File: ccolamd.cc

package info (click to toggle)
octave 4.0.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 94,200 kB
  • ctags: 52,925
  • sloc: cpp: 316,850; ansic: 43,469; fortran: 23,670; sh: 13,805; yacc: 8,204; objc: 7,939; lex: 3,631; java: 2,127; makefile: 1,746; perl: 1,022; awk: 988
file content (590 lines) | stat: -rw-r--r-- 21,737 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
/*

Copyright (C) 2005-2015 David Bateman

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

// This is the octave interface to ccolamd, which bore the copyright given
// in the help of the functions.

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdlib.h>

#include <string>
#include <vector>

#include "ov.h"
#include "defun-dld.h"
#include "pager.h"
#include "ov-re-mat.h"

#include "ov-re-sparse.h"
#include "ov-cx-sparse.h"

#include "oct-sparse.h"
#include "oct-locbuf.h"

#ifdef USE_64_BIT_IDX_T
#define CCOLAMD_NAME(name) ccolamd_l ## name
#define CSYMAMD_NAME(name) csymamd_l ## name
#else
#define CCOLAMD_NAME(name) ccolamd ## name
#define CSYMAMD_NAME(name) csymamd ## name
#endif

DEFUN_DLD (ccolamd, args, nargout,
           "-*- texinfo -*-\n\
@deftypefn  {Loadable Function} {@var{p} =} ccolamd (@var{S})\n\
@deftypefnx {Loadable Function} {@var{p} =} ccolamd (@var{S}, @var{knobs})\n\
@deftypefnx {Loadable Function} {@var{p} =} ccolamd (@var{S}, @var{knobs}, @var{cmember})\n\
@deftypefnx {Loadable Function} {[@var{p}, @var{stats}] =} ccolamd (@dots{})\n\
\n\
Constrained column approximate minimum degree permutation.\n\
\n\
@code{@var{p} = ccolamd (@var{S})} returns the column approximate minimum\n\
degree permutation vector for the sparse matrix @var{S}.  For a non-symmetric\n\
matrix @var{S}, @code{@var{S}(:, @var{p})} tends to have sparser\n\
LU@tie{}factors than @var{S}.\n\
@code{chol (@var{S}(:, @var{p})' * @var{S}(:, @var{p}))} also tends to be\n\
sparser than @code{chol (@var{S}' * @var{S})}.\n\
@code{@var{p} = ccolamd (@var{S}, 1)} optimizes the ordering for\n\
@code{lu (@var{S}(:, @var{p}))}.  The ordering is followed by a column\n\
elimination tree post-ordering.\n\
\n\
@var{knobs} is an optional 1-element to 5-element input vector, with a\n\
default value of @code{[0 10 10 1 0]} if not present or empty.  Entries not\n\
present are set to their defaults.\n\
\n\
@table @code\n\
@item @var{knobs}(1)\n\
if nonzero, the ordering is optimized for @code{lu (S(:, p))}.  It will be a\n\
poor ordering for @code{chol (@var{S}(:, @var{p})' * @var{S}(:, @var{p}))}.\n\
This is the most important knob for ccolamd.\n\
\n\
@item @var{knobs}(2)\n\
if @var{S} is m-by-n, rows with more than\n\
@code{max (16, @var{knobs}(2) * sqrt (n))} entries are ignored.\n\
\n\
@item @var{knobs}(3)\n\
columns with more than\n\
@code{max (16, @var{knobs}(3) * sqrt (min (@var{m}, @var{n})))} entries are\n\
ignored and ordered last in the output permutation\n\
(subject to the cmember constraints).\n\
\n\
@item @var{knobs}(4)\n\
if nonzero, aggressive absorption is performed.\n\
\n\
@item @var{knobs}(5)\n\
if nonzero, statistics and knobs are printed.\n\
\n\
@end table\n\
\n\
@var{cmember} is an optional vector of length @math{n}.  It defines the\n\
constraints on the column ordering.  If @code{@var{cmember}(j) = @var{c}},\n\
then column @var{j} is in constraint set @var{c} (@var{c} must be in the\n\
range 1 to n).  In the output permutation @var{p}, all columns in set 1\n\
