase the\n\
sparsity of the matrix.  Setting @var{droptol} to zero results in a complete\n\
LU@tie{}factorization which is the default.\n\
\n\
@var{opts} is a structure containing one or more of the fields\n\
\n\
@table @code\n\
@item droptol\n\
The drop tolerance as above.  If @var{opts} only contains @code{droptol}\n\
then this is equivalent to using the variable @var{droptol}.\n\
\n\
@item milu\n\
A logical variable flagging whether to use the modified incomplete\n\
LU@tie{} factorization.  In the case that @code{milu} is true, the dropped\n\
values are subtracted from the diagonal of the matrix @var{U} of the\n\
factorization.  The default is @code{false}.\n\
\n\
@item udiag\n\
A logical variable that flags whether zero elements on the diagonal of\n\
@var{U} should be replaced with @var{droptol} to attempt to avoid singular\n\
factors.  The default is @code{false}.\n\
\n\
@item thresh\n\
Defines the pivot threshold in the interval [0,1].  Values outside that\n\
range are ignored.\n\
@end table\n\
\n\
All other fields in @var{opts} are ignored.  The outputs from @code{luinc}\n\
are the same as for @code{lu}.\n\
\n\
Given the string argument @qcode{\"vector\"}, @code{luinc} returns the\n\
values of @var{p} @var{q} as vector values.\n\
@seealso{sparse, lu, ilu, ichol}\n\
@end deftypefn")
{
  int nargin = args.length ();
  octave_value_list retval;

  if (nargin == 0)
    print_usage ();
  else if (nargin < 2 || nargin > 3)
    error ("luinc: incorrect number of arguments");
  else
    {
      bool zero_level = false;
      bool milu = false;
      bool udiag = false;
      Matrix thresh;
      double droptol = -1.;
      bool vecout = false;

      if (args(1).is_string ())
        {
          if (args(1).string_value () == "0")
            zero_level = true;
          else
            error ("luinc: unrecognized string argument");
        }
      else if (args(1).is_map ())
        {
          octave_scalar_map map = args(1).scalar_map_value ();

          if (! error_state)
            {
              octave_value tmp;

              tmp = map.getfield ("droptol");
              if (tmp.is_defined ())
                droptol = tmp.double_value ();

              tmp = map.getfield ("milu");
              if (tmp.is_defined ())
                {
                  double val = tmp.double_value ();

                  milu = (val == 0. ? false : true);
                }

              tmp = map.getfield ("udiag");
              if (tmp.is_defined ())
                {
                  double val = tmp.double_value ();

                  udiag = (val == 0. ? false : true);
                }

              tmp = map.getfield ("thresh");
              if (tmp.is_defined ())
                {
                  thresh = tmp.matrix_value ();

                  if (thresh.nelem () == 1)
                    {
                      thresh.resize (1,2);
                      thresh(1) = thresh(0);
                    }
                  else if (thresh.nelem () != 2)
                    {
                      error ("luinc: expecting 2-element vector for thresh");
                      return retval;
                    }
                }
            }
          else
            {
              error ("luinc: OPTS must be a scalar structure");
              return retval;
            }
        }
      else
        droptol = args(1).double_value ();

      if (nargin == 3)
        {
          std::string tmp = args(2).string_value ();

          if (! error_state)
            {
              if (tmp.compare ("vector") == 0)
                vecout = true;
              else
                error ("luinc: unrecognized string argument");
            }
        }

      // FIXME: Add code for zero-level factorization
      if (zero_level)
        error ("luinc: zero-level factorization not implemented");

      if (!error_state)
        {
          if (args(0).type_name () == "sparse matrix")
            {
              SparseMatrix sm = args(0).sparse_matrix_value ();
              octave_idx_type sm_nr = sm.rows ();
              octave_idx_type sm_nc = sm.cols ();
              ColumnVector Qinit (sm_nc);

              for (octave_idx_type i = 0; i < sm_nc; i++)
                Qinit (i) = i;

              if (! error_state)
                {
                  switch (nargout)
                    {
                    case 0:
                    case 1:
                    case 2:
                      {
                        SparseLU fact (sm, Qinit, thresh, false, true, droptol,
                                       milu, udiag);

                        if (! error_state)
                          {
                            SparseMatrix P = fact.Pr ();
                            SparseMatrix L = P.transpose () * fact.L ();
                            retval(1)
                              = octave_value (fact.U (),
                                              MatrixType (MatrixType::Upper));
                            retval(0)
                              = octave_value (L, MatrixType
                                                   (MatrixType::Permuted_Lower,
                                                    sm_nr, fact.row_perm ()));
                          }
                      }
                      break;

                    case 3:
                      {
                        SparseLU fact (sm, Qinit, thresh, false, true, droptol,
                                       milu, udiag);

