1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
## Copyright (C) 1995-2015 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {} kendall (@var{x})
## @deftypefnx {Function File} {} kendall (@var{x}, @var{y})
## @cindex Kendall's Tau
## Compute Kendall's @var{tau}.
##
## For two data vectors @var{x}, @var{y} of common length @var{n}, Kendall's
## @var{tau} is the correlation of the signs of all rank differences of
## @var{x} and @var{y}; i.e., if both @var{x} and @var{y} have distinct
## entries, then
##
## @tex
## $$ \tau = {1 \over n(n-1)} \sum_{i,j} {\rm sign}(q_i-q_j) {\rm sign}(r_i-r_j) $$
## @end tex
## @ifnottex
##
## @example
## @group
## 1
## tau = ------- SUM sign (q(i) - q(j)) * sign (r(i) - r(j))
## n (n-1) i,j
## @end group
## @end example
##
## @end ifnottex
## @noindent
## in which the
## @tex
## $q_i$ and $r_i$
## @end tex
## @ifnottex
## @var{q}(@var{i}) and @var{r}(@var{i})
## @end ifnottex
## are the ranks of @var{x} and @var{y}, respectively.
##
## If @var{x} and @var{y} are drawn from independent distributions,
## Kendall's @var{tau} is asymptotically normal with mean 0 and variance
## @tex
## ${2 (2n+5) \over 9n(n-1)}$.
## @end tex
## @ifnottex
## @code{(2 * (2@var{n}+5)) / (9 * @var{n} * (@var{n}-1))}.
## @end ifnottex
##
## @code{kendall (@var{x})} is equivalent to @code{kendall (@var{x},
## @var{x})}.
## @seealso{ranks, spearman}
## @end deftypefn
## Author: KH <Kurt.Hornik@wu-wien.ac.at>
## Description: Kendall's rank correlation tau
function tau = kendall (x, y = [])
if (nargin < 1 || nargin > 2)
print_usage ();
endif
if ( ! (isnumeric (x) || islogical (x))
|| ! (isnumeric (y) || islogical (y)))
error ("kendall: X and Y must be numeric matrices or vectors");
endif
if (ndims (x) != 2 || ndims (y) != 2)
error ("kendall: X and Y must be 2-D matrices or vectors");
endif
if (isrow (x))
x = x.';
endif
[n, c] = size (x);
if (nargin == 2)
if (isrow (y))
y = y.';
endif
if (rows (y) != n)
error ("kendall: X and Y must have the same number of observations");
else
x = [x, y];
endif
endif
if (isa (x, "single") || isa (y, "single"))
cls = "single";
else
cls = "double";
endif
r = ranks (x);
m = sign (kron (r, ones (n, 1, cls)) - kron (ones (n, 1, cls), r));
tau = corr (m);
if (nargin == 2)
tau = tau(1 : c, (c + 1) : columns (x));
endif
endfunction
%!test
%! x = [1:2:10];
%! y = [100:10:149];
%! assert (kendall (x,y), 1, 5*eps);
%! assert (kendall (x,fliplr (y)), -1, 5*eps);
%!assert (kendall (logical (1)), 1)
%!assert (kendall (single (1)), single (1))
## Test input validation
%!error kendall ()
%!error kendall (1, 2, 3)
%!error kendall (['A'; 'B'])
%!error kendall (ones (2,1), ['A'; 'B'])
%!error kendall (ones (2,2,2))
%!error kendall (ones (2,2), ones (2,2,2))
%!error kendall (ones (2,2), ones (3,2))
|