File: manova.m

package info (click to toggle)
octave 4.0.3-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 94,200 kB
  • ctags: 52,925
  • sloc: cpp: 316,850; ansic: 43,469; fortran: 23,670; sh: 13,805; yacc: 8,204; objc: 7,939; lex: 3,631; java: 2,127; makefile: 1,746; perl: 1,022; awk: 988
file content (165 lines) | stat: -rw-r--r-- 4,663 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
## Copyright (C) 1996-2015 Kurt Hornik
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {} manova (@var{x}, @var{g})
## Perform a one-way multivariate analysis of variance (MANOVA).
##
## The goal is to test whether the p-dimensional population means of data
## taken from @var{k} different groups are all equal.  All data are assumed
## drawn independently from p-dimensional normal distributions with the same
## covariance matrix.
##
## The data matrix is given by @var{x}.  As usual, rows are observations and
## columns are variables.  The vector @var{g} specifies the corresponding
## group labels (e.g., numbers from 1 to @var{k}).
##
## The LR test statistic (@nospell{Wilks' Lambda}) and approximate p-values are
## computed and displayed.
## @seealso{anova}
## @end deftypefn

## The Hotelling-Lawley and Pillai-Bartlett test statistics are coded.
## However, they are currently disabled until they can be verified by someone
## with sufficient understanding of the algorithms.  Please feel free to
## improve this.

## Author: TF <Thomas.Fuereder@ci.tuwien.ac.at>
## Adapted-By: KH <Kurt.Hornik@wu-wien.ac.at>
## Description: One-way multivariate analysis of variance (MANOVA)

function manova (x, g)

  if (nargin != 2)
    print_usage ();
  endif

  if (isvector (x))
    error ("manova: X must not be a vector");
  endif

  [n, p] = size (x);

  if (! isvector (g) || (length (g) != n))
    error ("manova: G must be a vector of length rows (X)");
  endif

  s = sort (g);
  i = find (s (2:n) > s(1:(n-1)));
  k = length (i) + 1;

  if (k == 1)
    error ("manova: there should be at least 2 groups");
  else
    group_label = s ([1, (reshape (i, 1, k - 1) + 1)]);
  endif

  x = x - ones (n, 1) * mean (x);
  SST = x' * x;

  s = zeros (1, p);
  SSB = zeros (p, p);
  for i = 1 : k;
    v = x (find (g == group_label (i)), :);
    s = sum (v);
    SSB = SSB + s' * s / rows (v);
  endfor
  n_b = k - 1;

  SSW = SST - SSB;
  n_w = n - k;

  l = real (eig (SSB / SSW));

  if (isa (l, "single"))
    l(l < eps ("single")) = 0;
  else
    l(l < eps) = 0;
  endif

  ## Wilks' Lambda
  ## =============

  Lambda = prod (1 ./ (1 + l));

  delta = n_w + n_b - (p + n_b + 1) / 2;
  df_num = p * n_b;
  W_pval_1 = 1 - chi2cdf (- delta * log (Lambda), df_num);

  if (p < 3)
    eta = p;
  else
    eta = sqrt ((p^2 * n_b^2 - 4) / (p^2 + n_b^2 - 5));
  endif

  df_den = delta * eta - df_num / 2 + 1;

  WT = exp (- log (Lambda) / eta) - 1;
  W_pval_2 = 1 - fcdf (WT * df_den / df_num, df_num, df_den);

  if (0)

    ## Hotelling-Lawley Test
    ## =====================

    HL = sum (l);

    theta = min (p, n_b);
    u = (abs (p - n_b) - 1) / 2;
    v = (n_w - p - 1) / 2;

    df_num = theta * (2 * u + theta + 1);
    df_den = 2 * (theta * v + 1);

    HL_pval = 1 - fcdf (HL * df_den / df_num, df_num, df_den);

    ## Pillai-Bartlett
    ## ===============

    PB = sum (l ./ (1 + l));

    df_den = theta * (2 * v + theta + 1);
    PB_pval = 1 - fcdf (PB * df_den / df_num, df_num, df_den);

    printf ("\n");
    printf ("One-way MANOVA Table:\n");
    printf ("\n");
    printf ("Test             Test Statistic      Approximate p\n");
    printf ("**************************************************\n");
    printf ("Wilks            %10.4f           %10.9f \n", Lambda, W_pval_1);
    printf ("                                      %10.9f \n", W_pval_2);
    printf ("Hotelling-Lawley %10.4f           %10.9f \n", HL, HL_pval);
    printf ("Pillai-Bartlett  %10.4f           %10.9f \n", PB, PB_pval);
    printf ("\n");

  endif

  printf ("\n");
  printf ("MANOVA Results:\n");
  printf ("\n");
  printf ("# of groups:    %d\n", k);
  printf ("# of samples:   %d\n", n);
  printf ("# of variables: %d\n", p);
  printf ("\n");
  printf ("Wilks' Lambda:  %5.4f\n", Lambda);
  printf ("Approximate p:  %10.9f (chisquare approximation)\n", W_pval_1);
  printf ("                 %10.9f (F approximation)\n", W_pval_2);
  printf ("\n");

endfunction