File: voronoi.m

package info (click to toggle)
octave 4.0.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 94,200 kB
  • ctags: 52,925
  • sloc: cpp: 316,850; ansic: 43,469; fortran: 23,670; sh: 13,805; yacc: 8,204; objc: 7,939; lex: 3,631; java: 2,127; makefile: 1,746; perl: 1,022; awk: 988
file content (216 lines) | stat: -rw-r--r-- 6,989 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
## Copyright (C) 2000-2015 Kai Habel
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} voronoi (@var{x}, @var{y})
## @deftypefnx {Function File} {} voronoi (@var{x}, @var{y}, @var{options})
## @deftypefnx {Function File} {} voronoi (@dots{}, "linespec")
## @deftypefnx {Function File} {} voronoi (@var{hax}, @dots{})
## @deftypefnx {Function File} {@var{h} =} voronoi (@dots{})
## @deftypefnx {Function File} {[@var{vx}, @var{vy}] =} voronoi (@dots{})
## Plot the Voronoi diagram of points @code{(@var{x}, @var{y})}.
##
## The Voronoi facets with points at infinity are not drawn.
##
## The @var{options} argument, which must be a string or cell array of strings,
## contains options passed to the underlying qhull command.
## See the documentation for the Qhull library for details
## @url{http://www.qhull.org/html/qh-quick.htm#options}.
##
## If @qcode{"linespec"} is given it is used to set the color and line style of
## the plot.
##
## If an axis graphics handle @var{hax} is supplied then the Voronoi diagram is
## drawn on the specified axis rather than in a new figure.
##
## If a single output argument is requested then the Voronoi diagram will be
## plotted and a graphics handle @var{h} to the plot is returned.
##
## [@var{vx}, @var{vy}] = voronoi (@dots{}) returns the Voronoi vertices
## instead of plotting the diagram.
##
## @example
## @group
## x = rand (10, 1);
## y = rand (size (x));
## h = convhull (x, y);
## [vx, vy] = voronoi (x, y);
## plot (vx, vy, "-b", x, y, "o", x(h), y(h), "-g");
## legend ("", "points", "hull");
## @end group
## @end example
##
## @seealso{voronoin, delaunay, convhull}
## @end deftypefn

## Author: Kai Habel <kai.habel@gmx.de>
## First Release: 20/08/2000

## 2002-01-04 Paul Kienzle <pkienzle@users.sf.net>
## * limit the default graph to the input points rather than the whole diagram
## * provide example
## * use unique(x,"rows") rather than __unique_rows__

## 2003-12-14 Rafael Laboissiere <rafael@laboissiere.net>
## Added optional fourth argument to pass options to the underlying
## qhull command

function [vx, vy] = voronoi (varargin)

  if (nargin < 1)
    print_usage ();
  endif

  narg = 1;
  hax = NaN;
  if (isscalar (varargin{1}) && ishandle (varargin{1}))
    hax = varargin{1};
    if (! isaxes (hax))
      error ("voronoi: HAX argument must be an axes object");
    endif
    narg++;
  endif

  if (nargin < 1 + narg || nargin > 3 + narg)
    print_usage ();
  endif

  x = varargin{narg++};
  y = varargin{narg++};

  opts = {};
  if (narg <= nargin)
    if (iscell (varargin{narg}))
      opts = varargin(narg++);
    elseif (isnumeric (varargin{narg}))
      ## Accept, but ignore, the triangulation
      narg++;
    endif
  endif

  linespec = {"b"};
  if (narg <= nargin && ischar (varargin{narg}))
    linespec = varargin(narg);
  endif

  if (length (x) != length (y))
    error ("voronoi: X and Y must be vectors of the same length");
  elseif (length (x) < 2)
    error ("voronoi: minimum of 2 points needed");
  endif

