1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
## Copyright (C) 2001-2015 Rolf Fabian and Paul Kienzle
## Copyright (C) 2008 Jaroslav Hajek
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{c} =} nchoosek (@var{n}, @var{k})
## @deftypefnx {Function File} {@var{c} =} nchoosek (@var{set}, @var{k})
##
## Compute the binomial coefficient of @var{n} or list all possible
## combinations of a @var{set} of items.
##
## If @var{n} is a scalar then calculate the binomial coefficient
## of @var{n} and @var{k} which is defined as
## @tex
## $$
## {n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
## = {n! \over k! (n-k)!}
## $$
## @end tex
## @ifnottex
##
## @example
## @group
## / \
## | n | n (n-1) (n-2) @dots{} (n-k+1) n!
## | | = ------------------------- = ---------
## | k | k! k! (n-k)!
## \ /
## @end group
## @end example
##
## @end ifnottex
## @noindent
## This is the number of combinations of @var{n} items taken in groups of
## size @var{k}.
##
## If the first argument is a vector, @var{set}, then generate all
## combinations of the elements of @var{set}, taken @var{k} at a time, with
## one row per combination. The result @var{c} has @var{k} columns and
## @w{@code{nchoosek (length (@var{set}), @var{k})}} rows.
##
## For example:
##
## How many ways can three items be grouped into pairs?
##
## @example
## @group
## nchoosek (3, 2)
## @result{} 3
## @end group
## @end example
##
## What are the possible pairs?
##
## @example
## @group
## nchoosek (1:3, 2)
## @result{} 1 2
## 1 3
## 2 3
## @end group
## @end example
##
## Programming Note: When calculating the binomial coefficient @code{nchoosek}
## works only for non-negative, integer arguments. Use @code{bincoeff} for
## non-integer and negative scalar arguments, or for computing many binomial
## coefficients at once with vector inputs for @var{n} or @var{k}.
##
## @seealso{bincoeff, perms}
## @end deftypefn
## Author: Rolf Fabian <fabian@tu-cottbus.de>
## Author: Paul Kienzle <pkienzle@users.sf.net>
## Author: Jaroslav Hajek
function C = nchoosek (v, k)
if (nargin != 2
|| ! (isreal (k) && isscalar (k))
|| ! (isnumeric (v) && isvector (v)))
print_usage ();
endif
if (k < 0 || k != fix (k))
error ("nchoosek: K must be an integer >= 0");
elseif (isscalar (v) && (iscomplex (v) || v < k || v < 0 || v != fix (v)))
error ("nchoosek: N must be a non-negative integer >= K");
endif
n = length (v);
if (n == 1)
## Improve precision at next step.
k = min (k, v-k);
C = round (prod ((v-k+1:v)./(1:k)));
if (C*2*k*eps >= 0.5)
warning ("nchoosek: possible loss of precision");
endif
elseif (k == 0)
C = zeros (1,0);
elseif (k == 1)
C = v(:);
elseif (k == n)
C = v(:).';
elseif (k > n)
C = zeros (0, k, class (v));
elseif (k == 2)
## Can do it without transpose.
x = repelems (v(1:n-1), [1:n-1; n-1:-1:1]).';
y = cat (1, cellslices (v(:), 2:n, n*ones (1, n-1)){:});
C = [x, y];
elseif (k < n)
v = v(:).';
C = v(k:n);
l = 1:n-k+1;
for j = 2:k
c = columns (C);
cA = cellslices (C, l, c*ones (1, n-k+1), 2);
l = c-l+1;
b = repelems (v(k-j+1:n-j+1), [1:n-k+1; l]);
C = [b; cA{:}];
l = cumsum (l);
l = [1, 1 + l(1:n-k)];
endfor
C = C.';
endif
endfunction
%!assert (nchoosek (80,10), bincoeff (80,10))
%!assert (nchoosek (1:5,3), [1:3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2:4;2,3,5;2,4,5;3:5])
%!assert (size (nchoosek (1:5,0)), [1 0])
## Test input validation
%!error nchoosek ()
%!error nchoosek (1)
%!error nchoosek (1,2,3)
%!error nchoosek (100, 2i)
%!error nchoosek (100, [2 3])
%!error nchoosek ("100", 45)
%!error nchoosek (100*ones (2, 2), 45)
%!error <K must be an integer .= 0> nchoosek (100, -45)
%!error <K must be an integer .= 0> nchoosek (100, 45.5)
%!error <N must be a non-negative integer .= K> nchoosek (100i, 2)
%!error <N must be a non-negative integer .= K> nchoosek (100, 145)
%!error <N must be a non-negative integer .= K> nchoosek (-100, 45)
%!error <N must be a non-negative integer .= K> nchoosek (100.5, 45)
%!warning <possible loss of precision> nchoosek (100, 45);
|