File: bartlett.m

package info (click to toggle)
octave 4.0.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 94,200 kB
  • ctags: 52,925
  • sloc: cpp: 316,850; ansic: 43,469; fortran: 23,670; sh: 13,805; yacc: 8,204; objc: 7,939; lex: 3,631; java: 2,127; makefile: 1,746; perl: 1,022; awk: 988
file content (66 lines) | stat: -rw-r--r-- 1,836 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
## Copyright (C) 1995-2015 Andreas Weingessel
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} bartlett (@var{m})
## Return the filter coefficients of a Bartlett (triangular) window of length
## @var{m}.
##
## For a definition of the Bartlett window see, e.g.,
## @nospell{A.V. Oppenheim & R. W. Schafer},
## @cite{Discrete-Time Signal Processing}.
## @end deftypefn

## Author: AW <Andreas.Weingessel@ci.tuwien.ac.at>
## Description: Coefficients of the Bartlett (triangular) window

function c = bartlett (m)

  if (nargin != 1)
    print_usage ();
  endif

  if (! (isscalar (m) && (m == fix (m)) && (m > 0)))
    error ("bartlett: M must be a positive integer");
  endif

  if (m == 1)
    c = 1;
  else
    m = m - 1;
    n = fix (m / 2);
    c = [2*(0:n)/m, 2-2*(n+1:m)/m]';
  endif

endfunction


%!assert (bartlett (1), 1)
%!assert (bartlett (2), zeros (2,1))
%!assert (bartlett (15), flip (bartlett (15)), 5*eps)
%!assert (bartlett (16), flip (bartlett (16)), 5*eps)
%!test
%! N = 9;
%! A = bartlett (N);
%! assert (A(ceil (N/2)), 1);

%!error bartlett ()
%!error bartlett (0.5)
%!error bartlett (-1)
%!error bartlett (ones (1,4))