File: oct-inttypes.h

package info (click to toggle)
octave 4.0.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 94,200 kB
  • ctags: 52,925
  • sloc: cpp: 316,850; ansic: 43,469; fortran: 23,670; sh: 13,805; yacc: 8,204; objc: 7,939; lex: 3,631; java: 2,127; makefile: 1,746; perl: 1,022; awk: 988
file content (1289 lines) | stat: -rw-r--r-- 34,835 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
/*

Copyright (C) 2004-2015 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if !defined (octave_oct_inttypes_h)
#define octave_oct_inttypes_h 1

#include <stdlib.h>

#include <limits>
#include <iosfwd>

#include "lo-traits.h"
#include "lo-math.h"
#include "lo-mappers.h"

#ifdef OCTAVE_INT_USE_LONG_DOUBLE
inline long double xround (long double x) { return roundl (x); }
inline long double xisnan (long double x)
{ return xisnan (static_cast<double> (x)); }
#endif

// FIXME: we define this by our own because some compilers, such as
// MSVC, do not provide std::abs (int64_t) and std::abs (uint64_t).  In
// the future, it should go away in favor of std::abs.
template <class T>
inline T octave_int_abs (T x) { return x >= 0 ? x : -x; }

// Query for an integer type of certain sizeof, and signedness.
template<int qsize, bool qsigned>
struct query_integer_type
{
public:
  static const bool registered = false;
  typedef void type; // Void shall result in a compile-time error if we
                     // attempt to use it in computations.
};

#define REGISTER_INT_TYPE(TYPE) \
template <> \
class query_integer_type<sizeof (TYPE), std::numeric_limits<TYPE>::is_signed> \
{ \
public: \
  static const bool registered = true; \
  typedef TYPE type; \
}

// No two registered integers can share sizeof and signedness.
REGISTER_INT_TYPE (int8_t);
REGISTER_INT_TYPE (uint8_t);
REGISTER_INT_TYPE (int16_t);
REGISTER_INT_TYPE (uint16_t);
REGISTER_INT_TYPE (int32_t);
REGISTER_INT_TYPE (uint32_t);
REGISTER_INT_TYPE (int64_t);
REGISTER_INT_TYPE (uint64_t);

// Rationale: Comparators have a single static method, rel(), that returns the
// result of the binary relation. They also have two static boolean fields:
// ltval, gtval determine the value of x OP y if x < y, x > y, respectively.
#define REGISTER_OCTAVE_CMP_OP(NM,OP) \
  class NM \
    { \
    public: \
      static const bool ltval = (0 OP 1); \
      static const bool gtval = (1 OP 0); \
      template <class T> \
      static bool op (T x, T y) { return x OP y; } \
    }

// We also provide two special relations: ct, yielding always true, and cf,
// yielding always false.
#define REGISTER_OCTAVE_CONST_OP(NM,value) \
  class NM \
    { \
    public: \
      static const bool ltval = value; \
      static const bool gtval = value; \
      template <class T> \
      static bool op (T, T) { return value; } \
    }

// Handles non-homogeneous integer comparisons. Avoids doing useless tests.
class octave_int_cmp_op
{
  // This determines a suitable promotion type for T1 when meeting T2 in a
  // binary relation. If promotion to int or T2 is safe, it is used. Otherwise,
  // the signedness of T1 is preserved and it is widened if T2 is wider.
  // Notice that if this is applied to both types, they must end up with equal
  // size.
  template <class T1, class T2>
  class prom
  {
    // Promote to int?
    static const bool pint = (sizeof (T1) < sizeof (int)
                              && sizeof (T2) < sizeof (int));
    static const bool t1sig = std::numeric_limits<T1>::is_signed;
    static const bool t2sig = std::numeric_limits<T2>::is_signed;
    static const bool psig =
      (pint || (sizeof (T2) > sizeof (T1) && t2sig) || t1sig);
    static const int psize =
      (pint ? sizeof (int) : (sizeof (T2) > sizeof (T1)
                              ? sizeof (T2) : sizeof (T1)));
  public:
    typedef typename query_integer_type<psize, psig>::type type;
  };

  // Implements comparisons between two types of equal size but
  // possibly different signedness.
  template<class xop, int size>
  class uiop
  {
    typedef typename query_integer_type<size, false>::type utype;
    typedef typename query_integer_type<size, true>::type stype;
  public:
    static bool op (utype x, utype y)
    { return xop::op (x, y); }
    static bool op (stype x, stype y)
    { return xop::op (x, y); }
    static bool op (stype x, utype y)
    { return (x < 0) ? xop::ltval : xop::op (static_cast<utype> (x), y); }
    static bool op (utype x, stype y)
    { return (y < 0) ? xop::gtval : xop::op (x, static_cast<utype> (y)); }
  };

public:
  REGISTER_OCTAVE_CMP_OP (lt, <);
  REGISTER_OCTAVE_CMP_OP (le, <=);
  REGISTER_OCTAVE_CMP_OP (gt, >);
  REGISTER_OCTAVE_CMP_OP (ge, >=);
  REGISTER_OCTAVE_CMP_OP (eq, ==);
  REGISTER_OCTAVE_CMP_OP (ne, !=);
  REGISTER_OCTAVE_CONST_OP (ct, true);
  REGISTER_OCTAVE_CONST_OP (cf, false);