appear first, followed by all columns in set 2, and so on.\n\
@code{@var{cmember} = ones (1,n)} if not present or empty.\n\
@code{ccolamd (@var{S}, [], 1 : n)} returns @code{1 : n}\n\
\n\
@code{@var{p} = ccolamd (@var{S})} is about the same as\n\
@code{@var{p} = colamd (@var{S})}.  @var{knobs} and its default values\n\
differ.  @code{colamd} always does aggressive absorption, and it finds an\n\
ordering suitable for both @code{lu (@var{S}(:, @var{p}))} and @code{chol\n\
(@var{S}(:, @var{p})' * @var{S}(:, @var{p}))}; it cannot optimize its\n\
ordering for @code{lu (@var{S}(:, @var{p}))} to the extent that\n\
@code{ccolamd (@var{S}, 1)} can.\n\
\n\
@var{stats} is an optional 20-element output vector that provides data\n\
about the ordering and the validity of the input matrix @var{S}.  Ordering\n\
statistics are in @code{@var{stats}(1 : 3)}.  @code{@var{stats}(1)} and\n\
@code{@var{stats}(2)} are the number of dense or empty rows and columns\n\
ignored by @sc{ccolamd} and @code{@var{stats}(3)} is the number of garbage\n\
collections performed on the internal data structure used by @sc{ccolamd}\n\
(roughly of size @code{2.2 * nnz (@var{S}) + 4 * @var{m} + 7 * @var{n}}\n\
integers).\n\
\n\
@code{@var{stats}(4 : 7)} provide information if CCOLAMD was able to\n\
continue.  The matrix is OK if @code{@var{stats}(4)} is zero, or 1 if\n\
invalid.  @code{@var{stats}(5)} is the rightmost column index that is\n\
unsorted or contains duplicate entries, or zero if no such column exists.\n\
@code{@var{stats}(6)} is the last seen duplicate or out-of-order row\n\
index in the column index given by @code{@var{stats}(5)}, or zero if no\n\
such row index exists.  @code{@var{stats}(7)} is the number of duplicate\n\
or out-of-order row indices.  @code{@var{stats}(8 : 20)} is always zero in\n\
the current version of @sc{ccolamd} (reserved for future use).\n\
\n\
The authors of the code itself are @nospell{S. Larimore, T. Davis}\n\
(Univ. of Florida) and @nospell{S. Rajamanickam} in collaboration with\n\
@nospell{J. Bilbert and E. Ng}.  Supported by the National Science Foundation\n\
@nospell{(DMS-9504974, DMS-9803599, CCR-0203270)}, and a grant from\n\
@nospell{Sandia} National Lab.\n\
See @url{http://www.cise.ufl.edu/research/sparse} for\n\
ccolamd, csymamd, amd, colamd, symamd, and other related orderings.\n\
@seealso{colamd, csymamd}\n\
@end deftypefn")
{
  octave_value_list retval;

#ifdef HAVE_CCOLAMD

  int nargin = args.length ();
  int spumoni = 0;

  if (nargout > 2 || nargin < 1 || nargin > 3)
    usage ("ccolamd: incorrect number of input and/or output arguments");
  else
    {
      // Get knobs
      OCTAVE_LOCAL_BUFFER (double, knobs, CCOLAMD_KNOBS);
      CCOLAMD_NAME (_set_defaults) (knobs);

      // Check for user-passed knobs
      if (nargin > 1)
        {
          NDArray User_knobs = args(1).array_value ();
          int nel_User_knobs = User_knobs.length ();

          if (nel_User_knobs > 0)
            knobs[CCOLAMD_LU] = (User_knobs(0) != 0);
          if (nel_User_knobs > 1)
            knobs[CCOLAMD_DENSE_ROW] = User_knobs(1);
          if (nel_User_knobs > 2)
            knobs[CCOLAMD_DENSE_COL] = User_knobs(2);
          if (nel_User_knobs > 3)
            knobs[CCOLAMD_AGGRESSIVE] = (User_knobs(3) != 0);
          if (nel_User_knobs > 4)
            spumoni = (User_knobs(4) != 0);

