1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
/*
Copyright (C) 2008-2015 David Bateman
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"
DEFUN (rcond, args, ,
"-*- texinfo -*-\n\
@deftypefn {Built-in Function} {@var{c} =} rcond (@var{A})\n\
Compute the 1-norm estimate of the reciprocal condition number as returned\n\
by @sc{lapack}.\n\
\n\
If the matrix is well-conditioned then @var{c} will be near 1 and if the\n\
matrix is poorly conditioned it will be close to 0.\n\
\n\
The matrix @var{A} must not be sparse. If the matrix is sparse then\n\
@code{condest (@var{A})} or @code{rcond (full (@var{A}))} should be used\n\
instead.\n\
@seealso{cond, condest}\n\
@end deftypefn")
{
octave_value retval;
int nargin = args.length ();
if (nargin != 1)
print_usage ();
else if (args(0).is_sparse_type ())
error ("rcond: for sparse matrices use 'rcond (full (a))' or 'condest (a)' instead");
else if (args(0).is_single_type ())
{
if (args(0).is_complex_type ())
{
FloatComplexMatrix m = args(0).float_complex_matrix_value ();
MatrixType mattyp;
retval = m.rcond (mattyp);
args(0).matrix_type (mattyp);
}
else
{
FloatMatrix m = args(0).float_matrix_value ();
MatrixType mattyp;
retval = m.rcond (mattyp);
args(0).matrix_type (mattyp);
}
}
else if (args(0).is_complex_type ())
{
ComplexMatrix m = args(0).complex_matrix_value ();
MatrixType mattyp;
retval = m.rcond (mattyp);
args(0).matrix_type (mattyp);
}
else
{
Matrix m = args(0).matrix_value ();
MatrixType mattyp;
retval = m.rcond (mattyp);
args(0).matrix_type (mattyp);
}
return retval;
}
/*
%!assert (rcond (eye (2)), 1)
%!assert (rcond (ones (2)), 0)
%!assert (rcond ([1 1; 2 1]), 1/9)
%!assert (rcond (magic (4)), 0, eps)
%!shared x, sx
%! x = [-5.25, -2.25; -2.25, 1] * eps () + ones (2) / 2;
%! sx = [-5.25, -2.25; -2.25, 1] * eps ("single") + ones (2) / 2;
%!assert (rcond (x) < eps ());
%!assert (rcond (sx) < eps ('single'));
%!assert (rcond (x*i) < eps ());
%!assert (rcond (sx*i) < eps ('single'));
*/
|