  // Universal comparison operation.
  template<class xop, class T1, class T2>
  static bool
  op (T1 x, T2 y)
  {
    typedef typename prom<T1, T2>::type PT1;
    typedef typename prom<T2, T1>::type PT2;
    return uiop<xop, sizeof (PT1)>::op (static_cast<PT1> (x),
                                        static_cast<PT2> (y));
  }

public:

  // Mixed comparisons
  template <class xop, class T>
  static bool
  mop (T x, double y)
  { return xop::op (static_cast<double> (x), y); }

  template <class xop, class T>
  static bool
  mop (double x, T y)
  { return xop::op (x, static_cast<double> (y)); }

#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED
#define DECLARE_EXTERNAL_LONG_DOUBLE_CMP_OPS(T) \
  template <class xop> static OCTAVE_API bool \
  external_mop (double, T); \
  template <class xop> static OCTAVE_API bool \
  external_mop (T, double)

  DECLARE_EXTERNAL_LONG_DOUBLE_CMP_OPS (int64_t);
  DECLARE_EXTERNAL_LONG_DOUBLE_CMP_OPS (uint64_t);
#endif

  // Typecasting to doubles won't work properly for 64-bit integers --
  // they lose precision.
  // If we have long doubles, use them...
#ifdef OCTAVE_INT_USE_LONG_DOUBLE
#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED
#define DEFINE_LONG_DOUBLE_CMP_OP(T) \
  template <class xop> \
  static bool \
  mop (double x, T y) \
  { \
    return external_mop<xop> (x, y); \
  } \
  template <class xop> \
  static bool \
  mop (T x, double y) \
  { \
    return external_mop<xop> (x, y); \
  }
#else
#define DEFINE_LONG_DOUBLE_CMP_OP(T) \
  template <class xop> \
  static bool \
  mop (double x, T y) \
  { \
    return xop::op (static_cast<long double> (x), \
                    static_cast<long double> (y)); \
  } \
  template <class xop> \
  static bool \
  mop (T x, double y) \
  { \
    return xop::op (static_cast<long double> (x), \
                    static_cast<long double> (y)); \
  }
#endif
#else
  // ... otherwise, use external handlers

  // FIXME: We could declare directly the mop methods as external,
  // but we can't do this because bugs in gcc (<= 4.3) prevent
  // explicit instantiations later in that case.
#define DEFINE_LONG_DOUBLE_CMP_OP(T) \
  template <class xop> static OCTAVE_API bool \
  emulate_mop (double, T); \
  template <class xop> \
  static bool \
  mop (double x, T y) \
    { \
      return emulate_mop<xop> (x, y); \
    } \
  template <class xop> static OCTAVE_API bool \
  emulate_mop (T, double); \
  template <class xop> \
  static bool \
  mop (T x, double y) \
    { \
      return emulate_mop<xop> (x, y); \
    }
#endif

  DEFINE_LONG_DOUBLE_CMP_OP(int64_t)
  DEFINE_LONG_DOUBLE_CMP_OP(uint64_t)

#undef DEFINE_LONG_DOUBLE_CMP_OP
};

// Base integer class. No data, just conversion methods and exception flags.
template <class T>
class octave_int_base
{
public:

  static T min_val () { return std::numeric_limits<T>:: min (); }
  static T max_val () { return std::numeric_limits<T>:: max (); }

  // Convert integer value.
  template <class S>
  static T
  truncate_int (const S& value)
  {
    // An exhaustive test whether the max and/or min check can be omitted.
    static const bool t_is_signed = std::numeric_limits<T>::is_signed;
    static const bool s_is_signed = std::numeric_limits<S>::is_signed;
    static const int t_size = sizeof (T);
    static const int s_size = sizeof (S);

    static const bool omit_chk_min =
      (! s_is_signed || (t_is_signed && t_size >= s_size));
    static const bool omit_chk_max =
      (t_size > s_size || (t_size == s_size
                           && (! t_is_signed || s_is_signed)));
    // If the check can be omitted, substitute constant false relation.
    typedef octave_int_cmp_op::cf cf;
    typedef octave_int_cmp_op::lt lt;
    typedef octave_int_cmp_op::gt gt;
    typedef typename if_then_else<omit_chk_min, cf, lt>::result chk_min;
    typedef typename if_then_else<omit_chk_max, cf, gt>::result chk_max;

    // Efficiency of the following depends on inlining and dead code
    // elimination, but that should be a piece of cake for most compilers.
    if (chk_min::op (value, static_cast<S> (min_val ())))
      {
        return min_val ();
      }
    else if (chk_max::op (value, static_cast<S> (max_val ())))
      {
        return max_val ();
      }
    else
      return static_cast<T> (value);
  }

private:

  // Computes a real-valued threshold for a max/min check.
  template <class S>
  static S
  compute_threshold (S val, T orig_val)
  {
    val = xround (val); // Fool optimizations (maybe redundant)
    // If val is even, but orig_val is odd, we're one unit off.
    if (orig_val % 2 && val / 2 == xround (val / 2))
      // FIXME: is this always correct?
      val *= (static_cast<S> (1) - (std::numeric_limits<S>::epsilon () / 2));
    return val;
  }

public:

  // Convert a real number (check NaN and non-int).
  template <class S>
  static T
  convert_real (const S& value);
};

// Saturated (homogeneous) integer arithmetics. The signed and unsigned
// implementations are significantly different, so we implement another layer
// and completely specialize. Arithmetics inherits from octave_int_base so that
// it can use its exceptions and truncation functions.

template <class T, bool is_signed>
class octave_int_arith_base
{ };

// Unsigned arithmetics. C++ standard requires it to be modular, so the
// overflows can be handled efficiently and reliably.
template <class T>
class octave_int_arith_base<T, false> : octave_int_base<T>
{
public:

  static T
  abs (T x) { return x; }

  static T
  signum (T x) { return x ? static_cast<T> (1) : static_cast<T> (0); }

  // Shifts do not overflow.
  static T
  rshift (T x, int n) { return x >> n; }

  static T
  lshift (T x, int n) { return x << n; }

  static T
  minus (T)
  {
    return static_cast<T> (0);
  }

  // the overflow behaviour for unsigned integers is guaranteed by C/C++,
  // so the following should always work.
  static T
  add (T x, T y)
  {
    T u = x + y;
    if (u < x)
      {
        u = octave_int_base<T>::max_val ();
      }
    return u;
  }

  static T
  sub (T x, T y)
  {
    T u = x - y;
    if (u > x)
      {
        u = 0;
      }
    return u;
  }

  // Multiplication is done using promotion to wider integer type. If there is
  // no suitable promotion type, this operation *MUST* be specialized.
  static T mul (T x, T y) { return mul_internal (x, y); }

  static T
  mul_internal (T x, T y)
  {
    // Promotion type for multiplication (if exists).
    typedef typename query_integer_type<2*sizeof (T), false>::type mptype;
    return octave_int_base<T>::truncate_int (static_cast<mptype> (x)
           * static_cast<mptype> (y));
  }

  // Division with rounding to nearest. Note that / and % are probably
  // computed by a single instruction.
  static T
  div (T x, T y)
  {
    if (y != 0)
      {
        T z = x / y;
        T w = x % y;
        if (w >= y-w) z += 1;
        return z;
      }
    else
      {
        return x ? octave_int_base<T>::max_val () : 0;
      }
  }

  // Remainder.
  static T
  rem (T x, T y)
  {
    return y != 0 ? x % y : 0;
  }

  // Modulus. Note the weird y = 0 case for Matlab compatibility.
  static T
  mod (T x, T y)
  {
    return y != 0 ? x % y : x;
  }
};

#ifdef OCTAVE_INT_USE_LONG_DOUBLE

// Handle 64-bit multiply using long double

#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED

extern OCTAVE_API uint64_t
octave_external_uint64_uint64_mul (uint64_t, uint64_t);

#endif

template <>
inline uint64_t
octave_int_arith_base<uint64_t, false>::mul_internal (uint64_t x, uint64_t y)
{
  uint64_t retval;

  long double p = static_cast<long double> (x) * static_cast<long double> (y);

  if (p > static_cast<long double> (octave_int_base<uint64_t>::max_val ()))
    retval = octave_int_base<uint64_t>::max_val ();
  else
    retval = static_cast<uint64_t> (p);

  return retval;
}

template <>
inline uint64_t
octave_int_arith_base<uint64_t, false>::mul (uint64_t x, uint64_t y)
{
#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED
  return octave_external_uint64_uint64_mul (x, y);
#else
  return mul_internal (x, y);
#endif
}

#else

// Special handler for 64-bit integer multiply.
template <>
OCTAVE_API uint64_t
octave_int_arith_base<uint64_t, false>::mul_internal (uint64_t, uint64_t);

#endif

// Signed integer arithmetics.
// Rationale: If HAVE_FAST_INT_OPS is defined, the following conditions
// should hold:
// 1. Signed numbers are represented by twos complement
//    (see <http://en.wikipedia.org/wiki/Two%27s_complement>)
// 2. static_cast to unsigned int counterpart works like interpreting
//    the signed bit pattern as unsigned (and is thus zero-cost).
// 3. Signed addition and subtraction yield the same bit results as unsigned.
//    (We use casts to prevent optimization interference, so there is no
//     need for things like -ftrapv).
// 4. Bit operations on signed integers work like on unsigned integers,
//    except for the shifts. Shifts are arithmetic.
//
// The above conditions are satisfied by most modern platforms. If
// HAVE_FAST_INT_OPS is defined, bit tricks and wraparound arithmetics are used
// to avoid conditional jumps as much as possible, thus being friendly to
// modern pipeline processor architectures.
// Otherwise, we fall back to a bullet-proof code that only uses assumptions
// guaranteed by the standard.

