1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
/*
Copyright (C) 1996-2015 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <string>
#include <iomanip>
#include <iostream>
#include "Quad.h"
#include "lo-mappers.h"
#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "pager.h"
#include "oct-obj.h"
#include "ov-fcn.h"
#include "unwind-prot.h"
#include "utils.h"
#include "variables.h"
#include "Quad-opts.cc"
#if defined (quad)
#undef quad
#endif
// Global pointer for user defined function required by quadrature functions.
static octave_function *quad_fcn;
// Have we warned about imaginary values returned from user function?
static bool warned_imaginary = false;
// Is this a recursive call?
static int call_depth = 0;
double
quad_user_function (double x)
{
double retval = 0.0;
octave_value_list args;
args(0) = x;
if (quad_fcn)
{
octave_value_list tmp = quad_fcn->do_multi_index_op (1, args);
if (error_state)
{
quad_integration_error = 1; // FIXME
gripe_user_supplied_eval ("quad");
return retval;
}
if (tmp.length () && tmp(0).is_defined ())
{
if (! warned_imaginary && tmp(0).is_complex_type ())
{
warning ("quad: ignoring imaginary part returned from user-supplied function");
warned_imaginary = true;
}
retval = tmp(0).double_value ();
if (error_state)
{
quad_integration_error = 1; // FIXME
gripe_user_supplied_eval ("quad");
}
}
else
{
quad_integration_error = 1; // FIXME
gripe_user_supplied_eval ("quad");
}
}
return retval;
}
float
quad_float_user_function (float x)
{
float retval = 0.0;
octave_value_list args;
args(0) = x;
if (quad_fcn)
{
octave_value_list tmp = quad_fcn->do_multi_index_op (1, args);
if (error_state)
{
quad_integration_error = 1; // FIXME
gripe_user_supplied_eval ("quad");
return retval;
}
if (tmp.length () && tmp(0).is_defined ())
{
if (! warned_imaginary && tmp(0).is_complex_type ())
{
warning ("quad: ignoring imaginary part returned from user-supplied function");
warned_imaginary = true;
}
retval = tmp(0).float_value ();
if (error_state)
{
quad_integration_error = 1; // FIXME
gripe_user_supplied_eval ("quad");
}
}
else
{
quad_integration_error = 1; // FIXME
gripe_user_supplied_eval ("quad");
}
}
return retval;
}
#define QUAD_ABORT() \
do \
{ \
if (fcn_name.length ()) \
clear_function (fcn_name); \
return retval; \
} \
while (0)
#define QUAD_ABORT1(msg) \
do \
{ \
::error ("quad: " msg); \
QUAD_ABORT (); \
} \
while (0)
#define QUAD_ABORT2(fmt, arg) \
do \
{ \
::error ("quad: " fmt, arg); \
QUAD_ABORT (); \
} \
while (0)
DEFUN (quad, args, nargout,
"-*- texinfo -*-\n\
@deftypefn {Built-in Function} {@var{q} =} quad (@var{f}, @var{a}, @var{b})\n\
@deftypefnx {Built-in Function} {@var{q} =} quad (@var{f}, @var{a}, @var{b}, @var{tol})\n\
@deftypefnx {Built-in Function} {@var{q} =} quad (@var{f}, @var{a}, @var{b}, @var{tol}, @var{sing})\n\
@deftypefnx {Built-in Function} {[@var{q}, @var{ier}, @var{nfun}, @var{err}] =} quad (@dots{})\n\
Numerically evaluate the integral of @var{f} from @var{a} to @var{b} using\n\
Fortran routines from @w{@sc{quadpack}}.\n\
\n\
@var{f} is a function handle, inline function, or a string containing the\n\
name of the function to evaluate. The function must have the form @code{y =\n\
f (x)} where @var{y} and @var{x} are scalars.\n\
\n\
@var{a} and @var{b} are the lower and upper limits of integration. Either\n\
or both may be infinite.\n\
\n\
The optional argument @var{tol} is a vector that specifies the desired\n\
