File: cor_test.m

package info (click to toggle)
octave 4.0.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 94,200 kB
  • ctags: 52,925
  • sloc: cpp: 316,850; ansic: 43,469; fortran: 23,670; sh: 13,805; yacc: 8,204; objc: 7,939; lex: 3,631; java: 2,127; makefile: 1,746; perl: 1,022; awk: 988
file content (136 lines) | stat: -rw-r--r-- 4,062 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
## Copyright (C) 1995-2015 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} cor_test (@var{x}, @var{y}, @var{alt}, @var{method})
## Test whether two samples @var{x} and @var{y} come from uncorrelated
## populations.
##
## The optional argument string @var{alt} describes the alternative
## hypothesis, and can be @qcode{"!="} or @qcode{"<>"} (nonzero), @qcode{">"}
## (greater than 0), or @qcode{"<"} (less than 0).  The default is the
## two-sided case.
##
## The optional argument string @var{method} specifies which correlation
## coefficient to use for testing.  If @var{method} is @qcode{"pearson"}
## (default), the (usual) Pearson's produt moment correlation coefficient is
## used.  In this case, the data should come from a bivariate normal
## distribution.  Otherwise, the other two methods offer nonparametric
## alternatives.  If @var{method} is @qcode{"kendall"}, then Kendall's rank
## correlation tau is used.  If @var{method} is @qcode{"spearman"}, then
## Spearman's rank correlation rho is used.  Only the first character is
## necessary.
##
## The output is a structure with the following elements:
##
## @table @var
## @item pval
## The p-value of the test.
##
## @item stat
## The value of the test statistic.
##
## @item dist
## The distribution of the test statistic.
##
## @item params
## The parameters of the null distribution of the test statistic.
##
## @item alternative
## The alternative hypothesis.
##
## @item method
## The method used for testing.
## @end table
##
## If no output argument is given, the p-value is displayed.
## @end deftypefn

## Author: FL <Friedrich.Leisch@ci.tuwien.ac.at>
## Adapted-by: KH <Kurt.Hornik@wu-wien.ac.at>
## Description: Test for zero correlation

function t = cor_test (x, y, alt, method)

  if (nargin < 2 || nargin > 4)
    print_usage ();
  endif

  if (! isvector (x) || ! isvector (y) || length (x) != length (y))
    error ("cor_test: X and Y must be vectors of the same length");
  endif

  if (nargin < 3)
    alt = "!=";
  elseif (! ischar (alt))
    error ("cor_test: ALT must be a string");
  endif

  if (nargin < 4)
    method = "pearson";
  elseif (! ischar (method))
    error ("cor_test: METHOD must be a string");
  endif

  n = length (x);
  m = method(1);

  if (m == "p")
    r = corr (x, y);
    df = n - 2;
    t.method = "Pearson's product moment correlation";
    t.params = df;
    t.stat = sqrt (df) .* r / sqrt (1 - r.^2);
    t.dist = "t";
    cdf = tcdf (t.stat, df);
  elseif (m == "k")
    tau = kendall (x, y);
    t.method = "Kendall's rank correlation tau";
    t.params = [];
    t.stat = tau / sqrt ((2 * (2*n+5)) / (9*n*(n-1)));
    t.dist = "stdnormal";
    cdf = stdnormal_cdf (t.stat);
  elseif (m == "s")
    rho = spearman (x, y);
    t.method = "Spearman's rank correlation rho";
    t.params = [];
    t.stat = sqrt (n-1) * (rho - 6/(n^3-n));
    t.dist = "stdnormal";
    cdf = stdnormal_cdf (t.stat);
  else
    error ("cor_test: METHOD '%s' not recognized", method);
  endif

  if (strcmp (alt, "!=") || strcmp (alt, "<>"))
    t.pval = 2 * min (cdf, 1 - cdf);
  elseif (strcmp (alt, ">"))
    t.pval = 1 - cdf;
  elseif (strcmp (alt, "<"))
    t.pval = cdf;
  else
    error ("cor_test: alternative '%s' not recognized", alt);
  endif

  t.alternative = alt;

  if (nargout == 0)
    printf ("pval: %g\n", t.pval);
  endif

endfunction