          // print knob settings if spumoni is set
          if (spumoni)
            {
              octave_stdout << "\nccolamd version " << CCOLAMD_MAIN_VERSION << "."
                            <<  CCOLAMD_SUB_VERSION << ", " << CCOLAMD_DATE
                            << ":\nknobs(1): " << User_knobs(0) << ", order for ";
              if (knobs[CCOLAMD_LU] != 0)
                octave_stdout << "lu (A)\n";
              else
                octave_stdout << "chol (A'*A)\n";

              if (knobs[CCOLAMD_DENSE_ROW] >= 0)
                octave_stdout << "knobs(2): " << User_knobs(1)
                              << ", rows with > max (16,"
                              << knobs[CCOLAMD_DENSE_ROW]
                              << "*sqrt (size(A,2)))"
                              << " entries removed\n";
              else
                octave_stdout << "knobs(2): " << User_knobs(1)
                              << ", no dense rows removed\n";

              if (knobs[CCOLAMD_DENSE_COL] >= 0)
                octave_stdout << "knobs(3): " << User_knobs(2)
                              << ", cols with > max (16,"
                              << knobs[CCOLAMD_DENSE_COL] << "*sqrt (size(A)))"
                              << " entries removed\n";
              else
                octave_stdout << "knobs(3): " << User_knobs(2)
                              << ", no dense columns removed\n";

              if (knobs[CCOLAMD_AGGRESSIVE] != 0)
                octave_stdout << "knobs(4): " << User_knobs(3)
                              << ", aggressive absorption: yes";
              else
                octave_stdout << "knobs(4): " << User_knobs(3)
                              << ", aggressive absorption: no";

              octave_stdout << "knobs(5): " << User_knobs(4)
                            << ", statistics and knobs printed\n";
            }
        }

      octave_idx_type n_row, n_col, nnz;
      octave_idx_type *ridx, *cidx;
      SparseComplexMatrix scm;
      SparseMatrix sm;

      if (args(0).is_sparse_type ())
        {
          if (args(0).is_complex_type ())
            {
              scm = args(0). sparse_complex_matrix_value ();
              n_row = scm.rows ();
              n_col = scm.cols ();
              nnz = scm.nnz ();
              ridx = scm.xridx ();
              cidx = scm.xcidx ();
            }
          else
            {
              sm = args(0).sparse_matrix_value ();

              n_row = sm.rows ();
              n_col = sm.cols ();
              nnz = sm.nnz ();
              ridx = sm.xridx ();
              cidx = sm.xcidx ();
            }
        }
      else
        {
          if (args(0).is_complex_type ())
            sm = SparseMatrix (real (args(0).complex_matrix_value ()));
          else
            sm = SparseMatrix (args(0).matrix_value ());

          n_row = sm.rows ();
          n_col = sm.cols ();
          nnz = sm.nnz ();
          ridx = sm.xridx ();
          cidx = sm.xcidx ();
        }

      // Allocate workspace for ccolamd
      OCTAVE_LOCAL_BUFFER (octave_idx_type, p, n_col+1);
      for (octave_idx_type i = 0; i < n_col+1; i++)
        p[i] = cidx[i];

      octave_idx_type Alen = CCOLAMD_NAME (_recommended) (nnz, n_row, n_col);
      OCTAVE_LOCAL_BUFFER (octave_idx_type, A, Alen);
      for (octave_idx_type i = 0; i < nnz; i++)
        A[i] = ridx[i];