template <class T>
class octave_int_arith_base<T, true> : octave_int_base<T>
{
  // The corresponding unsigned type.
  typedef typename query_integer_type<sizeof (T), false>::type UT;
public:

  // Returns 1 for negative number, 0 otherwise.
  static T
  __signbit (T x)
  {
#ifdef HAVE_FAST_INT_OPS
    return static_cast<UT> (x) >> std::numeric_limits<T>::digits;
#else
    return (x < 0) ? 1 : 0;
#endif
  }

  static T
  abs (T x)
  {
#ifdef HAVE_FAST_INT_OPS
    // This is close to how GCC does std::abs, but we can't just use std::abs,
    // because its behaviour for INT_MIN is undefined and the compiler could
    // discard the following test.
    T m = x >> std::numeric_limits<T>::digits;
    T y = (x ^ m) - m;
    if (y < 0)
      {
        y = octave_int_base<T>::max_val ();
      }
    return y;
#else
    // -INT_MAX is safe because C++ actually allows only three implementations
    // of integers: sign & magnitude, ones complement and twos complement.
    // The first test will, with modest optimizations, evaluate at compile
    // time, and maybe eliminate the branch completely.
    T y;
    if (octave_int_base<T>::min_val () < -octave_int_base<T>::max_val ()
        && x == octave_int_base<T>::min_val ())
      {
        y = octave_int_base<T>::max_val ();
      }
    else
      y = (x < 0) ? -x : x;
    return y;
#endif
  }

  static T
  signum (T x)
  {
    // With modest optimizations, this will compile without a jump.
    return ((x > 0) ? 1 : 0) - __signbit (x);
  }

  // FIXME: we do not have an authority what signed shifts should
  // exactly do, so we define them the easy way. Note that Matlab does
  // not define signed shifts.

  static T
  rshift (T x, int n) { return x >> n; }

  static T
  lshift (T x, int n) { return x << n; }

  // Minus has problems similar to abs.
  static T
  minus (T x)
  {
#ifdef HAVE_FAST_INT_OPS
    T y = -x;
    if (y == octave_int_base<T>::min_val ())
      {
        --y;
      }
    return y;
#else
    T y;
    if (octave_int_base<T>::min_val () < -octave_int_base<T>::max_val ()
        && x == octave_int_base<T>::min_val ())
      {
        y = octave_int_base<T>::max_val ();
      }
    else
      y = -x;
    return y;
#endif
  }

  static T
  add (T x, T y)
  {
#ifdef HAVE_FAST_INT_OPS
    // The typecasts do nothing, but they are here to prevent an optimizing
    // compiler from interfering. Also, the signed operations on small types
    // actually return int.
    T u = static_cast<UT> (x) + static_cast<UT> (y);
    T ux = u ^ x;
    T uy = u ^ y;
    if ((ux & uy) < 0)
      {
        u = octave_int_base<T>::max_val () + __signbit (~u);
      }
    return u;
#else
    // We shall carefully avoid anything that may overflow.
    T u;
    if (y < 0)
      {
        if (x < octave_int_base<T>::min_val () - y)
          {
            u = octave_int_base<T>::min_val ();
          }
        else
          u = x + y;
      }
    else
      {
        if (x > octave_int_base<T>::max_val () - y)
          {
            u = octave_int_base<T>::max_val ();
          }
        else
          u = x + y;
      }

    return u;
#endif
  }

  // This is very similar to addition.
  static T
  sub (T x, T y)
  {
#ifdef HAVE_FAST_INT_OPS
    // The typecasts do nothing, but they are here to prevent an optimizing
    // compiler from interfering. Also, the signed operations on small types
    // actually return int.
    T u = static_cast<UT> (x) - static_cast<UT> (y);
    T ux = u ^ x;
    T uy = u ^ ~y;
    if ((ux & uy) < 0)
      {
        u = octave_int_base<T>::max_val () + __signbit (~u);
      }
    return u;
#else
    // We shall carefully avoid anything that may overflow.
    T u;
    if (y < 0)
      {
        if (x > octave_int_base<T>::max_val () + y)
          {
            u = octave_int_base<T>::max_val ();
          }
        else
          u = x - y;
      }
    else
      {
        if (x < octave_int_base<T>::min_val () + y)
          {
            u = octave_int_base<T>::min_val ();
          }
        else
          u = x - y;
      }

    return u;
#endif
  }

  // Multiplication is done using promotion to wider integer type. If there is
  // no suitable promotion type, this operation *MUST* be specialized.
  static T mul (T x, T y) { return mul_internal (x, y); }

  static T
  mul_internal (T x, T y)
  {
    // Promotion type for multiplication (if exists).
    typedef typename query_integer_type<2*sizeof (T), true>::type mptype;
    return octave_int_base<T>::truncate_int (static_cast<mptype> (x)
           * static_cast<mptype> (y));
  }