accuracy of the result. The first element of the vector is the desired\n\
absolute tolerance, and the second element is the desired relative\n\
tolerance. To choose a relative test only, set the absolute\n\
tolerance to zero. To choose an absolute test only, set the relative\n\
tolerance to zero. Both tolerances default to @code{sqrt (eps)} or\n\
approximately @math{1.5e^{-8}}.\n\
\n\
The optional argument @var{sing} is a vector of values at which the\n\
integrand is known to be singular.\n\
\n\
The result of the integration is returned in @var{q}.\n\
\n\
@var{ier} contains an integer error code (0 indicates a successful\n\
integration).\n\
\n\
@var{nfun} indicates the number of function evaluations that were\n\
made.\n\
\n\
@var{err} contains an estimate of the error in the solution.\n\
\n\
The function @code{quad_options} can set other optional parameters for\n\
@code{quad}.\n\
\n\
Note: because @code{quad} is written in Fortran it cannot be called\n\
recursively. This prevents its use in integrating over more than one\n\
variable by routines @code{dblquad} and @code{triplequad}.\n\
@seealso{quad_options, quadv, quadl, quadgk, quadcc, trapz, dblquad, triplequad}\n\
@end deftypefn")
{
octave_value_list retval;
std::string fcn_name;
warned_imaginary = false;
unwind_protect frame;
frame.protect_var (call_depth);
call_depth++;
if (call_depth > 1)
QUAD_ABORT1 ("invalid recursive call");
int nargin = args.length ();
if (nargin > 2 && nargin < 6 && nargout < 5)
{
if (args(0).is_function_handle () || args(0).is_inline_function ())
quad_fcn = args(0).function_value ();
else
{
fcn_name = unique_symbol_name ("__quad_fcn__");
std::string fname = "function y = ";
fname.append (fcn_name);
fname.append ("(x) y = ");
quad_fcn = extract_function (args(0), "quad", fcn_name, fname,
"; endfunction");
}
if (! quad_fcn)
QUAD_ABORT ();
if (args(1).is_single_type () || args(2).is_single_type ())
{
float a = args(1).float_value ();
if (error_state)
QUAD_ABORT1 ("expecting second argument to be a scalar");
float b = args(2).float_value ();
if (error_state)
QUAD_ABORT1 ("expecting third argument to be a scalar");
int indefinite = 0;
FloatIndefQuad::IntegralType indef_type
= FloatIndefQuad::doubly_infinite;
float bound = 0.0;
if (xisinf (a) && xisinf (b))
{
indefinite = 1;
indef_type = FloatIndefQuad::doubly_infinite;
}
else if (xisinf (a))
{
indefinite = 1;
bound = b;
indef_type = FloatIndefQuad::neg_inf_to_bound;
}
else if (xisinf (b))
{
indefinite = 1;
bound = a;
indef_type = FloatIndefQuad::bound_to_inf;
}
octave_idx_type ier = 0;
octave_idx_type nfun = 0;
float abserr = 0.0;
float val = 0.0;
bool have_sing = false;
FloatColumnVector sing;
FloatColumnVector tol;
switch (nargin)
{
case 5:
if (indefinite)
QUAD_ABORT1 ("singularities not allowed on infinite intervals");
have_sing = true;
sing = FloatColumnVector (args(4).float_vector_value ());
if (error_state)
QUAD_ABORT1 ("expecting vector of singularities as fourth argument");
case 4:
tol = FloatColumnVector (args(3).float_vector_value ());
if (error_state)
QUAD_ABORT1 ("expecting vector of tolerances as fifth argument");
switch (tol.capacity ())
{
case 2:
quad_opts.set_single_precision_relative_tolerance (tol (1));
case 1:
quad_opts.set_single_precision_absolute_tolerance (tol (0));
break;
default:
QUAD_ABORT1 ("expecting tol to contain no more than two values");
}
case 3:
if (indefinite)
{
FloatIndefQuad iq (quad_float_user_function, bound,
indef_type);
iq.set_options (quad_opts);