      OCTAVE_LOCAL_BUFFER (octave_idx_type, stats, CCOLAMD_STATS);

      if (nargin > 2)
        {
          NDArray in_cmember = args(2).array_value ();
          octave_idx_type cslen = in_cmember.length ();
          OCTAVE_LOCAL_BUFFER (octave_idx_type, cmember, cslen);
          for (octave_idx_type i = 0; i < cslen; i++)
            // convert cmember from 1-based to 0-based
            cmember[i] = static_cast<octave_idx_type>(in_cmember(i) - 1);

          if (cslen != n_col)
            error ("ccolamd: CMEMBER must be of length equal to #cols of A");
          else
            // Order the columns (destroys A)
            if (! CCOLAMD_NAME () (n_row, n_col, Alen, A, p,
                                   knobs, stats, cmember))
              {
                CCOLAMD_NAME (_report) (stats) ;
                error ("ccolamd: internal error!");
                return retval;
              }
        }
      else
        {
          // Order the columns (destroys A)
          if (! CCOLAMD_NAME () (n_row, n_col, Alen, A, p, knobs, stats, 0))
            {
              CCOLAMD_NAME (_report) (stats) ;
              error ("ccolamd: internal error!");
              return retval;
            }
        }

      // return the permutation vector
      NDArray out_perm (dim_vector (1, n_col));
      for (octave_idx_type i = 0; i < n_col; i++)
        out_perm(i) = p[i] + 1;

      retval(0) = out_perm;

      // print stats if spumoni > 0
      if (spumoni > 0)
        CCOLAMD_NAME (_report) (stats) ;

      // Return the stats vector
      if (nargout == 2)
        {
          NDArray out_stats (dim_vector (1, CCOLAMD_STATS));
          for (octave_idx_type i = 0 ; i < CCOLAMD_STATS ; i++)
            out_stats(i) = stats[i] ;
          retval(1) = out_stats;

          // fix stats (5) and (6), for 1-based information on
          // jumbled matrix.  note that this correction doesn't
          // occur if symamd returns FALSE
          out_stats (CCOLAMD_INFO1) ++ ;
          out_stats (CCOLAMD_INFO2) ++ ;
        }
    }

#else

  error ("ccolamd: not available in this version of Octave");

#endif

  return retval;
}

DEFUN_DLD (csymamd, args, nargout,
           "-*- texinfo -*-\n\
@deftypefn  {Loadable Function} {@var{p} =} csymamd (@var{S})\n\
@deftypefnx {Loadable Function} {@var{p} =} csymamd (@var{S}, @var{knobs})\n\
@deftypefnx {Loadable Function} {@var{p} =} csymamd (@var{S}, @var{knobs}, @var{cmember})\n\
@deftypefnx {Loadable Function} {[@var{p}, @var{stats}] =} csymamd (@dots{})\n\
\n\
For a symmetric positive definite matrix @var{S}, return the permutation\n\
vector @var{p} such that @code{@var{S}(@var{p},@var{p})} tends to have a\n\
sparser Cholesky@tie{}factor than @var{S}.\n\
\n\
Sometimes @code{csymamd} works well for symmetric indefinite matrices too. \n\
The matrix @var{S} is assumed to be symmetric; only the strictly lower\n\
triangular part is referenced.  @var{S} must be square.  The ordering is\n\
followed by an elimination tree post-ordering.\n\
\n\
@var{knobs} is an optional 1-element to 3-element input vector, with a\n\
default value of @code{[10 1 0]}.  Entries not present are set to their\n\
defaults.\n\
\n\
@table @code\n\
@item @var{knobs}(1)\n\
If @var{S} is n-by-n, then rows and columns with more than\n\
@code{max(16,@var{knobs}(1)*sqrt(n))} entries are ignored, and ordered\n\
last in the output permutation (subject to the cmember constraints).\n\
\n\
@item @var{knobs}(2)\n\
If nonzero, aggressive absorption is performed.\n\
\n\
@item @var{knobs}(3)\n\
If nonzero, statistics and knobs are printed.\n\
\n\
@end table\n\
\n\
@var{cmember} is an optional vector of length n. It defines the constraints\n\
on the ordering.  If @code{@var{cmember}(j) = @var{S}}, then row/column j is\n\
in constraint set @var{c} (@var{c} must be in the range 1 to n).  In the\n\
output permutation @var{p}, rows/columns in set 1 appear first, followed\n\
by all rows/columns in set 2, and so on.  @code{@var{cmember} = ones (1,n)}\n\
if not present or empty.  @code{csymamd (@var{S},[],1:n)} returns @code{1:n}.\n\
\n\
@code{@var{p} = csymamd (@var{S})} is about the same as\n\
@code{@var{p} = symamd (@var{S})}.  @var{knobs} and its default values\n\
differ.\n\
\n\
@code{@var{stats}(4:7)} provide information if CCOLAMD was able to\n\
continue.  The matrix is OK if @code{@var{stats}(4)} is zero, or 1 if\n\
invalid.  @code{@var{stats}(5)} is the rightmost column index that is\n\
unsorted or contains duplicate entries, or zero if no such column exists.\n\
@code{@var{stats}(6)} is the last seen duplicate or out-of-order row\n\
index in the column index given by @code{@var{stats}(5)}, or zero if no\n\
such row index exists.  @code{@var{stats}(7)} is the number of duplicate\n\
or out-of-order row indices.  @code{@var{stats}(8:20)} is always zero in\n\
the current version of @sc{ccolamd} (reserved for future use).\n\
\n\
The authors of the code itself are @nospell{S. Larimore, T. Davis}\n\
(Univ. of Florida) and @nospell{S. Rajamanickam} in collaboration with\n\
@nospell{J. Bilbert and E. Ng}.  Supported by the National Science Foundation\n\
@nospell{(DMS-9504974, DMS-9803599, CCR-0203270)}, and a grant from\n\
@nospell{Sandia} National Lab.\n\
See @url{http://www.cise.ufl.edu/research/sparse} for\n\
ccolamd, csymamd, amd, colamd, symamd, and other related orderings.\n\
@seealso{symamd, ccolamd}\n\
@end deftypefn")
{
  octave_value_list retval;

