1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
## Copyright (C) 2008-2015 Ben Abbott
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{q} =} prctile (@var{x})
## @deftypefnx {Function File} {@var{q} =} prctile (@var{x}, @var{p})
## @deftypefnx {Function File} {@var{q} =} prctile (@var{x}, @var{p}, @var{dim})
## For a sample @var{x}, compute the quantiles, @var{q}, corresponding
## to the cumulative probability values, @var{p}, in percent.
##
## If @var{x} is a matrix, compute the percentiles for each column and return
## them in a matrix, such that the i-th row of @var{y} contains the
## @var{p}(i)th percentiles of each column of @var{x}.
##
## If @var{p} is unspecified, return the quantiles for @code{[0 25 50 75 100]}.
##
## The optional argument @var{dim} determines the dimension along which the
## percentiles are calculated. If @var{dim} is omitted it defaults to the
## first non-singleton dimension.
##
## Programming Note: All non-numeric values (NaNs) of @var{x} are ignored.
## @seealso{quantile}
## @end deftypefn
## Author: Ben Abbott <bpabbott@mac.com>
## Description: Matlab style prctile function.
function q = prctile (x, p = [], dim)
if (nargin < 1 || nargin > 3)
print_usage ();
endif
if (! (isnumeric (x) || islogical (x)))
error ("prctile: X must be a numeric vector or matrix");
endif
if (isempty (p))
p = [0, 25, 50, 75, 100];
endif
if (! (isnumeric (p) && isvector (p)))
error ("prctile: P must be a numeric vector");
endif
nd = ndims (x);
sz = size (x);
if (nargin < 3)
## Find the first non-singleton dimension.
(dim = find (sz > 1, 1)) || (dim = 1);
else
if (!(isscalar (dim) && dim == fix (dim))
|| !(1 <= dim && dim <= nd))
error ("prctile: DIM must be an integer and a valid dimension");
endif
endif
## Convert from percent to decimal.
p /= 100;
q = quantile (x, p, dim);
endfunction
%!test
%! pct = 50;
%! q = prctile (1:4, pct);
%! qa = 2.5;
%! assert (q, qa);
%! q = prctile (1:4, pct, 1);
%! qa = [1, 2, 3, 4];
%! assert (q, qa);
%! q = prctile (1:4, pct, 2);
%! qa = 2.5;
%! assert (q, qa);
%!test
%! pct = [50 75];
%! q = prctile (1:4, pct);
%! qa = [2.5 3.5];
%! assert (q, qa);
%! q = prctile (1:4, pct, 1);
%! qa = [1, 2, 3, 4; 1, 2, 3, 4];
%! assert (q, qa);
%! q = prctile (1:4, pct, 2);
%! qa = [2.5 3.5];
%! assert (q, qa);
%!test
%! pct = 50;
%! x = [0.1126, 0.1148, 0.0521, 0.2364, 0.1393
%! 0.1718, 0.7273, 0.2041, 0.4531, 0.1585
%! 0.2795, 0.7978, 0.3296, 0.5567, 0.7307
%! 0.4288, 0.8753, 0.6477, 0.6287, 0.8165
%! 0.9331, 0.9312, 0.9635, 0.7796, 0.8461];
%! tol = 0.0001;
%! q = prctile (x, pct, 1);
%! qa = [0.2795, 0.7978, 0.3296, 0.5567, 0.7307];
%! assert (q, qa, tol);
%! q = prctile (x, pct, 2);
%! qa = [0.1148; 0.2041; 0.5567; 0.6477; 0.9312];
%! assert (q, qa, tol);
%!test
%! pct = 50;
%! tol = 0.0001;
%! x = [0.1126, 0.1148, 0.0521, 0.2364, 0.1393
%! 0.1718, 0.7273, 0.2041, 0.4531, 0.1585
%! 0.2795, 0.7978, 0.3296, 0.5567, 0.7307
%! 0.4288, 0.8753, 0.6477, 0.6287, 0.8165
%! 0.9331, 0.9312, 0.9635, 0.7796, 0.8461];
%! x(5,5) = Inf;
%! q = prctile (x, pct, 1);
%! qa = [0.2795, 0.7978, 0.3296, 0.5567, 0.7307];
%! assert (q, qa, tol);
%! x(5,5) = -Inf;
%! q = prctile (x, pct, 1);
%! qa = [0.2795, 0.7978, 0.3296, 0.5567, 0.1585];
%! assert (q, qa, tol);
%! x(1,1) = Inf;
%! q = prctile (x, pct, 1);
%! qa = [0.4288, 0.7978, 0.3296, 0.5567, 0.1585];
%! assert (q, qa, tol);
%!test
%! pct = 50;
%! tol = 0.0001;
%! x = [0.1126, 0.1148, 0.0521, 0.2364, 0.1393
%! 0.1718, 0.7273, 0.2041, 0.4531, 0.1585
%! 0.2795, 0.7978, 0.3296, 0.5567, 0.7307
%! 0.4288, 0.8753, 0.6477, 0.6287, 0.8165
%! 0.9331, 0.9312, 0.9635, 0.7796, 0.8461];
%! x(3,3) = Inf;
%! q = prctile (x, pct, 1);
%! qa = [0.2795, 0.7978, 0.6477, 0.5567, 0.7307];
%! assert (q, qa, tol);
%! q = prctile (x, pct, 2);
%! qa = [0.1148; 0.2041; 0.7307; 0.6477; 0.9312];
%! assert (q, qa, tol);
%!test
%! pct = 50;
%! tol = 0.0001;
%! x = [0.1126, 0.1148, 0.0521, 0.2364, 0.1393
%! 0.1718, 0.7273, 0.2041, 0.4531, 0.1585
%! 0.2795, 0.7978, 0.3296, 0.5567, 0.7307
%! 0.4288, 0.8753, 0.6477, 0.6287, 0.8165
%! 0.9331, 0.9312, 0.9635, 0.7796, 0.8461];
%! x(5,5) = NaN;
%! q = prctile (x, pct, 2);
%! qa = [0.1148; 0.2041; 0.5567; 0.6477; 0.9322];
%! assert (q, qa, tol);
%! x(1,1) = NaN;
%! q = prctile (x, pct, 2);
%! qa = [0.1270; 0.2041; 0.5567; 0.6477; 0.9322];
%! assert (q, qa, tol);
%! x(3,3) = NaN;
%! q = prctile (x, pct, 2);
%! qa = [0.1270; 0.2041; 0.6437; 0.6477; 0.9322];
%! assert (q, qa, tol);
## Test input validation
%!error prctile ()
%!error prctile (1, 2, 3, 4)
%!error prctile (['A'; 'B'], 10)
%!error prctile (1:10, [true, false])
%!error prctile (1:10, ones (2,2))
%!error prctile (1, 1, 1.5)
%!error prctile (1, 1, 0)
%!error prctile (1, 1, 3)
|