File: sylvester.cc

package info (click to toggle)
octave 4.0.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 94,200 kB
  • ctags: 52,925
  • sloc: cpp: 316,850; ansic: 43,469; fortran: 23,670; sh: 13,805; yacc: 8,204; objc: 7,939; lex: 3,631; java: 2,127; makefile: 1,746; perl: 1,022; awk: 988
file content (230 lines) | stat: -rw-r--r-- 5,688 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/*

Copyright (C) 1996-2015 John W. Eaton

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

// Author: A. S. Hodel <scotte@eng.auburn.edu>

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"

DEFUN (sylvester, args, nargout,
       "-*- texinfo -*-\n\
@deftypefn {Built-in Function} {@var{X} =} syl (@var{A}, @var{B}, @var{C})\n\
Solve the Sylvester equation\n\
@tex\n\
$$\n\
 A X + X B = C\n\
$$\n\
@end tex\n\
@ifnottex\n\
\n\
@example\n\
A X + X B = C\n\
@end example\n\
\n\
@end ifnottex\n\
using standard @sc{lapack} subroutines.\n\
\n\
For example:\n\
\n\
@example\n\
@group\n\
sylvester ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])\n\
   @result{} [ 0.50000, 0.66667; 0.66667, 0.50000 ]\n\
@end group\n\
@end example\n\
@end deftypefn")
{
  octave_value retval;

  int nargin = args.length ();

  if (nargin != 3 || nargout > 1)
    {
      print_usage ();
      return retval;
    }

  octave_value arg_a = args(0);
  octave_value arg_b = args(1);
  octave_value arg_c = args(2);

  octave_idx_type a_nr = arg_a.rows ();
  octave_idx_type a_nc = arg_a.columns ();

  octave_idx_type b_nr = arg_b.rows ();
  octave_idx_type b_nc = arg_b.columns ();

  octave_idx_type c_nr = arg_c.rows ();
  octave_idx_type c_nc = arg_c.columns ();

  int arg_a_is_empty = empty_arg ("sylvester", a_nr, a_nc);
  int arg_b_is_empty = empty_arg ("sylvester", b_nr, b_nc);
  int arg_c_is_empty = empty_arg ("sylvester", c_nr, c_nc);

  bool isfloat = arg_a.is_single_type ()
                 || arg_b.is_single_type ()
                 || arg_c.is_single_type ();

  if (arg_a_is_empty > 0 && arg_b_is_empty > 0 && arg_c_is_empty > 0)
    if (isfloat)
      return octave_value (FloatMatrix ());
    else
      return octave_value (Matrix ());
  else if (arg_a_is_empty || arg_b_is_empty || arg_c_is_empty)
    return retval;

  // Arguments are not empty, so check for correct dimensions.

  if (a_nr != a_nc)
    {
      gripe_square_matrix_required ("sylvester: input A");
      return retval;
    }
  else if (b_nr != b_nc)
    {
      gripe_square_matrix_required ("sylvester: input B");
      return retval;
    }
  else if (a_nr != c_nr || b_nr != c_nc)
    {
      gripe_nonconformant ();
      return retval;
    }

  if (isfloat)
    {
      if (arg_a.is_complex_type ()
          || arg_b.is_complex_type ()
          || arg_c.is_complex_type ())
        {
          // Do everything in complex arithmetic;

          FloatComplexMatrix ca = arg_a.float_complex_matrix_value ();

          if (error_state)
            return retval;

          FloatComplexMatrix cb = arg_b.float_complex_matrix_value ();

          if (error_state)
            return retval;

          FloatComplexMatrix cc = arg_c.float_complex_matrix_value ();

          if (error_state)
            return retval;

          retval = Sylvester (ca, cb, cc);
        }
      else
        {
          // Do everything in real arithmetic.

          FloatMatrix ca = arg_a.float_matrix_value ();

          if (error_state)
            return retval;

          FloatMatrix cb = arg_b.float_matrix_value ();

          if (error_state)
            return retval;

          FloatMatrix cc = arg_c.float_matrix_value ();

          if (error_state)
            return retval;

          retval = Sylvester (ca, cb, cc);
        }
    }
  else
    {
      if (arg_a.is_complex_type ()
          || arg_b.is_complex_type ()
          || arg_c.is_complex_type ())
        {
          // Do everything in complex arithmetic;

          ComplexMatrix ca = arg_a.complex_matrix_value ();

          if (error_state)
            return retval;

          ComplexMatrix cb = arg_b.complex_matrix_value ();

          if (error_state)
            return retval;

          ComplexMatrix cc = arg_c.complex_matrix_value ();

          if (error_state)
            return retval;

          retval = Sylvester (ca, cb, cc);
        }
      else
        {
          // Do everything in real arithmetic.

          Matrix ca = arg_a.matrix_value ();

          if (error_state)
            return retval;

          Matrix cb = arg_b.matrix_value ();

          if (error_state)
            return retval;

          Matrix cc = arg_c.matrix_value ();

          if (error_state)
            return retval;

          retval = Sylvester (ca, cb, cc);
        }
    }

  return retval;
}

/*
%!assert (sylvester ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12]), [1/2, 2/3; 2/3, 1/2], sqrt (eps))
%!assert (sylvester (single ([1, 2; 3, 4]), single ([5, 6; 7, 8]), single ([9, 10; 11, 12])), single ([1/2, 2/3; 2/3, 1/2]), sqrt (eps ("single")))

%% Test input validation
%!error sylvester ()
%!error sylvester (1)
%!error sylvester (1,2)
%!error sylvester (1, 2, 3, 4)
%!error <input A: .* must be a square matrix> sylvester (ones (2,3), ones (2,2), ones (2,2))
%!error <input B: .* must be a square matrix> sylvester (ones (2,2), ones (2,3), ones (2,2))
%!error <nonconformant matrices> sylvester (ones (2,2), ones (2,2), ones (3,3))
*/