#if HAVE_CCOLAMD

  int nargin = args.length ();
  int spumoni = 0;

  if (nargout > 2 || nargin < 1 || nargin > 3)
    usage ("ccolamd: incorrect number of input and/or output arguments");
  else
    {
      // Get knobs
      OCTAVE_LOCAL_BUFFER (double, knobs, CCOLAMD_KNOBS);
      CCOLAMD_NAME (_set_defaults) (knobs);

      // Check for user-passed knobs
      if (nargin > 1)
        {
          NDArray User_knobs = args(1).array_value ();
          int nel_User_knobs = User_knobs.length ();

          if (nel_User_knobs > 0)
            knobs[CCOLAMD_DENSE_ROW] = User_knobs(0);
          if (nel_User_knobs > 0)
            knobs[CCOLAMD_AGGRESSIVE] = User_knobs(1);
          if (nel_User_knobs > 1)
            spumoni = static_cast<int> (User_knobs(2));

          // print knob settings if spumoni is set
          if (spumoni)
            {
              octave_stdout << "\ncsymamd version " << CCOLAMD_MAIN_VERSION
                            << "." << CCOLAMD_SUB_VERSION
                            << ", " << CCOLAMD_DATE << "\n";

              if (knobs[CCOLAMD_DENSE_ROW] >= 0)
                octave_stdout << "knobs(1): " << User_knobs(0)
                              << ", rows/cols with > max (16,"
                              << knobs[CCOLAMD_DENSE_ROW]
                              << "*sqrt (size(A,2)))"
                              << " entries removed\n";
              else
                octave_stdout << "knobs(1): " << User_knobs(0)
                              << ", no dense rows/cols removed\n";

              if (knobs[CCOLAMD_AGGRESSIVE] != 0)
                octave_stdout << "knobs(2): " << User_knobs(1)
                              << ", aggressive absorption: yes";
              else
                octave_stdout << "knobs(2): " << User_knobs(1)
                              << ", aggressive absorption: no";


              octave_stdout << "knobs(3): " << User_knobs(2)
                            << ", statistics and knobs printed\n";
            }
        }

      octave_idx_type n_row, n_col;
      octave_idx_type *ridx, *cidx;
      SparseMatrix sm;
      SparseComplexMatrix scm;

