File: plot.texi

package info (click to toggle)
octave 4.4.1-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 114,832 kB
  • sloc: cpp: 310,009; ansic: 54,616; fortran: 22,631; yacc: 8,706; sh: 8,231; objc: 7,972; lex: 3,897; perl: 1,540; java: 1,309; awk: 1,070; makefile: 415; xml: 59
file content (9695 lines) | stat: -rw-r--r-- 344,287 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
@c DO NOT EDIT!  Generated automatically by munge-texi.pl.

@c Copyright (C) 1996-2018 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING.  If not, see
@c <https://www.gnu.org/licenses/>.

@node Plotting
@chapter Plotting
@cindex plotting
@cindex graphics

@menu
* Introduction to Plotting::
* High-Level Plotting::
* Graphics Data Structures::
* Advanced Plotting::
@end menu

@node Introduction to Plotting
@section Introduction to Plotting

Earlier versions of Octave provided plotting through the use of
gnuplot.  This capability is still available.  But, a newer plotting
capability is provided by access to OpenGL@.  Which plotting system
is used is controlled by the @code{graphics_toolkit} function.
@xref{Graphics Toolkits}.

The function call @code{graphics_toolkit ("qt")} selects the
Qt/OpenGL system, @code{graphics_toolkit ("fltk")} selects the
FLTK/OpenGL system, and @code{graphics_toolkit ("gnuplot")} selects the
gnuplot system.  The three systems may be used selectively through the use
of the @code{graphics_toolkit} property of the graphics handle for each
figure.  This is explained in @ref{Graphics Data Structures}.
@strong{Caution:} The OpenGL-based toolkits use single precision
variables internally which limits the maximum value that can be
displayed to approximately @math{10^{38}}.  If your data contains larger
values you must use the gnuplot toolkit which supports values up to
@math{10^{308}}.

@node High-Level Plotting
@section High-Level Plotting
@cindex plotting, high-level

Octave provides simple means to create many different types of two- and
three-dimensional plots using high-level functions.

If you need more detailed control, see @ref{Graphics Data Structures}
and @ref{Advanced Plotting}.

@menu
* Two-Dimensional Plots::
* Three-Dimensional Plots::
* Plot Annotations::
* Multiple Plots on One Page::
* Multiple Plot Windows::
* Manipulation of Plot Objects::
* Manipulation of Plot Windows::
* Use of the @code{interpreter} Property::
* Printing and Saving Plots::
* Interacting with Plots::
* Test Plotting Functions::
@end menu

@node Two-Dimensional Plots
@subsection Two-Dimensional Plots

@menu
* Axis Configuration::
* Two-dimensional Function Plotting::
* Two-dimensional Geometric Shapes::
@end menu

The @code{plot} function allows you to create simple x-y plots with
linear axes.  For example,

@example
@group
x = -10:0.1:10;
plot (x, sin (x));
xlabel ("x");
ylabel ("sin (x)");
title ("Simple 2-D Plot");
@end group
@end example

@noindent
displays a sine wave shown in @ref{fig:plot}.  On most systems, this
command will open a separate plot window to display the graph.

@float Figure,fig:plot
@center @image{plot,4in}
@caption{Simple Two-Dimensional Plot.}
@end float

@c plot scripts/plot/draw/plot.m
@anchor{XREFplot}
@deftypefn  {} {} plot (@var{y})
@deftypefnx {} {} plot (@var{x}, @var{y})
@deftypefnx {} {} plot (@var{x}, @var{y}, @var{fmt})
@deftypefnx {} {} plot (@dots{}, @var{property}, @var{value}, @dots{})
@deftypefnx {} {} plot (@var{x1}, @var{y1}, @dots{}, @var{xn}, @var{yn})
@deftypefnx {} {} plot (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} plot (@dots{})
Produce 2-D plots.

Many different combinations of arguments are possible.  The simplest
form is

@example
plot (@var{y})
@end example

@noindent
where the argument is taken as the set of @var{y} coordinates and the
@var{x} coordinates are taken to be the range @code{1:numel (@var{y})}.

If more than one argument is given, they are interpreted as

@example
plot (@var{y}, @var{property}, @var{value}, @dots{})
@end example

@noindent
or

@example
plot (@var{x}, @var{y}, @var{property}, @var{value}, @dots{})
@end example

@noindent
or

@example
plot (@var{x}, @var{y}, @var{fmt}, @dots{})
@end example

@noindent
and so on.  Any number of argument sets may appear.  The @var{x} and
@var{y} values are interpreted as follows:

@itemize @bullet
@item
If a single data argument is supplied, it is taken as the set of @var{y}
coordinates and the @var{x} coordinates are taken to be the indices of
the elements, starting with 1.

@item
If @var{x} and @var{y} are scalars, a single point is plotted.

@item
@code{squeeze()} is applied to arguments with more than two dimensions,
but no more than two singleton dimensions.

@item
If both arguments are vectors, the elements of @var{y} are plotted versus
the elements of @var{x}.

@item
If @var{x} is a vector and @var{y} is a matrix, then
the columns (or rows) of @var{y} are plotted versus @var{x}.
(using whichever combination matches, with columns tried first.)

@item
If the @var{x} is a matrix and @var{y} is a vector,
@var{y} is plotted versus the columns (or rows) of @var{x}.
(using whichever combination matches, with columns tried first.)

@item
If both arguments are matrices, the columns of @var{y} are plotted
versus the columns of @var{x}.  In this case, both matrices must have
the same number of rows and columns and no attempt is made to transpose
the arguments to make the number of rows match.
@end itemize

Multiple property-value pairs may be specified, but they must appear
in pairs.  These arguments are applied to the line objects drawn by
@code{plot}.  Useful properties to modify are @qcode{"linestyle"},
@qcode{"linewidth"}, @qcode{"color"}, @qcode{"marker"},
@qcode{"markersize"}, @qcode{"markeredgecolor"}, @qcode{"markerfacecolor"}.
@xref{Line Properties}.

The @var{fmt} format argument can also be used to control the plot style.
It is a string composed of four optional parts:
"<linestyle><marker><color><;displayname;>".
When a marker is specified, but no linestyle, only the markers are
plotted.  Similarly, if a linestyle is specified, but no marker, then
only lines are drawn.  If both are specified then lines and markers will
be plotted.  If no @var{fmt} and no @var{property}/@var{value} pairs are
given, then the default plot style is solid lines with no markers and the
color determined by the @qcode{"colororder"} property of the current axes.