  // Division.
  static T
  div (T x, T y)
  {
    T z;
    if (y == 0)
      {
        if (x < 0)
          z = octave_int_base<T>::min_val ();
        else if (x != 0)
          z = octave_int_base<T>::max_val ();
        else
          z = 0;
      }
    else if (y < 0)
      {
        // This is a special case that overflows as well.
        if (y == -1 && x == octave_int_base<T>::min_val ())
          {
            z = octave_int_base<T>::max_val ();
          }
        else
          {
            z = x / y;
            // Can't overflow, but std::abs (x) can!
            T w = -octave_int_abs (x % y);
            if (w <= y - w)
              z -= 1 - (__signbit (x) << 1);
          }
      }
    else
      {
        z = x / y;
        // FIXME: this is a workaround due to MSVC's absence of
        // std::abs (int64_t).  The call to octave_int_abs can't
        // overflow, but std::abs (x) can!
        T w = octave_int_abs (x % y);

        if (w >= y - w)
          z += 1 - (__signbit (x) << 1);
      }
    return z;
  }

  // Remainder.
  static T
  rem (T x, T y)
  {
    return y != 0 ? x % y : 0;
  }

  // Modulus. Note the weird y = 0 case for Matlab compatibility.
  static T
  mod (T x, T y)
  {
    if (y != 0)
      {
        T r = x % y;
        return ((r < 0) != (y < 0)) ? r + y : r;
      }
    else
      return x;
  }
};

#ifdef OCTAVE_INT_USE_LONG_DOUBLE

// Handle 64-bit multiply using long double

#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED

extern OCTAVE_API int64_t
octave_external_int64_int64_mul (int64_t, int64_t);

#endif

template <>
inline int64_t
octave_int_arith_base<int64_t, true>::mul_internal (int64_t x, int64_t y)
{
  int64_t retval;

  long double p = static_cast<long double> (x) * static_cast<long double> (y);

  // NOTE: We could maybe do it with a single branch if HAVE_FAST_INT_OPS,
  // but it would require one more runtime conversion, so the question is
  // whether it would really be faster.
  if (p > static_cast<long double> (octave_int_base<int64_t>::max_val ()))
    retval = octave_int_base<int64_t>::max_val ();
  else if (p < static_cast<long double> (octave_int_base<int64_t>::min_val ()))
    retval = octave_int_base<int64_t>::min_val ();
  else
    retval = static_cast<int64_t> (p);

  return retval;
}

template <>
inline int64_t
octave_int_arith_base<int64_t, true>::mul (int64_t x, int64_t y)
{
#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED
  return octave_external_int64_int64_mul (x, y);
#else
  return mul_internal (x, y);
#endif
}

#else

// Special handler for 64-bit integer multiply.
template <>
OCTAVE_API int64_t
octave_int_arith_base<int64_t, true>::mul_internal (int64_t, int64_t);

#endif

// This class simply selects the proper arithmetics.
template<class T>
class octave_int_arith
 : public octave_int_arith_base<T, std::numeric_limits<T>::is_signed>
{ };

template <class T>
class
octave_int : public octave_int_base<T>
{
public:
  typedef T val_type;

  octave_int (void) : ival () { }

  octave_int (T i) : ival (i) { }

#if defined (HAVE_OVERLOAD_CHAR_INT8_TYPES)
  // Always treat characters as unsigned.
  octave_int (char c)
    : ival (octave_int_base<T>::truncate_int (static_cast<unsigned char> (c)))
  { }
#endif

  octave_int (double d) : ival (octave_int_base<T>::convert_real (d)) { }

  octave_int (float d) : ival (octave_int_base<T>::convert_real (d)) { }

#ifdef OCTAVE_INT_USE_LONG_DOUBLE
  octave_int (long double d) : ival (octave_int_base<T>::convert_real (d)) { }
#endif

  octave_int (bool b) : ival (b) { }

  template <class U>
  octave_int (const U& i) : ival(octave_int_base<T>::truncate_int (i)) { }

  template <class U>
  octave_int (const octave_int<U>& i)
    : ival (octave_int_base<T>::truncate_int (i.value ())) { }

  octave_int (const octave_int<T>& i) : ival (i.ival) { }

  octave_int& operator = (const octave_int<T>& i)
  {
    ival = i.ival;
    return *this;
  }

  T value (void) const { return ival; }

  const unsigned char * iptr (void) const
  { return reinterpret_cast<const unsigned char *> (& ival); }

  bool operator ! (void) const { return ! ival; }

  bool bool_value (void) const { return static_cast<bool> (value ()); }

  char char_value (void) const { return static_cast<char> (value ()); }

  double double_value (void) const { return static_cast<double> (value ()); }

  float float_value (void) const { return static_cast<float> (value ()); }

  operator T (void) const { return value (); }

  // char and bool operators intentionally omitted.

