1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Minimizers (GNU Octave (version 4.4.1))</title>
<meta name="description" content="Minimizers (GNU Octave (version 4.4.1))">
<meta name="keywords" content="Minimizers (GNU Octave (version 4.4.1))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Nonlinear-Equations.html#Nonlinear-Equations" rel="up" title="Nonlinear Equations">
<link href="Diagonal-and-Permutation-Matrices.html#Diagonal-and-Permutation-Matrices" rel="next" title="Diagonal and Permutation Matrices">
<link href="Solvers.html#Solvers" rel="prev" title="Solvers">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Minimizers"></a>
<div class="header">
<p>
Previous: <a href="Solvers.html#Solvers" accesskey="p" rel="prev">Solvers</a>, Up: <a href="Nonlinear-Equations.html#Nonlinear-Equations" accesskey="u" rel="up">Nonlinear Equations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Minimizers-1"></a>
<h3 class="section">20.2 Minimizers</h3>
<a name="index-local-minimum"></a>
<a name="index-finding-minimums"></a>
<p>Often it is useful to find the minimum value of a function rather than just
the zeroes where it crosses the x-axis. <code>fminbnd</code> is designed for the
simpler, but very common, case of a univariate function where the interval
to search is bounded. For unbounded minimization of a function with
potentially many variables use <code>fminunc</code> or <code>fminsearch</code>. The two
functions use different internal algorithms and some knowledge of the objective
function is required. For functions which can be differentiated,
<code>fminunc</code> is appropriate. For functions with discontinuities, or for
which a gradient search would fail, use <code>fminsearch</code>.
See <a href="Optimization.html#Optimization">Optimization</a>, for minimization with the presence of constraint
functions. Note that searches can be made for maxima by simply inverting the
objective function
(<code>Fto_max = -Fto_min</code>).
</p>
<a name="XREFfminbnd"></a><dl>
<dt><a name="index-fminbnd"></a><em>[<var>x</var>, <var>fval</var>, <var>info</var>, <var>output</var>] =</em> <strong>fminbnd</strong> <em>(<var>fun</var>, <var>a</var>, <var>b</var>, <var>options</var>)</em></dt>
<dd><p>Find a minimum point of a univariate function.
</p>
<p><var>fun</var> should be a function handle or name. <var>a</var>, <var>b</var> specify a
starting interval. <var>options</var> is a structure specifying additional
options. Currently, <code>fminbnd</code> recognizes these options:
<code>"FunValCheck"</code>, <code>"OutputFcn"</code>, <code>"TolX"</code>,
<code>"MaxIter"</code>, <code>"MaxFunEvals"</code>. For a description of these
options, see <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p>
<p>On exit, the function returns <var>x</var>, the approximate minimum point and
<var>fval</var>, the function value thereof.
</p>
<p><var>info</var> is an exit flag that can have these values:
</p>
<ul>
<li> 1
The algorithm converged to a solution.
</li><li> 0
Maximum number of iterations or function evaluations has been exhausted.
</li><li> -1
The algorithm has been terminated from user output function.
</li></ul>
<p>Notes: The search for a minimum is restricted to be in the interval bound by
<var>a</var> and <var>b</var>. If you only have an initial point to begin searching
from you will need to use an unconstrained minimization algorithm such as
<code>fminunc</code> or <code>fminsearch</code>. <code>fminbnd</code> internally uses a
Golden Section search strategy.
</p>
<p><strong>See also:</strong> <a href="Solvers.html#XREFfzero">fzero</a>, <a href="#XREFfminunc">fminunc</a>, <a href="#XREFfminsearch">fminsearch</a>, <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>
<a name="XREFfminunc"></a><dl>
<dt><a name="index-fminunc"></a><em></em> <strong>fminunc</strong> <em>(<var>fcn</var>, <var>x0</var>)</em></dt>
<dt><a name="index-fminunc-1"></a><em></em> <strong>fminunc</strong> <em>(<var>fcn</var>, <var>x0</var>, <var>options</var>)</em></dt>
<dt><a name="index-fminunc-2"></a><em>[<var>x</var>, <var>fval</var>, <var>info</var>, <var>output</var>, <var>grad</var>, <var>hess</var>] =</em> <strong>fminunc</strong> <em>(<var>fcn</var>, …)</em></dt>
<dd><p>Solve an unconstrained optimization problem defined by the function
<var>fcn</var>.