Format arguments:

@table @asis
@item linestyle

@multitable @columnfractions 0.06 0.94
@item @samp{-}  @tab Use solid lines (default).
@item @samp{--} @tab Use dashed lines.
@item @samp{:}  @tab Use dotted lines.
@item @samp{-.} @tab Use dash-dotted lines.
@end multitable

@item marker

@multitable @columnfractions 0.06 0.94
@item @samp{+} @tab crosshair
@item @samp{o} @tab circle
@item @samp{*} @tab star
@item @samp{.} @tab point
@item @samp{x} @tab cross
@item @samp{s} @tab square
@item @samp{d} @tab diamond
@item @samp{^} @tab upward-facing triangle
@item @samp{v} @tab downward-facing triangle
@item @samp{>} @tab right-facing triangle
@item @samp{<} @tab left-facing triangle
@item @samp{p} @tab pentagram
@item @samp{h} @tab hexagram
@end multitable

@item color

@multitable @columnfractions 0.06 0.94
@item @samp{k} @tab blacK
@item @samp{r} @tab Red
@item @samp{g} @tab Green
@item @samp{b} @tab Blue
@item @samp{y} @tab Yellow
@item @samp{m} @tab Magenta
@item @samp{c} @tab Cyan
@item @samp{w} @tab White
@end multitable

@item @qcode{";displayname;"}
Here @qcode{"displayname"} is the label to use for the plot legend.
@end table

The @var{fmt} argument may also be used to assign legend labels.
To do so, include the desired label between semicolons after the
formatting sequence described above, e.g., @qcode{"+b;Key Title;"}.
Note that the last semicolon is required and Octave will generate
an error if it is left out.

Here are some plot examples:

@example
plot (x, y, "or", x, y2, x, y3, "m", x, y4, "+")
@end example

This command will plot @code{y} with red circles, @code{y2} with solid
lines, @code{y3} with solid magenta lines, and @code{y4} with points
displayed as @samp{+}.

@example
plot (b, "*", "markersize", 10)
@end example

This command will plot the data in the variable @code{b},
with points displayed as @samp{*} and a marker size of 10.

@example
@group
t = 0:0.1:6.3;
plot (t, cos(t), "-;cos(t);", t, sin(t), "-b;sin(t);");
@end group
@end example

This will plot the cosine and sine functions and label them accordingly
in the legend.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a vector of graphics handles to
the created line objects.

To save a plot, in one of several image formats such as PostScript
or PNG, use the @code{print} command.

@seealso{@ref{XREFaxis,,axis}, @ref{XREFbox,,box}, @ref{XREFgrid,,grid}, @ref{XREFhold,,hold}, @ref{XREFlegend,,legend}, @ref{XREFtitle,,title}, @ref{XREFxlabel,,xlabel}, @ref{XREFylabel,,ylabel}, @ref{XREFxlim,,xlim}, @ref{XREFylim,,ylim}, @ref{XREFezplot,,ezplot}, @ref{XREFerrorbar,,errorbar}, @ref{XREFfplot,,fplot}, @ref{XREFline,,line}, @ref{XREFplot3,,plot3}, @ref{XREFpolar,,polar}, @ref{XREFloglog,,loglog}, @ref{XREFsemilogx,,semilogx}, @ref{XREFsemilogy,,semilogy}, @ref{XREFsubplot,,subplot}}
@end deftypefn


The @code{plotyy} function may be used to create a plot with two
independent y axes.

@c plotyy scripts/plot/draw/plotyy.m
@anchor{XREFplotyy}
@deftypefn  {} {} plotyy (@var{x1}, @var{y1}, @var{x2}, @var{y2})
@deftypefnx {} {} plotyy (@dots{}, @var{fun})
@deftypefnx {} {} plotyy (@dots{}, @var{fun1}, @var{fun2})
@deftypefnx {} {} plotyy (@var{hax}, @dots{})
@deftypefnx {} {[@var{ax}, @var{h1}, @var{h2}] =} plotyy (@dots{})
Plot two sets of data with independent y-axes and a common x-axis.

The arguments @var{x1} and @var{y1} define the arguments for the first plot
and @var{x1} and @var{y2} for the second.

By default the arguments are evaluated with
@code{feval (@@plot, @var{x}, @var{y})}.  However the type of plot can be
modified with the @var{fun} argument, in which case the plots are
generated by @code{feval (@var{fun}, @var{x}, @var{y})}.  @var{fun} can be
a function handle, an inline function, or a string of a function name.

The function to use for each of the plots can be independently defined
with @var{fun1} and @var{fun2}.

If the first argument @var{hax} is an axes handle, then it defines
the principal axes in which to plot the @var{x1} and @var{y1} data.

The return value @var{ax} is a vector with the axes handles of the two
y-axes.  @var{h1} and @var{h2} are handles to the objects generated by the
plot commands.

@example
@group
x = 0:0.1:2*pi;
y1 = sin (x);
y2 = exp (x - 1);
ax = plotyy (x, y1, x - 1, y2, @@plot, @@semilogy);
xlabel ("X");
ylabel (ax(1), "Axis 1");
ylabel (ax(2), "Axis 2");
@end group
@end example
@seealso{@ref{XREFplot,,plot}}
@end deftypefn


The functions @code{semilogx}, @code{semilogy}, and @code{loglog} are
similar to the @code{plot} function, but produce plots in which one or
both of the axes use log scales.

@c semilogx scripts/plot/draw/semilogx.m
@anchor{XREFsemilogx}
@deftypefn  {} {} semilogx (@var{y})
@deftypefnx {} {} semilogx (@var{x}, @var{y})
@deftypefnx {} {} semilogx (@var{x}, @var{y}, @var{property}, @var{value}, @dots{})
@deftypefnx {} {} semilogx (@var{x}, @var{y}, @var{fmt})
@deftypefnx {} {} semilogx (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} semilogx (@dots{})
Produce a 2-D plot using a logarithmic scale for the x-axis.

See the documentation of @code{plot} for a description of the
arguments that @code{semilogx} will accept.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created plot.
@seealso{@ref{XREFplot,,plot}, @ref{XREFsemilogy,,semilogy}, @ref{XREFloglog,,loglog}}
@end deftypefn


@c semilogy scripts/plot/draw/semilogy.m
@anchor{XREFsemilogy}
@deftypefn  {} {} semilogy (@var{y})
@deftypefnx {} {} semilogy (@var{x}, @var{y})
@deftypefnx {} {} semilogy (@var{x}, @var{y}, @var{property}, @var{value}, @dots{})
@deftypefnx {} {} semilogy (@var{x}, @var{y}, @var{fmt})
@deftypefnx {} {} semilogy (@var{h}, @dots{})
@deftypefnx {} {@var{h} =} semilogy (@dots{})
Produce a 2-D plot using a logarithmic scale for the y-axis.

See the documentation of @code{plot} for a description of the
arguments that @code{semilogy} will accept.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created plot.
@seealso{@ref{XREFplot,,plot}, @ref{XREFsemilogx,,semilogx}, @ref{XREFloglog,,loglog}}
@end deftypefn


@c loglog scripts/plot/draw/loglog.m
@anchor{XREFloglog}
@deftypefn  {} {} loglog (@var{y})
@deftypefnx {} {} loglog (@var{x}, @var{y})
@deftypefnx {} {} loglog (@var{x}, @var{y}, @var{prop}, @var{value}, @dots{})
@deftypefnx {} {} loglog (@var{x}, @var{y}, @var{fmt})
@deftypefnx {} {} loglog (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} loglog (@dots{})
Produce a 2-D plot using logarithmic scales for both axes.