  operator double (void) const { return double_value (); }

  operator float (void) const { return float_value (); }

  octave_int<T>
  operator + () const
  { return *this; }

  // unary operators & mappers
#define OCTAVE_INT_UN_OP(OPNAME,NAME) \
  inline octave_int<T> \
  OPNAME () const \
  { return octave_int_arith<T>::NAME (ival); }

  OCTAVE_INT_UN_OP(operator -, minus)
  OCTAVE_INT_UN_OP(abs, abs)
  OCTAVE_INT_UN_OP(signum, signum)

#undef OCTAVE_INT_UN_OP

// Homogeneous binary integer operations.
#define OCTAVE_INT_BIN_OP(OP, NAME, ARGT) \
  inline octave_int<T> \
  operator OP (const ARGT& y) const \
  { return octave_int_arith<T>::NAME (ival, y); } \
  inline octave_int<T>& \
  operator OP##= (const ARGT& y) \
  { \
    ival = octave_int_arith<T>::NAME (ival, y); \
    return *this; \
  }

  OCTAVE_INT_BIN_OP(+, add, octave_int<T>)
  OCTAVE_INT_BIN_OP(-, sub, octave_int<T>)
  OCTAVE_INT_BIN_OP(*, mul, octave_int<T>)
  OCTAVE_INT_BIN_OP(/, div, octave_int<T>)
  OCTAVE_INT_BIN_OP(%, rem, octave_int<T>)
  OCTAVE_INT_BIN_OP(<<, lshift, int)
  OCTAVE_INT_BIN_OP(>>, rshift, int)

#undef OCTAVE_INT_BIN_OP

  static octave_int<T> min (void) { return std::numeric_limits<T>::min (); }
  static octave_int<T> max (void) { return std::numeric_limits<T>::max (); }

  static int nbits (void) { return std::numeric_limits<T>::digits; }

  static int byte_size (void) { return sizeof (T); }

  static const char *type_name ();

  // The following are provided for convenience.
  static const octave_int zero, one;

  // Unsafe.  This function exists to support the MEX interface.
  // You should not use it anywhere else.
  void *mex_get_data (void) const { return const_cast<T *> (&ival); }

private:

  T ival;
};

template <class T>
inline octave_int<T>
rem (const octave_int<T>& x, const octave_int<T>& y)
{ return octave_int_arith<T>::rem (x.value (), y.value ()); }

template <class T>
inline octave_int<T>
mod (const octave_int<T>& x, const octave_int<T>& y)
{ return octave_int_arith<T>::mod (x.value (), y.value ()); }

// No mixed integer binary operations!

template <class T>
inline bool
xisnan (const octave_int<T>&)
{ return false; }

// FIXME: can/should any of these be inline?

template <class T>
extern OCTAVE_API octave_int<T>
pow (const octave_int<T>&, const octave_int<T>&);

template <class T>
extern OCTAVE_API octave_int<T>
pow (const double& a, const octave_int<T>& b);

template <class T>
extern OCTAVE_API octave_int<T>
pow (const octave_int<T>& a, const double& b);

template <class T>
extern OCTAVE_API octave_int<T>
pow (const float& a, const octave_int<T>& b);

template <class T>
extern OCTAVE_API octave_int<T>
pow (const octave_int<T>& a, const float& b);

// FIXME: Do we really need a differently named single-precision
//        function integer power function here instead of an overloaded
//        one?
template <class T>
extern OCTAVE_API octave_int<T>
powf (const float& a, const octave_int<T>& b);

template <class T>
extern OCTAVE_API octave_int<T>
powf (const octave_int<T>& a, const float& b);

// Binary relations

#define OCTAVE_INT_CMP_OP(OP, NAME) \
  template<class T1, class T2> \
  inline bool \
  operator OP (const octave_int<T1>& x, const octave_int<T2>& y) \
  { return octave_int_cmp_op::op<octave_int_cmp_op::NAME, T1, T2> \
    (x.value (), y.value ()); }

OCTAVE_INT_CMP_OP (<, lt)
OCTAVE_INT_CMP_OP (<=, le)
OCTAVE_INT_CMP_OP (>, gt)
OCTAVE_INT_CMP_OP (>=, ge)
OCTAVE_INT_CMP_OP (==, eq)
OCTAVE_INT_CMP_OP (!=, ne)

#undef OCTAVE_INT_CMP_OP

template <class T>
inline std::ostream&
operator << (std::ostream& os, const octave_int<T>& ival)
{
  os << ival.value ();
  return os;
}

template <class T>
inline std::istream&
operator >> (std::istream& is, octave_int<T>& ival)
{
  T tmp = 0;
  is >> tmp;
  ival = tmp;
  return is;
}