</p>
<p><var>fcn</var> should accept a vector (array) defining the unknown variables, and
return the objective function value, optionally with gradient.
<code>fminunc</code> attempts to determine a vector <var>x</var> such that
<code><var>fcn</var> (<var>x</var>)</code> is a local minimum.
</p>
<p><var>x0</var> determines a starting guess. The shape of <var>x0</var> is preserved in
all calls to <var>fcn</var>, but otherwise is treated as a column vector.
</p>
<p><var>options</var> is a structure specifying additional options. Currently,
<code>fminunc</code> recognizes these options:
<code>"FunValCheck"</code>, <code>"OutputFcn"</code>, <code>"TolX"</code>,
<code>"TolFun"</code>, <code>"MaxIter"</code>, <code>"MaxFunEvals"</code>,
<code>"GradObj"</code>, <code>"FinDiffType"</code>, <code>"TypicalX"</code>,
<code>"AutoScaling"</code>.
</p>
<p>If <code>"GradObj"</code> is <code>"on"</code>, it specifies that <var>fcn</var>, when
called with two output arguments, also returns the Jacobian matrix of
partial first derivatives at the requested point. <code>TolX</code> specifies
the termination tolerance for the unknown variables <var>x</var>, while
<code>TolFun</code> is a tolerance for the objective function value <var>fval</var>.
The default is <code>1e-7</code> for both options.
</p>
<p>For a description of the other options, see <code>optimset</code>.
</p>
<p>On return, <var>x</var> is the location of the minimum and <var>fval</var> contains
the value of the objective function at <var>x</var>.
</p>
<p><var>info</var> may be one of the following values:
</p>
<dl compact="compact">
<dt>1</dt>
<dd><p>Converged to a solution point. Relative gradient error is less than
specified by <code>TolFun</code>.
</p>
</dd>
<dt>2</dt>
<dd><p>Last relative step size was less than <code>TolX</code>.
</p>
</dd>
<dt>3</dt>
<dd><p>Last relative change in function value was less than <code>TolFun</code>.
</p>
</dd>
<dt>0</dt>
<dd><p>Iteration limit exceeded—either maximum number of algorithm iterations
<code>MaxIter</code> or maximum number of function evaluations <code>MaxFunEvals</code>.
</p>
</dd>
<dt>-1</dt>
<dd><p>Algorithm terminated by <code>OutputFcn</code>.
</p>
</dd>
<dt>-3</dt>
<dd><p>The trust region radius became excessively small.
</p></dd>
</dl>
<p>Optionally, <code>fminunc</code> can return a structure with convergence
statistics (<var>output</var>), the output gradient (<var>grad</var>) at the
solution <var>x</var>, and approximate Hessian (<var>hess</var>) at the solution
<var>x</var>.
</p>
<p>Application Notes: If the objective function is a single nonlinear equation
of one variable then using <code>fminbnd</code> is usually a better choice.
</p>
<p>The algorithm used by <code>fminunc</code> is a gradient search which depends
on the objective function being differentiable. If the function has
discontinuities it may be better to use a derivative-free algorithm such as
<code>fminsearch</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFfminbnd">fminbnd</a>, <a href="#XREFfminsearch">fminsearch</a>, <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>
<a name="XREFfminsearch"></a><dl>
<dt><a name="index-fminsearch"></a><em><var>x</var> =</em> <strong>fminsearch</strong> <em>(<var>fun</var>, <var>x0</var>)</em></dt>
<dt><a name="index-fminsearch-1"></a><em><var>x</var> =</em> <strong>fminsearch</strong> <em>(<var>fun</var>, <var>x0</var>, <var>options</var>)</em></dt>
<dt><a name="index-fminsearch-2"></a><em><var>x</var> =</em> <strong>fminsearch</strong> <em>(<var>fun</var>, <var>x0</var>, <var>options</var>, <var>fun_arg1</var>, <var>fun_arg2</var>, …)</em></dt>
<dt><a name="index-fminsearch-3"></a><em>[<var>x</var>, <var>fval</var>, <var>exitflag</var>, <var>output</var>] =</em> <strong>fminsearch</strong> <em>(…)</em></dt>
<dd>
<p>Find a value of <var>x</var> which minimizes the function <var>fun</var>.