See the documentation of @code{plot} for a description of the arguments
that @code{loglog} will accept.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created plot.
@seealso{@ref{XREFplot,,plot}, @ref{XREFsemilogx,,semilogx}, @ref{XREFsemilogy,,semilogy}}
@end deftypefn


The functions @code{bar}, @code{barh}, @code{stairs}, and @code{stem}
are useful for displaying discrete data.  For example,

@example
@group
randn ("state", 1);
hist (randn (10000, 1), 30);
xlabel ("Value");
ylabel ("Count");
title ("Histogram of 10,000 normally distributed random numbers");
@end group
@end example

@noindent
produces the histogram of 10,000 normally distributed random numbers
shown in @ref{fig:hist}.  Note that, @code{randn ("state", 1);}, initializes
the random number generator for @code{randn} to a known value so that the
returned values are reproducible; This guarantees that the figure produced
is identical to the one in this manual.

@float Figure,fig:hist
@center @image{hist,4in}
@caption{Histogram.}
@end float

@c bar scripts/plot/draw/bar.m
@anchor{XREFbar}
@deftypefn  {} {} bar (@var{y})
@deftypefnx {} {} bar (@var{x}, @var{y})
@deftypefnx {} {} bar (@dots{}, @var{w})
@deftypefnx {} {} bar (@dots{}, @var{style})
@deftypefnx {} {} bar (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} bar (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} bar (@dots{}, @var{prop}, @var{val}, @dots{})
Produce a bar graph from two vectors of X-Y data.

If only one argument is given, @var{y}, it is taken as a vector of Y values
and the X coordinates are the range @code{1:numel (@var{y})}.

The optional input @var{w} controls the width of the bars.  A value of
1.0 will cause each bar to exactly touch any adjacent bars.
The default width is 0.8.

If @var{y} is a matrix, then each column of @var{y} is taken to be a
separate bar graph plotted on the same graph.  By default the columns
are plotted side-by-side.  This behavior can be changed by the @var{style}
argument which can take the following values:

@table @asis
@item @qcode{"grouped"} (default)
Side-by-side bars with a gap between bars and centered over the
X-coordinate.

@item  @qcode{"stacked"}
Bars are stacked so that each X value has a single bar composed of
multiple segments.

@item @qcode{"hist"}
Side-by-side bars with no gap between bars and centered over the
X-coordinate.

@item @qcode{"histc"}
Side-by-side bars with no gap between bars and left-aligned to the
X-coordinate.
@end table

Optional property/value pairs are passed directly to the underlying patch
objects.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a vector of handles to the created
"bar series" hggroups with one handle per column of the variable @var{y}.
This series makes it possible to change a common element in one bar series
object and have the change reflected in the other "bar series".
For example,

@example
@group
h = bar (rand (5, 10));
set (h(1), "basevalue", 0.5);
@end group
@end example

@noindent
changes the position on the base of all of the bar series.

The following example modifies the face and edge colors using
property/value pairs.

@example
bar (randn (1, 100), "facecolor", "r", "edgecolor", "b");
@end example

@noindent
The color of the bars is taken from the figure's colormap, such that

@example
@group
bar (rand (10, 3));
colormap (summer (64));
@end group
@end example

@noindent
will change the colors used for the bars.  The color of bars can also be set
manually using the @qcode{"facecolor"} property as shown below.

@example
@group
h = bar (rand (10, 3));
set (h(1), "facecolor", "r")
set (h(2), "facecolor", "g")
set (h(3), "facecolor", "b")
@end group
@end example

@seealso{@ref{XREFbarh,,barh}, @ref{XREFhist,,hist}, @ref{XREFpie,,pie}, @ref{XREFplot,,plot}, @ref{XREFpatch,,patch}}
@end deftypefn


@c barh scripts/plot/draw/barh.m
@anchor{XREFbarh}
@deftypefn  {} {} barh (@var{y})
@deftypefnx {} {} barh (@var{x}, @var{y})
@deftypefnx {} {} barh (@dots{}, @var{w})
@deftypefnx {} {} barh (@dots{}, @var{style})
@deftypefnx {} {} barh (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} barh (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} barh (@dots{}, @var{prop}, @var{val}, @dots{})
Produce a horizontal bar graph from two vectors of X-Y data.

If only one argument is given, it is taken as a vector of Y values
and the X coordinates are the range @code{1:numel (@var{y})}.

The optional input @var{w} controls the width of the bars.  A value of
1.0 will cause each bar to exactly touch any adjacent bars.
The default width is 0.8.

If @var{y} is a matrix, then each column of @var{y} is taken to be a
separate bar graph plotted on the same graph.  By default the columns
are plotted side-by-side.  This behavior can be changed by the @var{style}
argument which can take the following values:

@table @asis
@item @qcode{"grouped"} (default)
Side-by-side bars with a gap between bars and centered over the
Y-coordinate.

@item  @qcode{"stacked"}
Bars are stacked so that each Y value has a single bar composed of
multiple segments.

@item @qcode{"hist"}
Side-by-side bars with no gap between bars and centered over the
Y-coordinate.

@item @qcode{"histc"}
Side-by-side bars with no gap between bars and left-aligned to the
Y-coordinate.
@end table

Optional property/value pairs are passed directly to the underlying patch
objects.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
bar series hggroup.  For a description of the use of the
bar series, @pxref{XREFbar,,bar}.
@seealso{@ref{XREFbar,,bar}, @ref{XREFhist,,hist}, @ref{XREFpie,,pie}, @ref{XREFplot,,plot}, @ref{XREFpatch,,patch}}
@end deftypefn


@c hist scripts/plot/draw/hist.m
@anchor{XREFhist}
@deftypefn  {} {} hist (@var{y})
@deftypefnx {} {} hist (@var{y}, @var{nbins})
@deftypefnx {} {} hist (@var{y}, @var{x})
@deftypefnx {} {} hist (@var{y}, @var{x}, @var{norm})
@deftypefnx {} {} hist (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} hist (@var{hax}, @dots{})
@deftypefnx {} {[@var{nn}, @var{xx}] =} hist (@dots{})
Produce histogram counts or plots.

With one vector input argument, @var{y}, plot a histogram of the values
with 10 bins.  The range of the histogram bins is determined by the
range of the data (difference between maximum and minimum value in @var{y}).
Extreme values are lumped into the first and last bins.  If @var{y} is a
matrix then plot a histogram where each bin contains one bar per input
column of @var{y}.

If the optional second argument is a scalar, @var{nbins}, it defines the
number of bins.

If the optional second argument is a vector, @var{x}, it defines the centers
of the bins.  The width of the bins is determined from the adjacent values
in the vector.  The total number of bins is @code{numel (@var{x})}.

If a third argument is provided, the histogram is normalized such that
the sum of the bars is equal to @var{norm}.

The histogram's appearance may be modified by specifying property/value
pairs.  For example, the face and edge color may be modified:

@example
@group
hist (randn (1, 100), 25, "facecolor", "r", "edgecolor", "b");
@end group
@end example

@noindent
The histogram's colors also depend upon the current colormap.