      if (args(0).is_sparse_type ())
        {
          if (args(0).is_complex_type ())
            {
              scm = args(0).sparse_complex_matrix_value ();
              n_row = scm.rows ();
              n_col = scm.cols ();
              ridx = scm.xridx ();
              cidx = scm.xcidx ();
            }
          else
            {
              sm = args(0).sparse_matrix_value ();
              n_row = sm.rows ();
              n_col = sm.cols ();
              ridx = sm.xridx ();
              cidx = sm.xcidx ();
            }
        }
      else
        {
          if (args(0).is_complex_type ())
            sm = SparseMatrix (real (args(0).complex_matrix_value ()));
          else
            sm = SparseMatrix (args(0).matrix_value ());

          n_row = sm.rows ();
          n_col = sm.cols ();
          ridx = sm.xridx ();
          cidx = sm.xcidx ();
        }

      if (n_row != n_col)
        {
          error ("csymamd: matrix S must be square");
          return retval;
        }

      // Allocate workspace for symamd
      OCTAVE_LOCAL_BUFFER (octave_idx_type, perm, n_col+1);
      OCTAVE_LOCAL_BUFFER (octave_idx_type, stats, CCOLAMD_STATS);

      if (nargin > 2)
        {
          NDArray in_cmember = args(2).array_value ();
          octave_idx_type cslen = in_cmember.length ();
          OCTAVE_LOCAL_BUFFER (octave_idx_type, cmember, cslen);
          for (octave_idx_type i = 0; i < cslen; i++)
            // convert cmember from 1-based to 0-based
            cmember[i] = static_cast<octave_idx_type>(in_cmember(i) - 1);

          if (cslen != n_col)
            error ("csymamd: CMEMBER must be of length equal to #cols of A");
          else if (!CSYMAMD_NAME () (n_col, ridx, cidx, perm, knobs, stats,
                                     &calloc, &free, cmember, -1))
            {
              CSYMAMD_NAME (_report) (stats) ;
              error ("csymamd: internal error!") ;
              return retval;
            }
        }
      else
        {
          if (!CSYMAMD_NAME () (n_col, ridx, cidx, perm, knobs, stats,
                                &calloc, &free, 0, -1))
            {
              CSYMAMD_NAME (_report) (stats) ;
              error ("csymamd: internal error!") ;
              return retval;
            }
        }

      // return the permutation vector
      NDArray out_perm (dim_vector (1, n_col));
      for (octave_idx_type i = 0; i < n_col; i++)
        out_perm(i) = perm[i] + 1;

      retval(0) = out_perm;

      // Return the stats vector
      if (nargout == 2)
        {
          NDArray out_stats (dim_vector (1, CCOLAMD_STATS));
          for (octave_idx_type i = 0 ; i < CCOLAMD_STATS ; i++)
            out_stats(i) = stats[i] ;
          retval(1) = out_stats;

          // fix stats (5) and (6), for 1-based information on
          // jumbled matrix.  note that this correction doesn't
          // occur if symamd returns FALSE
          out_stats (CCOLAMD_INFO1) ++ ;
          out_stats (CCOLAMD_INFO2) ++ ;
        }

      // print stats if spumoni > 0
      if (spumoni > 0)
        CSYMAMD_NAME (_report) (stats) ;

      // Return the stats vector
      if (nargout == 2)
        {
          NDArray out_stats (dim_vector (1, CCOLAMD_STATS));
          for (octave_idx_type i = 0 ; i < CCOLAMD_STATS ; i++)
            out_stats(i) = stats[i] ;
          retval(1) = out_stats;

          // fix stats (5) and (6), for 1-based information on
          // jumbled matrix.  note that this correction doesn't
          // occur if symamd returns FALSE
          out_stats (CCOLAMD_INFO1) ++ ;
          out_stats (CCOLAMD_INFO2) ++ ;
        }
    }

#else

  error ("csymamd: not available in this version of Octave");

#endif

  return retval;
}