  ## Add box to approximate rays to infinity. For Voronoi diagrams the
  ## box can (and should) be close to the points themselves. To make the
  ## job of finding the exterior edges it should be at least two times the
  ## delta below however
  xmax = max (x(:));
  xmin = min (x(:));
  ymax = max (y(:));
  ymin = min (y(:));
  xdelta = xmax - xmin;
  ydelta = ymax - ymin;
  scale = 2;

  xbox = [xmin - scale * xdelta; xmin - scale * xdelta; ...
          xmax + scale * xdelta; xmax + scale * xdelta];
  ybox = [ymin - scale * ydelta; ymax + scale * ydelta; ...
          ymax + scale * ydelta; ymin - scale * ydelta];

  [p, c, infi] = __voronoi__ ("voronoi",
                              [[x(:) ; xbox(:)], [y(:); ybox(:)]],
                              opts{:});

  c = c(! infi).';
  ## Delete null entries which cause problems in next cellfun function
  c(cellfun ("isempty", c)) = [];
  edges = cell2mat (cellfun (@(x) [x ; [x(end), x(1:end-1)]], c,
                             "uniformoutput", false));

  ## Identify the unique edges of the Voronoi diagram
  edges = sortrows (sort (edges).').';
  edges = edges(:, [(edges(1, 1 :end - 1) != edges(1, 2 : end) | ...
                     edges(2, 1 :end - 1) != edges(2, 2 : end)), true]);

  if (numel (x) > 2)
    ## Eliminate the edges of the diagram representing the box
    poutside = (1:rows (p)) ...
        (p(:, 1) < xmin - xdelta | p(:, 1) > xmax + xdelta | ...
         p(:, 2) < ymin - ydelta | p(:, 2) > ymax + ydelta);
    edgeoutside = ismember (edges(1, :), poutside) & ...
                  ismember (edges(2, :), poutside);
    edges(:, edgeoutside) = [];
  else
    ## look for the edge between the two given points
    for edge = edges(1:2,:)
      if (det ([[[1;1],p(edge,1:2)];1,x(1),y(1)])
          * det ([[[1;1],p(edge,1:2)];1,x(2),y(2)]) < 0)
        edges = edge;
        break;
      endif
    endfor
    ## Use larger plot limits to make it more likely single bisector is shown.
    xdelta = ydelta = max (xdelta, ydelta);
  endif

  ## Get points of the diagram
  Vvx = reshape (p(edges, 1), size (edges));
  Vvy = reshape (p(edges, 2), size (edges));

  if (nargout < 2)
    if (isnan (hax))
      hax = gca ();
    endif
    h = plot (hax, Vvx, Vvy, linespec{:}, x, y, '+');
    lim = [xmin, xmax, ymin, ymax];
    axis (lim + 0.1 * [[-1, 1] * xdelta, [-1, 1] * ydelta]);
    if (nargout == 1)
      vx = h;
    endif
  else
    vx = Vvx;
    vy = Vvy;
  endif

endfunction


%!demo
%! voronoi (rand (10,1), rand (10,1));

%!testif HAVE_QHULL
%! phi = linspace (-pi, 3/4*pi, 8);
%! [x,y] = pol2cart (phi, 1);
%! [vx,vy] = voronoi (x,y);
%! assert (vx(2,:), zeros (1, columns (vx)), eps);
%! assert (vy(2,:), zeros (1, columns (vy)), eps);

%!testif HAVE_QHULL
%! ## Special case of just 2 points
%! x = [0 1];  y = [1 0];
%! [vx, vy] = voronoi (x,y);
%! assert (vx, [-0.7; 1.7], eps);
%! assert (vy, [-0.7; 1.7], eps);

## Input validation tests
%!error voronoi ()
%!error voronoi (ones (3,1))
%!error voronoi (ones (3,1), ones (3,1), "bogus1", "bogus2", "bogus3")
%!error <HAX argument must be an axes object> voronoi (0, ones (3,1), ones (3,1))
%!error <X and Y must be vectors of the same length> voronoi (ones (3,1), ones (4,1))
%!error <minimum of 2 points needed> voronoi (2.5, 3.5)