@example
@group
hist (rand (10, 3));
colormap (summer ());
@end group
@end example

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

If an output is requested then no plot is made.  Instead, return the values
@var{nn} (numbers of elements) and @var{xx} (bin centers) such that
@code{bar (@var{xx}, @var{nn})} will plot the histogram.

@seealso{@ref{XREFhistc,,histc}, @ref{XREFbar,,bar}, @ref{XREFpie,,pie}, @ref{XREFrose,,rose}}
@end deftypefn


@c stemleaf scripts/plot/draw/stemleaf.m
@anchor{XREFstemleaf}
@deftypefn  {} {} stemleaf (@var{x}, @var{caption})
@deftypefnx {} {} stemleaf (@var{x}, @var{caption}, @var{stem_sz})
@deftypefnx {} {@var{plotstr} =} stemleaf (@dots{})
Compute and display a stem and leaf plot of the vector @var{x}.

The input @var{x} should be a vector of integers.  Any non-integer values
will be converted to integer by @code{@var{x} = fix (@var{x})}.  By default
each element of @var{x} will be plotted with the last digit of the element
as a leaf value and the remaining digits as the stem.  For example, 123
will be plotted with the stem @samp{12} and the leaf @samp{3}.  The second
argument, @var{caption}, should be a character array which provides a
description of the data.  It is included as a heading for the output.

The optional input @var{stem_sz} sets the width of each stem.
The stem width is determined by @code{10^(@var{stem_sz} + 1)}.
The default stem width is 10.

The output of @code{stemleaf} is composed of two parts: a
"Fenced Letter Display," followed by the stem-and-leaf plot itself.
The Fenced Letter Display is described in @cite{Exploratory Data Analysis}.
Briefly, the entries are as shown:

@example
@group

        Fenced Letter Display
#% nx|___________________     nx = numel (x)
M% mi|       md         |     mi median index, md median
H% hi|hl              hu| hs  hi lower hinge index, hl,hu hinges,
1    |x(1)         x(nx)|     hs h_spreadx(1), x(nx) first
           _______            and last data value.
     ______|step |_______     step 1.5*h_spread
    f|ifl            ifh|     inner fence, lower and higher
     |nfl            nfh|     no.\ of data points within fences
    F|ofl            ofh|     outer fence, lower and higher
     |nFl            nFh|     no.\ of data points outside outer
                              fences
@end group
@end example

The stem-and-leaf plot shows on each line the stem value followed by the
string made up of the leaf digits.  If the @var{stem_sz} is not 1 the
successive leaf values are separated by ",".

With no return argument, the plot is immediately displayed.  If an output
argument is provided, the plot is returned as an array of strings.

The leaf digits are not sorted.  If sorted leaf values are desired, use
@code{@var{xs} = sort (@var{x})} before calling @code{stemleaf (@var{xs})}.

The stem and leaf plot and associated displays are described in:
Chapter 3, @cite{Exploratory Data Analysis} by @nospell{J. W. Tukey},
Addison-Wesley, 1977.
@seealso{@ref{XREFhist,,hist}, @ref{XREFprintd,,printd}}
@end deftypefn


@c printd scripts/plot/util/printd.m
@anchor{XREFprintd}
@deftypefn  {} {} printd (@var{obj}, @var{filename})
@deftypefnx {} {@var{out_file} =} printd (@dots{})

Convert any object acceptable to @code{disp} into the format selected by
the suffix of @var{filename}.

If the return argument @var{out_file} is given, the name of the created
file is returned.

This function is intended to facilitate manipulation of the output of
functions such as @code{stemleaf}.
@seealso{@ref{XREFstemleaf,,stemleaf}}
@end deftypefn


@c stairs scripts/plot/draw/stairs.m
@anchor{XREFstairs}
@deftypefn  {} {} stairs (@var{y})
@deftypefnx {} {} stairs (@var{x}, @var{y})
@deftypefnx {} {} stairs (@dots{}, @var{style})
@deftypefnx {} {} stairs (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} stairs (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} stairs (@dots{})
@deftypefnx {} {[@var{xstep}, @var{ystep}] =} stairs (@dots{})
Produce a stairstep plot.

The arguments @var{x} and @var{y} may be vectors or matrices.
If only one argument is given, it is taken as a vector of Y values
and the X coordinates are taken to be the indices of the elements
(@code{@var{x} = 1:numel (@var{y})}).

The style to use for the plot can be defined with a line style @var{style}
of the same format as the @code{plot} command.

Multiple property/value pairs may be specified, but they must appear in
pairs.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

If one output argument is requested, return a graphics handle to the
created plot.  If two output arguments are specified, the data are generated
but not plotted.  For example,

@example
stairs (x, y);
@end example

@noindent
and

@example
@group
[xs, ys] = stairs (x, y);
plot (xs, ys);
@end group
@end example

@noindent
are equivalent.
@seealso{@ref{XREFbar,,bar}, @ref{XREFhist,,hist}, @ref{XREFplot,,plot}, @ref{XREFstem,,stem}}
@end deftypefn


@c stem scripts/plot/draw/stem.m
@anchor{XREFstem}
@deftypefn  {} {} stem (@var{y})
@deftypefnx {} {} stem (@var{x}, @var{y})
@deftypefnx {} {} stem (@dots{}, @var{linespec})
@deftypefnx {} {} stem (@dots{}, "filled")
@deftypefnx {} {} stem (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} stem (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} stem (@dots{})
Plot a 2-D stem graph.

If only one argument is given, it is taken as the y-values and the
x-coordinates are taken from the indices of the elements.

If @var{y} is a matrix, then each column of the matrix is plotted as
a separate stem graph.  In this case @var{x} can either be a vector,
the same length as the number of rows in @var{y}, or it can be a
matrix of the same size as @var{y}.

The default color is @qcode{"b"} (blue), the default line style is
@qcode{"-"}, and the default marker is @qcode{"o"}.  The line style can
be altered by the @var{linespec} argument in the same manner as the
@code{plot} command.  If the @qcode{"filled"} argument is present the
markers at the top of the stems will be filled in.  For example,

@example
@group
x = 1:10;
y = 2*x;
stem (x, y, "r");
@end group
@end example

@noindent
plots 10 stems with heights from 2 to 20 in red;

Optional property/value pairs may be specified to control the appearance
of the plot.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a handle to a @nospell{"stem series"}
hggroup.  The single hggroup handle has all of the graphical elements
comprising the plot as its children; This allows the properties of
multiple graphics objects to be changed by modifying just a single
property of the @nospell{"stem series"} hggroup.

For example,

@example
@group
x = [0:10]';
y = [sin(x), cos(x)]
h = stem (x, y);
set (h(2), "color", "g");
set (h(1), "basevalue", -1)
@end group
@end example

@noindent
changes the color of the second @nospell{"stem series"} and moves the base
line of the first.