</p>
<p>The search begins at the point <var>x0</var> and iterates using the
Nelder & Mead Simplex algorithm (a derivative-free method). This
algorithm is better-suited to functions which have discontinuities or for
which a gradient-based search such as <code>fminunc</code> fails.
</p>
<p>Options for the search are provided in the parameter <var>options</var> using the
function <code>optimset</code>. Currently, <code>fminsearch</code> accepts the options:
<code>"TolX"</code>, <code>"TolFun"</code>, <code>"MaxFunEvals"</code>, <code>"MaxIter"</code>,
<code>"Display"</code>, <code>"FunValCheck"</code>, and <code>"OutputFcn"</code>.
For a description of these options, see <code>optimset</code>.
</p>
<p>Additional inputs for the function <var>fun</var> can be passed as the fourth
and higher arguments. To pass function arguments while using the default
<var>options</var> values, use <code>[]</code> for <var>options</var>.
</p>
<p>On exit, the function returns <var>x</var>, the minimum point, and <var>fval</var>,
the function value at the minimum.
</p>
<p>The third return value <var>exitflag</var> is
</p>
<dl compact="compact">
<dt>1</dt>
<dd><p>if the algorithm converged
(size of the simplex is smaller than <code><var>options</var>.TolX</code> <strong>AND</strong>
the step in the function value between iterations is smaller than
<code><var>options</var>.TolFun</code>).
</p>
</dd>
<dt>0</dt>
<dd><p>if the maximum number of iterations or the maximum number of function
evaluations are exceeded.
</p>
</dd>
<dt>-1</dt>
<dd><p>if the iteration is stopped by the <code>"OutputFcn"</code>.
</p></dd>
</dl>
<p>The fourth return value is a structure <var>output</var> with the fields,
<code>funcCount</code> containing the number of function calls to <var>fun</var>,
<code>iterations</code> containing the number of iteration steps,
<code>algorithm</code> with the name of the search algorithm (always:
<code>"Nelder-Mead simplex direct search"</code>), and <code>message</code>
with the exit message.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">fminsearch (@(x) (x(1)-5).^2+(x(2)-8).^4, [0;0])
</pre></div>
<p><strong>See also:</strong> <a href="#XREFfminbnd">fminbnd</a>, <a href="#XREFfminunc">fminunc</a>, <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>
<p>The function <code>humps</code> is a useful function for testing zero and
extrema finding functions.
</p>
<a name="XREFhumps"></a><dl>
<dt><a name="index-humps"></a><em><var>y</var> =</em> <strong>humps</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-humps-1"></a><em>[<var>x</var>, <var>y</var>] =</em> <strong>humps</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Evaluate a function with multiple minima, maxima, and zero crossings.
</p>
<p>The output <var>y</var> is the evaluation of the rational function:
</p>
<div class="example">
<pre class="example"> 1200*<var>x</var>^4 - 2880*<var>x</var>^3 + 2036*<var>x</var>^2 - 348*<var>x</var> - 88
<var>y</var> = - ---------------------------------------------
200*<var>x</var>^4 - 480*<var>x</var>^3 + 406*<var>x</var>^2 - 138*<var>x</var> + 17
</pre></div>
<p><var>x</var> may be a scalar, vector or array. If <var>x</var> is omitted, the
default range [0:0.05:1] is used.
</p>
<p>When called with two output arguments, [<var>x</var>, <var>y</var>], <var>x</var> will
contain the input values, and <var>y</var> will contain the output from
<code>humps</code>.
</p>
<p>Programming Notes: <code>humps</code> has two local maxima located near <var>x</var> =
0.300 and 0.893, a local minimum near <var>x</var> = 0.637, and zeros near
<var>x</var> = -0.132 and 1.300. <code>humps</code> is a useful function for testing
algorithms which find zeros or local minima and maxima.
</p>
<p>Try <code>demo humps</code> to see a plot of the <code>humps</code> function.
</p>
<p><strong>See also:</strong> <a href="Solvers.html#XREFfzero">fzero</a>, <a href="#XREFfminbnd">fminbnd</a>, <a href="#XREFfminunc">fminunc</a>, <a href="#XREFfminsearch">fminsearch</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Previous: <a href="Solvers.html#Solvers" accesskey="p" rel="prev">Solvers</a>, Up: <a href="Nonlinear-Equations.html#Nonlinear-Equations" accesskey="u" rel="up">Nonlinear Equations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|