                        if (! error_state)
                          {
                            if (vecout)
                              retval(2) = fact.Pr_vec ();
                            else
                              retval(2) = fact.Pr_mat ();
                            retval(1)
                              = octave_value (fact.U (),
                                              MatrixType (MatrixType::Upper));
                            retval(0)
                              = octave_value (fact.L (),
                                              MatrixType (MatrixType::Lower));
                          }
                      }
                      break;

                    case 4:
                    default:
                      {
                        SparseLU fact (sm, Qinit, thresh, false, false, droptol,
                                       milu, udiag);

                        if (! error_state)
                          {
                            if (vecout)
                              {
                                retval(3) = fact.Pc_vec ();
                                retval(2) = fact.Pr_vec ();
                              }
                            else
                              {
                                retval(3) = fact.Pc_mat ();
                                retval(2) = fact.Pr_mat ();
                              }
                            retval(1)
                              = octave_value (fact.U (),
                                              MatrixType (MatrixType::Upper));
                            retval(0)
                              = octave_value (fact.L (),
                                              MatrixType (MatrixType::Lower));
                          }
                      }
                      break;
                    }
                }
            }
          else if (args(0).type_name () == "sparse complex matrix")
            {
              SparseComplexMatrix sm =
                args(0).sparse_complex_matrix_value ();
              octave_idx_type sm_nr = sm.rows ();
              octave_idx_type sm_nc = sm.cols ();
              ColumnVector Qinit (sm_nc);

              for (octave_idx_type i = 0; i < sm_nc; i++)
                Qinit (i) = i;

              if (! error_state)
                {
                  switch (nargout)
                    {
                    case 0:
                    case 1:
                    case 2:
                      {
                        SparseComplexLU fact (sm, Qinit, thresh, false, true,
                                              droptol, milu, udiag);


                        if (! error_state)
                          {
                            SparseMatrix P = fact.Pr ();
                            SparseComplexMatrix L = P.transpose () * fact.L ();
                            retval(1)
                              = octave_value (fact.U (),
                                              MatrixType (MatrixType::Upper));
                            retval(0)
                              = octave_value (L, MatrixType
                                                  (MatrixType::Permuted_Lower,
                                                   sm_nr, fact.row_perm ()));
                          }
                      }
                      break;

                    case 3:
                      {
                        SparseComplexLU fact (sm, Qinit, thresh, false, true,
                                              droptol, milu, udiag);

                        if (! error_state)
                          {
                            if (vecout)
                              retval(2) = fact.Pr_vec ();
                            else
                              retval(2) = fact.Pr_mat ();
                            retval(1)
                              = octave_value (fact.U (),
                                              MatrixType (MatrixType::Upper));
                            retval(0)
                              = octave_value (fact.L (),
                                              MatrixType (MatrixType::Lower));
                          }
                      }
                      break;

                    case 4:
                    default:
                      {
                        SparseComplexLU fact (sm, Qinit, thresh, false, false,
                                              droptol, milu, udiag);

                        if (! error_state)
                          {
                            if (vecout)
                              {
                                retval(3) = fact.Pc_vec ();
                                retval(2) = fact.Pr_vec ();
                              }
                            else
                              {
                                retval(3) = fact.Pc_mat ();
                                retval(2) = fact.Pr_mat ();
                              }
                            retval(1)
                              = octave_value (fact.U (),
                                              MatrixType (MatrixType::Upper));
                            retval(0)
                              = octave_value (fact.L (),
                                              MatrixType (MatrixType::Lower));
                          }
                      }
                      break;
                    }
                }
            }
          else
            error ("luinc: matrix A must be sparse");
        }
    }

  return retval;
}

/*
%!testif HAVE_UMFPACK
%! a = sparse ([1,2,0,0;0,1,2,0;1e-14,0,3,0;0,0,0,1]);
%! [l,u] = luinc (a, 1e-10);
%! assert (l*u, sparse ([1,2,0,0;0,1,2,0;0,0,3,0;0,0,0,1]), 1e-10);
%! opts.droptol = 1e-10;
%! [l,u] = luinc (a, opts);
%! assert (l*u, sparse ([1,2,0,0;0,1,2,0;0,0,3,0;0,0,0,1]), 1e-10);

%!testif HAVE_UMFPACK
%! a = sparse ([1i,2,0,0;0,1,2,0;1e-14,0,3,0;0,0,0,1]);
%! [l,u] = luinc (a, 1e-10);
%! assert (l*u, sparse ([1i,2,0,0;0,1,2,0;0,0,3,0;0,0,0,1]), 1e-10);
%! opts.droptol = 1e-10;
%! [l,u] = luinc (a, opts);
%! assert (l*u, sparse ([1i,2,0,0;0,1,2,0;0,0,3,0;0,0,0,1]), 1e-10);
*/