Stem Series Properties

@table @asis
@item linestyle
The linestyle of the stem.  (Default: @qcode{"-"})

@item linewidth
The width of the stem.  (Default: 0.5)

@item color
The color of the stem, and if not separately specified, the marker.
(Default: @qcode{"b"} [blue])

@item marker
The marker symbol to use at the top of each stem.  (Default: @qcode{"o"})

@item markeredgecolor
The edge color of the marker.  (Default: @qcode{"color"} property)

@item markerfacecolor
The color to use for @nospell{"filling"} the marker.
(Default: @qcode{"none"} [unfilled])

@item markersize
The size of the marker.  (Default: 6)

@item baseline
The handle of the line object which implements the baseline.  Use @code{set}
with the returned handle to change graphic properties of the baseline.

@item basevalue
The y-value where the baseline is drawn.  (Default: 0)
@end table
@seealso{@ref{XREFstem3,,stem3}, @ref{XREFbar,,bar}, @ref{XREFhist,,hist}, @ref{XREFplot,,plot}, @ref{XREFstairs,,stairs}}
@end deftypefn


@c stem3 scripts/plot/draw/stem3.m
@anchor{XREFstem3}
@deftypefn  {} {} stem3 (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} stem3 (@dots{}, @var{linespec})
@deftypefnx {} {} stem3 (@dots{}, "filled")
@deftypefnx {} {} stem3 (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} stem3 (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} stem3 (@dots{})
Plot a 3-D stem graph.

Stems are drawn from the height @var{z} to the location in the x-y plane
determined by @var{x} and @var{y}.  The default color is @qcode{"b"} (blue),
the default line style is @qcode{"-"}, and the default marker is
@qcode{"o"}.

The line style can be altered by the @var{linespec} argument in the same
manner as the @code{plot} command.  If the @qcode{"filled"} argument is
present the markers at the top of the stems will be filled in.

Optional property/value pairs may be specified to control the appearance
of the plot.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a handle to the @nospell{"stem series"}
hggroup containing the line and marker objects used for the plot.
@xref{XREFstem,,stem}, for a description of the @nospell{"stem series"}
object.

Example:

@example
@group
theta = 0:0.2:6;
stem3 (cos (theta), sin (theta), theta);
@end group
@end example

@noindent
plots 31 stems with heights from 0 to 6 lying on a circle.

Implementation Note: Color definitions with RGB-triples are not valid.
@seealso{@ref{XREFstem,,stem}, @ref{XREFbar,,bar}, @ref{XREFhist,,hist}, @ref{XREFplot,,plot}}
@end deftypefn


@c scatter scripts/plot/draw/scatter.m
@anchor{XREFscatter}
@deftypefn  {} {} scatter (@var{x}, @var{y})
@deftypefnx {} {} scatter (@var{x}, @var{y}, @var{s})
@deftypefnx {} {} scatter (@var{x}, @var{y}, @var{s}, @var{c})
@deftypefnx {} {} scatter (@dots{}, @var{style})
@deftypefnx {} {} scatter (@dots{}, "filled")
@deftypefnx {} {} scatter (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} scatter (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} scatter (@dots{})
Draw a 2-D scatter plot.

A marker is plotted at each point defined by the coordinates in the vectors
@var{x} and @var{y}.

The size of the markers is determined by @var{s}, which can be a scalar
or a vector of the same length as @var{x} and @var{y}.  If @var{s}
is not given, or is an empty matrix, then a default value of 36 square
points is used (The marker size itself is @code{sqrt (s)}).

The color of the markers is determined by @var{c}, which can be a string
defining a fixed color; a 3-element vector giving the red, green, and blue
components of the color; a vector of the same length as @var{x} that gives
a scaled index into the current colormap; or an @nospell{Nx3} matrix
defining the RGB color of each marker individually.

The marker to use can be changed with the @var{style} argument; it is a
string defining a marker in the same manner as the @code{plot} command.
If no marker is specified it defaults to @qcode{"o"} or circles.
If the argument @qcode{"filled"} is given then the markers are filled.

Additional property/value pairs are passed directly to the underlying
patch object.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
scatter object.

Example:

@example
@group
x = randn (100, 1);
y = randn (100, 1);
scatter (x, y, [], sqrt (x.^2 + y.^2));
@end group
@end example

@seealso{@ref{XREFscatter3,,scatter3}, @ref{XREFpatch,,patch}, @ref{XREFplot,,plot}}
@end deftypefn


@c plotmatrix scripts/plot/draw/plotmatrix.m
@anchor{XREFplotmatrix}
@deftypefn  {} {} plotmatrix (@var{x}, @var{y})
@deftypefnx {} {} plotmatrix (@var{x})
@deftypefnx {} {} plotmatrix (@dots{}, @var{style})
@deftypefnx {} {} plotmatrix (@var{hax}, @dots{})
@deftypefnx {} {[@var{h}, @var{ax}, @var{bigax}, @var{p}, @var{pax}] =} plotmatrix (@dots{})
Scatter plot of the columns of one matrix against another.

Given the arguments @var{x} and @var{y} that have a matching number of
rows, @code{plotmatrix} plots a set of axes corresponding to

@example
plot (@var{x}(:, i), @var{y}(:, j))
@end example

When called with a single argument @var{x} this is equivalent to

@example
plotmatrix (@var{x}, @var{x})
@end example

@noindent
except that the diagonal of the set of axes will be replaced with the
histogram @code{hist (@var{x}(:, i))}.

The marker to use can be changed with the @var{style} argument, that is a
string defining a marker in the same manner as the @code{plot} command.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} provides handles to the individual
graphics objects in the scatter plots, whereas @var{ax} returns the
handles to the scatter plot axes objects.

@var{bigax} is a hidden axes object that surrounds the other axes, such
that the commands @code{xlabel}, @code{title}, etc., will be associated
with this hidden axes.

Finally, @var{p} returns the graphics objects associated with the histogram
and @var{pax} the corresponding axes objects.

Example:

@example
plotmatrix (randn (100, 3), "g+")
@end example

@seealso{@ref{XREFscatter,,scatter}, @ref{XREFplot,,plot}}
@end deftypefn


@c pareto scripts/plot/draw/pareto.m
@anchor{XREFpareto}
@deftypefn  {} {} pareto (@var{y})
@deftypefnx {} {} pareto (@var{y}, @var{x})
@deftypefnx {} {} pareto (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} pareto (@dots{})
Draw a Pareto chart.

A Pareto chart is a bar graph that arranges information in such a way
that priorities for process improvement can be established; It organizes
and displays information to show the relative importance of data.  The chart
is similar to the histogram or bar chart, except that the bars are arranged
in decreasing magnitude from left to right along the x-axis.

The fundamental idea (Pareto principle) behind the use of Pareto
diagrams is that the majority of an effect is due to a small subset of the
causes.  For quality improvement, the first few contributing causes
(leftmost bars as presented on the diagram) to a problem usually account for
the majority of the result.  Thus, targeting these "major causes" for
elimination results in the most cost-effective improvement scheme.

Typically only the magnitude data @var{y} is present in which case
@var{x} is taken to be the range @code{1 : length (@var{y})}.  If @var{x}
is given it may be a string array, a cell array of strings, or a numerical
vector.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a 2-element vector with a graphics
handle for the created bar plot and a second handle for the created line
plot.