// We need to specialise for char and unsigned char because
// std::operator<< and std::operator>> are overloaded to input and
// output the ASCII character values instead of a representation of
// their numerical value (e.g. os << char(10) outputs a space instead
// of outputting the characters '1' and '0')

template <>
inline std::ostream&
operator << (std::ostream& os, const octave_int<int8_t>& ival)
{
  os << static_cast<int> (ival.value ());
  return os;
}

template <>
inline std::ostream&
operator << (std::ostream& os, const octave_int<uint8_t>& ival)
{
  os << static_cast<unsigned int> (ival.value ());
  return os;
}


template <>
inline std::istream&
operator >> (std::istream& is, octave_int<int8_t>& ival)
{
  int tmp = 0;
  is >> tmp;
  ival = static_cast<int8_t> (tmp);
  return is;
}

template <>
inline std::istream&
operator >> (std::istream& is, octave_int<uint8_t>& ival)
{
  unsigned int tmp = 0;
  is >> tmp;
  ival = static_cast<uint8_t> (tmp);
  return is;
}


// Bitwise operations

#define OCTAVE_INT_BITCMP_OP(OP) \
  template <class T> \
  octave_int<T> \
  operator OP (const octave_int<T>& x, const octave_int<T>& y) \
  { return x.value () OP y.value (); }

OCTAVE_INT_BITCMP_OP (&)
OCTAVE_INT_BITCMP_OP (|)
OCTAVE_INT_BITCMP_OP (^)

#undef OCTAVE_INT_BITCMP_OP

// General bit shift.
template <class T>
octave_int<T>
bitshift (const octave_int<T>& a, int n,
          const octave_int<T>& mask = std::numeric_limits<T>::max ())
{
  if (n > 0)
    return (a << n) & mask;
  else if (n < 0)
    return (a >> -n) & mask;
  else
    return a & mask;
}

typedef octave_int<int8_t> octave_int8;
typedef octave_int<int16_t> octave_int16;
typedef octave_int<int32_t> octave_int32;
typedef octave_int<int64_t> octave_int64;

typedef octave_int<uint8_t> octave_uint8;
typedef octave_int<uint16_t> octave_uint16;
typedef octave_int<uint32_t> octave_uint32;
typedef octave_int<uint64_t> octave_uint64;

#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED

#define DECLARE_EXTERNAL_LONG_DOUBLE_OP(T, OP) \
  extern OCTAVE_API T \
  external_double_ ## T ## _ ## OP (double x, T y); \
  extern OCTAVE_API T \
  external_ ## T ## _double_ ## OP (T x, double y)

#define DECLARE_EXTERNAL_LONG_DOUBLE_OPS(T) \
  DECLARE_EXTERNAL_LONG_DOUBLE_OP (T, add); \
  DECLARE_EXTERNAL_LONG_DOUBLE_OP (T, sub); \
  DECLARE_EXTERNAL_LONG_DOUBLE_OP (T, mul); \
  DECLARE_EXTERNAL_LONG_DOUBLE_OP (T, div)

DECLARE_EXTERNAL_LONG_DOUBLE_OPS (octave_int64);
DECLARE_EXTERNAL_LONG_DOUBLE_OPS (octave_uint64);

#endif

#define OCTAVE_INT_DOUBLE_BIN_OP0(OP) \
  template <class T> \
  inline octave_int<T> \
  operator OP (const octave_int<T>& x, const double& y) \
  { return octave_int<T> (static_cast<double> (x) OP y); } \
  template <class T> \
  inline octave_int<T> \
  operator OP (const double& x, const octave_int<T>& y) \
  { return octave_int<T> (x OP static_cast<double> (y)); }

#ifdef OCTAVE_INT_USE_LONG_DOUBLE
// Handle mixed op using long double
#ifdef OCTAVE_ENSURE_LONG_DOUBLE_OPERATIONS_ARE_NOT_TRUNCATED
#define OCTAVE_INT_DOUBLE_BIN_OP(OP, NAME) \
  OCTAVE_INT_DOUBLE_BIN_OP0(OP) \
  template <> \
  inline octave_int64 \
  operator OP (const double& x, const octave_int64& y) \
  { \
    return external_double_octave_int64_ ## NAME (x, y); \
  } \
  template <> \
  inline octave_uint64 \
  operator OP (const double& x, const octave_uint64& y) \
  { \
    return external_double_octave_uint64_ ## NAME (x, y); \
  } \
  template <> \
  inline octave_int64 \
  operator OP (const octave_int64& x, const double& y) \
  { \
    return external_octave_int64_double_ ## NAME (x, y); \
  } \
  template <> \
  inline octave_uint64 \
  operator OP (const octave_uint64& x, const double& y) \
  { \
    return external_octave_uint64_double_ ## NAME (x, y); \
  }
#else
#define OCTAVE_INT_DOUBLE_BIN_OP(OP, NAME) \
  OCTAVE_INT_DOUBLE_BIN_OP0(OP) \
  template <> \
  inline octave_int64 \
  operator OP (const double& x, const octave_int64& y) \
  { \
    return octave_int64 (x OP static_cast<long double> (y.value ())); \
  } \
  template <> \
  inline octave_uint64 \
  operator OP (const double& x, const octave_uint64& y) \
  { \
    return octave_uint64 (x OP static_cast<long double> (y.value ())); \
  } \
  template <> \
  inline octave_int64 \
  operator OP (const octave_int64& x, const double& y) \
  { \
    return octave_int64 (static_cast<long double> (x.value ()) OP y);   \
  } \
  template <> \
  inline octave_uint64 \
  operator OP (const octave_uint64& x, const double& y) \
  { \
    return octave_uint64 (static_cast<long double> (x.value ()) OP y); \
  }
#endif
#else
// external handlers
#define OCTAVE_INT_DOUBLE_BIN_OP(OP, NAME) \
  OCTAVE_INT_DOUBLE_BIN_OP0(OP) \
  template <> \
  OCTAVE_API octave_int64 \
  operator OP (const double&, const octave_int64&); \
  template <> \
  OCTAVE_API octave_uint64 \
  operator OP (const double&, const octave_uint64&); \
  template <> \
  OCTAVE_API octave_int64 \
  operator OP (const octave_int64&, const double&); \
  template <> \
  OCTAVE_API octave_uint64 \
  operator OP (const octave_uint64&, const double&);

