1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/*
Copyright (C) 1996-2015 John W. Eaton
This file is part of Octave.
Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING. If not, see
<http://www.gnu.org/licenses/>.
*/
// Author: A. S. Hodel <scotte@eng.auburn.edu>
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include "defun.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"
DEFUN (sylvester, args, nargout,
"-*- texinfo -*-\n\
@deftypefn {Built-in Function} {@var{X} =} syl (@var{A}, @var{B}, @var{C})\n\
Solve the Sylvester equation\n\
@tex\n\
$$\n\
A X + X B = C\n\
$$\n\
@end tex\n\
@ifnottex\n\
\n\
@example\n\
A X + X B = C\n\
@end example\n\
\n\
@end ifnottex\n\
using standard @sc{lapack} subroutines.\n\
\n\
For example:\n\
\n\
@example\n\
@group\n\
sylvester ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])\n\
@result{} [ 0.50000, 0.66667; 0.66667, 0.50000 ]\n\
@end group\n\
@end example\n\
@end deftypefn")
{
octave_value retval;
int nargin = args.length ();
if (nargin != 3 || nargout > 1)
{
print_usage ();
return retval;
}
octave_value arg_a = args(0);
octave_value arg_b = args(1);
octave_value arg_c = args(2);
octave_idx_type a_nr = arg_a.rows ();
octave_idx_type a_nc = arg_a.columns ();
octave_idx_type b_nr = arg_b.rows ();
octave_idx_type b_nc = arg_b.columns ();
octave_idx_type c_nr = arg_c.rows ();
octave_idx_type c_nc = arg_c.columns ();
int arg_a_is_empty = empty_arg ("sylvester", a_nr, a_nc);
int arg_b_is_empty = empty_arg ("sylvester", b_nr, b_nc);
int arg_c_is_empty = empty_arg ("sylvester", c_nr, c_nc);
bool isfloat = arg_a.is_single_type ()
|| arg_b.is_single_type ()
|| arg_c.is_single_type ();
if (arg_a_is_empty > 0 && arg_b_is_empty > 0 && arg_c_is_empty > 0)
if (isfloat)
return octave_value (FloatMatrix ());
else
return octave_value (Matrix ());
else if (arg_a_is_empty || arg_b_is_empty || arg_c_is_empty)
return retval;
// Arguments are not empty, so check for correct dimensions.
if (a_nr != a_nc)
{
gripe_square_matrix_required ("sylvester: input A");
return retval;
}
else if (b_nr != b_nc)
{
gripe_square_matrix_required ("sylvester: input B");
return retval;
}
else if (a_nr != c_nr || b_nr != c_nc)
{
gripe_nonconformant ();
return retval;
}
if (isfloat)
{
if (arg_a.is_complex_type ()
|| arg_b.is_complex_type ()
|| arg_c.is_complex_type ())
{
// Do everything in complex arithmetic;
FloatComplexMatrix ca = arg_a.float_complex_matrix_value ();
if (error_state)
return retval;
FloatComplexMatrix cb = arg_b.float_complex_matrix_value ();
if (error_state)
return retval;
FloatComplexMatrix cc = arg_c.float_complex_matrix_value ();
if (error_state)
return retval;
retval = Sylvester (ca, cb, cc);
}
else
{
// Do everything in real arithmetic.
FloatMatrix ca = arg_a.float_matrix_value ();
if (error_state)
return retval;
FloatMatrix cb = arg_b.float_matrix_value ();
if (error_state)
return retval;
FloatMatrix cc = arg_c.float_matrix_value ();
if (error_state)
return retval;
retval = Sylvester (ca, cb, cc);
}
}
else
{
if (arg_a.is_complex_type ()
|| arg_b.is_complex_type ()
|| arg_c.is_complex_type ())
{
// Do everything in complex arithmetic;
ComplexMatrix ca = arg_a.complex_matrix_value ();
if (error_state)
return retval;
ComplexMatrix cb = arg_b.complex_matrix_value ();
if (error_state)
return retval;
ComplexMatrix cc = arg_c.complex_matrix_value ();
if (error_state)
return retval;
retval = Sylvester (ca, cb, cc);
}
else
{
// Do everything in real arithmetic.
Matrix ca = arg_a.matrix_value ();
if (error_state)
return retval;
Matrix cb = arg_b.matrix_value ();
if (error_state)
return retval;
Matrix cc = arg_c.matrix_value ();
if (error_state)
return retval;
retval = Sylvester (ca, cb, cc);
}
}
return retval;
}
/*
%!assert (sylvester ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12]), [1/2, 2/3; 2/3, 1/2], sqrt (eps))
%!assert (sylvester (single ([1, 2; 3, 4]), single ([5, 6; 7, 8]), single ([9, 10; 11, 12])), single ([1/2, 2/3; 2/3, 1/2]), sqrt (eps ("single")))
%% Test input validation
%!error sylvester ()
%!error sylvester (1)
%!error sylvester (1,2)
%!error sylvester (1, 2, 3, 4)
%!error <input A: .* must be a square matrix> sylvester (ones (2,3), ones (2,2), ones (2,2))
%!error <input B: .* must be a square matrix> sylvester (ones (2,2), ones (2,3), ones (2,2))
%!error <nonconformant matrices> sylvester (ones (2,2), ones (2,2), ones (3,3))
*/
|