An example of the use of @code{pareto} is

@example
@group
Cheese = @{"Cheddar", "Swiss", "Camembert", ...
          "Munster", "Stilton", "Blue"@};
Sold = [105, 30, 70, 10, 15, 20];
pareto (Sold, Cheese);
@end group
@end example
@seealso{@ref{XREFbar,,bar}, @ref{XREFbarh,,barh}, @ref{XREFhist,,hist}, @ref{XREFpie,,pie}, @ref{XREFplot,,plot}}
@end deftypefn


@c rose scripts/plot/draw/rose.m
@anchor{XREFrose}
@deftypefn  {} {} rose (@var{th})
@deftypefnx {} {} rose (@var{th}, @var{nbins})
@deftypefnx {} {} rose (@var{th}, @var{bins})
@deftypefnx {} {} rose (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} rose (@dots{})
@deftypefnx {} {[@var{thout} @var{rout}] =} rose (@dots{})
Plot an angular histogram.

With one vector argument, @var{th}, plot the histogram with 20 angular bins.
If @var{th} is a matrix then each column of @var{th} produces a separate
histogram.

If @var{nbins} is given and is a scalar, then the histogram is produced with
@var{nbin} bins.  If @var{bins} is a vector, then the center of each bin is
defined by the values in @var{bins} and the number of bins is
given by the number of elements in @var{bins}.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a vector of graphics handles to the
line objects representing each histogram.

If two output arguments are requested then no plot is made and
the polar vectors necessary to plot the histogram are returned instead.

Example

@example
@group
[th, r] = rose ([2*randn(1e5,1), pi + 2*randn(1e5,1)]);
polar (th, r);
@end group
@end example

Programming Note: When specifying bin centers with the @var{bins} input,
the edges for bins 2 to N-1 are spaced so that @code{@var{bins}(i)} is
centered between the edges.  The final edge is drawn halfway between bin N
and bin 1.  This guarantees that all input @var{th} will be placed into one
of the bins, but also means that for some combinations bin 1 and bin N may
not be centered on the user's given values.
@seealso{@ref{XREFhist,,hist}, @ref{XREFpolar,,polar}}
@end deftypefn


The @code{contour}, @code{contourf} and @code{contourc} functions
produce two-dimensional contour plots from three-dimensional data.

@c contour scripts/plot/draw/contour.m
@anchor{XREFcontour}
@deftypefn  {} {} contour (@var{z})
@deftypefnx {} {} contour (@var{z}, @var{vn})
@deftypefnx {} {} contour (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} contour (@var{x}, @var{y}, @var{z}, @var{vn})
@deftypefnx {} {} contour (@dots{}, @var{style})
@deftypefnx {} {} contour (@var{hax}, @dots{})
@deftypefnx {} {[@var{c}, @var{h}] =} contour (@dots{})
Create a 2-D contour plot.

Plot level curves (contour lines) of the matrix @var{z}, using the
contour matrix @var{c} computed by @code{contourc} from the same
arguments; see the latter for their interpretation.

The appearance of contour lines can be defined with a line style @var{style}
in the same manner as @code{plot}.  Only line style and color are used;
Any markers defined by @var{style} are ignored.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional output @var{c} contains the contour levels in @code{contourc}
format.

The optional return value @var{h} is a graphics handle to the hggroup
comprising the contour lines.

Example:

@example
@group
x = 0:2;
y = x;
z = x' * y;
contour (x, y, z, 2:3)
@end group
@end example

@seealso{@ref{XREFezcontour,,ezcontour}, @ref{XREFcontourc,,contourc}, @ref{XREFcontourf,,contourf}, @ref{XREFcontour3,,contour3}, @ref{XREFclabel,,clabel}, @ref{XREFmeshc,,meshc}, @ref{XREFsurfc,,surfc}, @ref{XREFcaxis,,caxis}, @ref{XREFcolormap,,colormap}, @ref{XREFplot,,plot}}

@end deftypefn


@c contourf scripts/plot/draw/contourf.m
@anchor{XREFcontourf}
@deftypefn  {} {} contourf (@var{z})
@deftypefnx {} {} contourf (@var{z}, @var{vn})
@deftypefnx {} {} contourf (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} contourf (@var{x}, @var{y}, @var{z}, @var{vn})
@deftypefnx {} {} contourf (@dots{}, @var{style})
@deftypefnx {} {} contourf (@var{hax}, @dots{})
@deftypefnx {} {[@var{c}, @var{h}] =} contourf (@dots{})
Create a 2-D contour plot with filled intervals.

Plot level curves (contour lines) of the matrix @var{z} and fill the region
between lines with colors from the current colormap.

The level curves are taken from the contour matrix @var{c} computed by
@code{contourc} for the same arguments; see the latter for their
interpretation.

The appearance of contour lines can be defined with a line style @var{style}
in the same manner as @code{plot}.  Only line style and color are used;
Any markers defined by @var{style} are ignored.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional output @var{c} contains the contour levels in @code{contourc}
format.

The optional return value @var{h} is a graphics handle to the hggroup
comprising the contour lines.

The following example plots filled contours of the @code{peaks} function.

@example
@group
[x, y, z] = peaks (50);
contourf (x, y, z, -7:9)
@end group
@end example
@seealso{@ref{XREFezcontourf,,ezcontourf}, @ref{XREFcontour,,contour}, @ref{XREFcontourc,,contourc}, @ref{XREFcontour3,,contour3}, @ref{XREFclabel,,clabel}, @ref{XREFmeshc,,meshc}, @ref{XREFsurfc,,surfc}, @ref{XREFcaxis,,caxis}, @ref{XREFcolormap,,colormap}, @ref{XREFplot,,plot}}
@end deftypefn


@c contourc scripts/plot/draw/contourc.m
@anchor{XREFcontourc}
@deftypefn  {} {[@var{c}, @var{lev}] =} contourc (@var{z})
@deftypefnx {} {[@var{c}, @var{lev}] =} contourc (@var{z}, @var{vn})
@deftypefnx {} {[@var{c}, @var{lev}] =} contourc (@var{x}, @var{y}, @var{z})
@deftypefnx {} {[@var{c}, @var{lev}] =} contourc (@var{x}, @var{y}, @var{z}, @var{vn})
Compute contour lines (isolines of constant Z value).

The matrix @var{z} contains height values above the rectangular grid
determined by @var{x} and @var{y}.  If only a single input @var{z} is
provided then @var{x} is taken to be @code{1:columns (@var{z})} and @var{y}
is taken to be @code{1:rows (@var{z})}.

The optional input @var{vn} is either a scalar denoting the number of
contour lines to compute or a vector containing the Z values where lines
will be computed.  When @var{vn} is a vector the number of contour lines
is @code{numel (@var{vn})}.  However, to compute a single contour line
at a given value use @code{@var{vn} = [val, val]}.  If @var{vn} is omitted
it defaults to 10.