#endif

OCTAVE_INT_DOUBLE_BIN_OP (+, add)
OCTAVE_INT_DOUBLE_BIN_OP (-, sub)
OCTAVE_INT_DOUBLE_BIN_OP (*, mul)
OCTAVE_INT_DOUBLE_BIN_OP (/, div)

#undef OCTAVE_INT_DOUBLE_BIN_OP0
#undef OCTAVE_INT_DOUBLE_BIN_OP
#undef DECLARE_EXTERNAL_LONG_DOUBLE_OP
#undef DECLARE_EXTERNAL_LONG_DOUBLE_OPS

#define OCTAVE_INT_DOUBLE_CMP_OP(OP,NAME) \
  template <class T> \
  inline bool \
  operator OP (const octave_int<T>& x, const double& y) \
  { return octave_int_cmp_op::mop<octave_int_cmp_op::NAME> (x.value (), y); } \
  template <class T> \
  inline bool \
  operator OP (const double& x, const octave_int<T>& y) \
  { return octave_int_cmp_op::mop<octave_int_cmp_op::NAME> (x, y.value ()); }

OCTAVE_INT_DOUBLE_CMP_OP (<, lt)
OCTAVE_INT_DOUBLE_CMP_OP (<=, le)
OCTAVE_INT_DOUBLE_CMP_OP (>=, ge)
OCTAVE_INT_DOUBLE_CMP_OP (>, gt)
OCTAVE_INT_DOUBLE_CMP_OP (==, eq)
OCTAVE_INT_DOUBLE_CMP_OP (!=, ne)

#undef OCTAVE_INT_DOUBLE_CMP_OP

// Floats are handled by simply converting to doubles.

#define OCTAVE_INT_FLOAT_BIN_OP(OP) \
  template <class T> \
  inline octave_int<T> \
  operator OP (const octave_int<T>& x, float y) \
  { return x OP static_cast<double> (y); } \
  template <class T> \
  inline octave_int<T> \
  operator OP (float x, const octave_int<T>& y) \
  { return static_cast<double> (x) OP y; }

OCTAVE_INT_FLOAT_BIN_OP (+)
OCTAVE_INT_FLOAT_BIN_OP (-)
OCTAVE_INT_FLOAT_BIN_OP (*)
OCTAVE_INT_FLOAT_BIN_OP (/)

#undef OCTAVE_INT_FLOAT_BIN_OP

#define OCTAVE_INT_FLOAT_CMP_OP(OP) \
  template <class T> \
  inline bool \
  operator OP (const octave_int<T>& x, const float& y) \
  { return x OP static_cast<double> (y); } \
  template <class T> \
  bool \
  operator OP (const float& x, const octave_int<T>& y) \
  { return static_cast<double> (x) OP y; }

OCTAVE_INT_FLOAT_CMP_OP (<)
OCTAVE_INT_FLOAT_CMP_OP (<=)
OCTAVE_INT_FLOAT_CMP_OP (>=)
OCTAVE_INT_FLOAT_CMP_OP (>)
OCTAVE_INT_FLOAT_CMP_OP (==)
OCTAVE_INT_FLOAT_CMP_OP (!=)

#undef OCTAVE_INT_FLOAT_CMP_OP

template <class T>
octave_int<T>
xmax (const octave_int<T>& x, const octave_int<T>& y)
{
  const T xv = x.value ();
  const T yv = y.value ();
  return octave_int<T> (xv >= yv ? xv : yv);
}

template <class T>
octave_int<T>
xmin (const octave_int<T>& x, const octave_int<T>& y)
{
  const T xv = x.value ();
  const T yv = y.value ();
  return octave_int<T> (xv <= yv ? xv : yv);
}

#endif