val = iq.float_integrate (ier, nfun, abserr);
}
else
{
if (have_sing)
{
FloatDefQuad dq (quad_float_user_function, a, b, sing);
dq.set_options (quad_opts);
val = dq.float_integrate (ier, nfun, abserr);
}
else
{
FloatDefQuad dq (quad_float_user_function, a, b);
dq.set_options (quad_opts);
val = dq.float_integrate (ier, nfun, abserr);
}
}
break;
default:
panic_impossible ();
break;
}
retval(3) = abserr;
retval(2) = nfun;
retval(1) = ier;
retval(0) = val;
}
else
{
double a = args(1).double_value ();
if (error_state)
QUAD_ABORT1 ("expecting second argument to be a scalar");
double b = args(2).double_value ();
if (error_state)
QUAD_ABORT1 ("expecting third argument to be a scalar");
int indefinite = 0;
IndefQuad::IntegralType indef_type = IndefQuad::doubly_infinite;
double bound = 0.0;
if (xisinf (a) && xisinf (b))
{
indefinite = 1;
indef_type = IndefQuad::doubly_infinite;
}
else if (xisinf (a))
{
indefinite = 1;
bound = b;
indef_type = IndefQuad::neg_inf_to_bound;
}
else if (xisinf (b))
{
indefinite = 1;
bound = a;
indef_type = IndefQuad::bound_to_inf;
}
octave_idx_type ier = 0;
octave_idx_type nfun = 0;
double abserr = 0.0;
double val = 0.0;
bool have_sing = false;
ColumnVector sing;
ColumnVector tol;
switch (nargin)
{
case 5:
if (indefinite)
QUAD_ABORT1 ("singularities not allowed on infinite intervals");
have_sing = true;
sing = ColumnVector (args(4).vector_value ());
if (error_state)
QUAD_ABORT1 ("expecting vector of singularities as fourth argument");
case 4:
tol = ColumnVector (args(3).vector_value ());
if (error_state)
QUAD_ABORT1 ("expecting vector of tolerances as fifth argument");
switch (tol.capacity ())
{
case 2:
quad_opts.set_relative_tolerance (tol (1));
case 1:
quad_opts.set_absolute_tolerance (tol (0));
break;
default:
QUAD_ABORT1 ("expecting tol to contain no more than two values");
}
case 3:
if (indefinite)
{
IndefQuad iq (quad_user_function, bound, indef_type);
iq.set_options (quad_opts);
val = iq.integrate (ier, nfun, abserr);
}
else
{
if (have_sing)
{
DefQuad dq (quad_user_function, a, b, sing);
dq.set_options (quad_opts);
val = dq.integrate (ier, nfun, abserr);
}
else
{
DefQuad dq (quad_user_function, a, b);
dq.set_options (quad_opts);
val = dq.integrate (ier, nfun, abserr);
}
}
break;
default:
panic_impossible ();
break;
}
retval(3) = abserr;
retval(2) = nfun;
retval(1) = ier;
retval(0) = val;
}
if (fcn_name.length ())
clear_function (fcn_name);
}
else
print_usage ();
return retval;
}
/*
%!function y = __f (x)
%! y = x + 1;
%!endfunction
%!test
%! [v, ier, nfun, err] = quad ("__f", 0, 5);
%! assert (ier, 0);
%! assert (v, 17.5, sqrt (eps));
%! assert (nfun > 0);
%! assert (err < sqrt (eps));
%!test
%! [v, ier, nfun, err] = quad ("__f", single (0), single (5));
%! assert (ier, 0);
%! assert (v, 17.5, sqrt (eps ("single")));
%! assert (nfun > 0);
%! assert (err < sqrt (eps ("single")));
%!function y = __f (x)
%! y = x .* sin (1 ./ x) .* sqrt (abs (1 - x));
%!endfunction
%!test
%! [v, ier, nfun, err] = quad ("__f", 0.001, 3);
%! assert (ier == 0 || ier == 1);
%! assert (v, 1.98194120273598, sqrt (eps));
%! assert (nfun > 0);
%!test
%! [v, ier, nfun, err] = quad ("__f", single (0.001), single (3));
%! assert (ier == 0 || ier == 1);
%! assert (v, 1.98194120273598, sqrt (eps ("single")));
%! assert (nfun > 0);
%!error quad ()
%!error quad ("__f", 1, 2, 3, 4, 5)
%!test
%! quad_options ("absolute tolerance", eps);
%! assert (quad_options ("absolute tolerance") == eps);
%!error quad_options (1, 2, 3)
*/
|