The return value @var{c} is a 2x@var{n} matrix containing the
contour lines in the following format

@example
@group
@var{c} = [lev1, x1, x2, @dots{}, levn, x1, x2, ...
     len1, y1, y2, @dots{}, lenn, y1, y2, @dots{}]
@end group
@end example

@noindent
in which contour line @var{n} has a level (height) of @var{levn} and
length of @var{lenn}.

The optional return value @var{lev} is a vector with the Z values of
the contour levels.

Example:

@example
@group
x = 0:2;
y = x;
z = x' * y;
contourc (x, y, z, 2:3)
   @result{}   2.0000   2.0000   1.0000   3.0000   1.5000   2.0000
        2.0000   1.0000   2.0000   2.0000   2.0000   1.5000
@end group
@end example
@seealso{@ref{XREFcontour,,contour}, @ref{XREFcontourf,,contourf}, @ref{XREFcontour3,,contour3}, @ref{XREFclabel,,clabel}}
@end deftypefn


@c contour3 scripts/plot/draw/contour3.m
@anchor{XREFcontour3}
@deftypefn  {} {} contour3 (@var{z})
@deftypefnx {} {} contour3 (@var{z}, @var{vn})
@deftypefnx {} {} contour3 (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} contour3 (@var{x}, @var{y}, @var{z}, @var{vn})
@deftypefnx {} {} contour3 (@dots{}, @var{style})
@deftypefnx {} {} contour3 (@var{hax}, @dots{})
@deftypefnx {} {[@var{c}, @var{h}] =} contour3 (@dots{})
Create a 3-D contour plot.

@code{contour3} plots level curves (contour lines) of the matrix @var{z}
at a Z level corresponding to each contour.  This is in contrast to
@code{contour} which plots all of the contour lines at the same Z level
and produces a 2-D plot.

The level curves are taken from the contour matrix @var{c} computed by
@code{contourc} for the same arguments; see the latter for their
interpretation.

The appearance of contour lines can be defined with a line style @var{style}
in the same manner as @code{plot}.  Only line style and color are used;
Any markers defined by @var{style} are ignored.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional output @var{c} are the contour levels in @code{contourc}
format.

The optional return value @var{h} is a graphics handle to the hggroup
comprising the contour lines.

Example:

@example
@group
contour3 (peaks (19));
colormap cool;
hold on;
surf (peaks (19), "facecolor", "none", "edgecolor", "black");
@end group
@end example

@seealso{@ref{XREFcontour,,contour}, @ref{XREFcontourc,,contourc}, @ref{XREFcontourf,,contourf}, @ref{XREFclabel,,clabel}, @ref{XREFmeshc,,meshc}, @ref{XREFsurfc,,surfc}, @ref{XREFcaxis,,caxis}, @ref{XREFcolormap,,colormap}, @ref{XREFplot,,plot}}
@end deftypefn


The @code{errorbar}, @code{semilogxerr}, @code{semilogyerr}, and
@code{loglogerr} functions produce plots with error bar markers.  For
example,

@example
@group
rand ("state", 2);
x = 0:0.1:10;
y = sin (x);
lerr = 0.1 .* rand (size (x));
uerr = 0.1 .* rand (size (x));
errorbar (x, y, lerr, uerr);
axis ([0, 10, -1.1, 1.1]);
xlabel ("x");
ylabel ("sin (x)");
title ("Errorbar plot of sin (x)");
@end group
@end example

@noindent
produces the figure shown in @ref{fig:errorbar}.

@float Figure,fig:errorbar
@center @image{errorbar,4in}
@caption{Errorbar plot.}
@end float

@c errorbar scripts/plot/draw/errorbar.m
@anchor{XREFerrorbar}
@deftypefn  {} {} errorbar (@var{y}, @var{ey})
@deftypefnx {} {} errorbar (@var{y}, @dots{}, @var{fmt})
@deftypefnx {} {} errorbar (@var{x}, @var{y}, @var{ey})
@deftypefnx {} {} errorbar (@var{x}, @var{y}, @var{err}, @var{fmt})
@deftypefnx {} {} errorbar (@var{x}, @var{y}, @var{lerr}, @var{uerr}, @var{fmt})
@deftypefnx {} {} errorbar (@var{x}, @var{y}, @var{ex}, @var{ey}, @var{fmt})
@deftypefnx {} {} errorbar (@var{x}, @var{y}, @var{lx}, @var{ux}, @var{ly}, @var{uy}, @var{fmt})
@deftypefnx {} {} errorbar (@var{x1}, @var{y1}, @dots{}, @var{fmt}, @var{xn}, @var{yn}, @dots{})
@deftypefnx {} {} errorbar (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} errorbar (@dots{})
Create a 2-D plot with errorbars.

Many different combinations of arguments are possible.  The simplest form is

@example
errorbar (@var{y}, @var{ey})
@end example

@noindent
where the first argument is taken as the set of @var{y} coordinates, the
second argument @var{ey} are the errors around the @var{y} values, and the
@var{x} coordinates are taken to be the indices of the elements
(@code{1:numel (@var{y})}).

The general form of the function is

@example
errorbar (@var{x}, @var{y}, @var{err1}, @dots{}, @var{fmt}, @dots{})
@end example

@noindent
After the @var{x} and @var{y} arguments there can be 1, 2, or 4
parameters specifying the error values depending on the nature of the error
values and the plot format @var{fmt}.

@table @asis
@item @var{err} (scalar)
When the error is a scalar all points share the same error value.
The errorbars are symmetric and are drawn from @var{data}-@var{err} to
@var{data}+@var{err}.
The @var{fmt} argument determines whether @var{err} is in the x-direction,
y-direction (default), or both.

@item @var{err} (vector or matrix)
Each data point has a particular error value.
The errorbars are symmetric and are drawn from @var{data}(n)-@var{err}(n) to
@var{data}(n)+@var{err}(n).

@item @var{lerr}, @var{uerr} (scalar)
The errors have a single low-side value and a single upper-side value.
The errorbars are not symmetric and are drawn from @var{data}-@var{lerr} to
@var{data}+@var{uerr}.

@item @var{lerr}, @var{uerr} (vector or matrix)
Each data point has a low-side error and an upper-side error.
The errorbars are not symmetric and are drawn from
@var{data}(n)-@var{lerr}(n) to @var{data}(n)+@var{uerr}(n).
@end table

Any number of data sets (@var{x1},@var{y1}, @var{x2},@var{y2}, @dots{}) may
appear as long as they are separated by a format string @var{fmt}.

If @var{y} is a matrix, @var{x} and the error parameters must also be
matrices having the same dimensions.  The columns of @var{y} are plotted
versus the corresponding columns of @var{x} and errorbars are taken from
the corresponding columns of the error parameters.

If @var{fmt} is missing, the yerrorbars ("~") plot style is assumed.

If the @var{fmt} argument is supplied then it is interpreted, as in normal
plots, to specify the line style, marker, and color.  In addition,
@var{fmt} may include an errorbar style which @strong{must precede} the
ordinary format codes.  The following errorbar styles are supported:

@table @samp
@item ~
Set yerrorbars plot style (default).

@item >
Set xerrorbars plot style.

@item ~>
Set xyerrorbars plot style.

@item #~
Set yboxes plot style.

@item #
Set xboxes plot style.

@item #~>
Set xyboxes plot style.
@end table

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a handle to the hggroup object
representing the data plot and errorbars.

Note: For compatibility with @sc{matlab} a line is drawn through all data
points.  However, most scientific errorbar plots are a scatter plot of
points with errorbars.  To accomplish this, add a marker style to the
@var{fmt} argument such as @qcode{"."}.  Alternatively, remove the line
by modifying the returned graphic handle with
@code{set (h, "linestyle", "none")}.

Examples:

@example
errorbar (@var{x}, @var{y}, @var{ex}, ">.r")
@end example

@noindent
produces an xerrorbar plot of @var{y} versus @var{x} with @var{x}
errorbars drawn from @var{x}-@var{ex} to @var{x}+@var{ex}.  The marker
@qcode{"."} is used so no connecting line is drawn and the errorbars
appear in red.

@example
@group
errorbar (@var{x}, @var{y1}, @var{ey}, "~",
          @var{x}, @var{y2}, @var{ly}, @var{uy})
@end group
@end example

@noindent
produces yerrorbar plots with @var{y1} and @var{y2} versus @var{x}.
Errorbars for @var{y1} are drawn from @var{y1}-@var{ey} to
@var{y1}+@var{ey}, errorbars for @var{y2} from @var{y2}-@var{ly} to
@var{y2}+@var{uy}.

@example
@group
errorbar (@var{x}, @var{y}, @var{lx}, @var{ux},
          @var{ly}, @var{uy}, "~>")
@end group
@end example

@noindent
produces an xyerrorbar plot of @var{y} versus @var{x} in which
@var{x} errorbars are drawn from @var{x}-@var{lx} to @var{x}+@var{ux}
and @var{y} errorbars from @var{y}-@var{ly} to @var{y}+@var{uy}.
@seealso{@ref{XREFsemilogxerr,,semilogxerr}, @ref{XREFsemilogyerr,,semilogyerr}, @ref{XREFloglogerr,,loglogerr}, @ref{XREFplot,,plot}}
@end deftypefn


@c semilogxerr scripts/plot/draw/semilogxerr.m
@anchor{XREFsemilogxerr}
@deftypefn  {} {} semilogxerr (@var{y}, @var{ey})
@deftypefnx {} {} semilogxerr (@var{y}, @dots{}, @var{fmt})
@deftypefnx {} {} semilogxerr (@var{x}, @var{y}, @var{ey})
@deftypefnx {} {} semilogxerr (@var{x}, @var{y}, @var{err}, @var{fmt})
@deftypefnx {} {} semilogxerr (@var{x}, @var{y}, @var{lerr}, @var{uerr}, @var{fmt})
@deftypefnx {} {} semilogxerr (@var{x}, @var{y}, @var{ex}, @var{ey}, @var{fmt})
@deftypefnx {} {} semilogxerr (@var{x}, @var{y}, @var{lx}, @var{ux}, @var{ly}, @var{uy}, @var{fmt})
@deftypefnx {} {} semilogxerr (@var{x1}, @var{y1}, @dots{}, @var{fmt}, @var{xn}, @var{yn}, @dots{})
@deftypefnx {} {} semilogxerr (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} semilogxerr (@dots{})
Produce 2-D plots using a logarithmic scale for the x-axis and errorbars
at each data point.

Many different combinations of arguments are possible.  The most common
form is

@example
semilogxerr (@var{x}, @var{y}, @var{ey}, @var{fmt})
@end example

@noindent
which produces a semi-logarithmic plot of @var{y} versus @var{x}
with errors in the @var{y}-scale defined by @var{ey} and the plot
format defined by @var{fmt}.  @xref{XREFerrorbar,,errorbar}, for available
formats and additional information.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

@seealso{@ref{XREFerrorbar,,errorbar}, @ref{XREFsemilogyerr,,semilogyerr}, @ref{XREFloglogerr,,loglogerr}}
@end deftypefn


@c semilogyerr scripts/plot/draw/semilogyerr.m
@anchor{XREFsemilogyerr}
@deftypefn  {} {} semilogyerr (@var{y}, @var{ey})
@deftypefnx {} {} semilogyerr (@var{y}, @dots{}, @var{fmt})
@deftypefnx {} {} semilogyerr (@var{x}, @var{y}, @var{ey})
@deftypefnx {} {} semilogyerr (@var{x}, @var{y}, @var{err}, @var{fmt})
@deftypefnx {} {} semilogyerr (@var{x}, @var{y}, @var{lerr}, @var{uerr}, @var{fmt})
@deftypefnx {} {} semilogyerr (@var{x}, @var{y}, @var{ex}, @var{ey}, @var{fmt})
@deftypefnx {} {} semilogyerr (@var{x}, @var{y}, @var{lx}, @var{ux}, @var{ly}, @var{uy}, @var{fmt})
@deftypefnx {} {} semilogyerr (@var{x1}, @var{y1}, @dots{}, @var{fmt}, @var{xn}, @var{yn}, @dots{})
@deftypefnx {} {} semilogyerr (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} semilogyerr (@dots{})
Produce 2-D plots using a logarithmic scale for the y-axis and errorbars
at each data point.

Many different combinations of arguments are possible.  The most common
form is

@example
semilogyerr (@var{x}, @var{y}, @var{ey}, @var{fmt})
@end example

@noindent
which produces a semi-logarithmic plot of @var{y} versus @var{x}
with errors in the @var{y}-scale defined by @var{ey} and the plot
format defined by @var{fmt}.  @xref{XREFerrorbar,,errorbar}, for available
formats and additional information.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

@seealso{@ref{XREFerrorbar,,errorbar}, @ref{XREFsemilogxerr,,semilogxerr}, @ref{XREFloglogerr,,loglogerr}}
@end deftypefn


@c loglogerr scripts/plot/draw/loglogerr.m
@anchor{XREFloglogerr}
@deftypefn  {} {} loglogerr (@var{y}, @var{ey})
@deftypefnx {} {} loglogerr (@var{y}, @dots{}, @var{fmt})
@deftypefnx {} {} loglogerr (@var{x}, @var{y}, @var{ey})
@deftypefnx {} {} loglogerr (@var{x}, @var{y}, @var{err}, @var{fmt})
@deftypefnx {} {} loglogerr (@var{x}, @var{y}, @var{lerr}, @var{uerr}, @var{fmt})
@deftypefnx {} {} loglogerr (@var{x}, @var{y}, @var{ex}, @var{ey}, @var{fmt})
@deftypefnx {} {} loglogerr (@var{x}, @var{y}, @var{lx}, @var{ux}, @var{ly}, @var{uy}, @var{fmt})
@deftypefnx {} {} loglogerr (@var{x1}, @var{y1}, @dots{}, @var{fmt}, @var{xn}, @var{yn}, @dots{})
@deftypefnx {} {} loglogerr (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} loglogerr (@dots{})
Produce 2-D plots on a double logarithm axis with errorbars.

Many different combinations of arguments are possible.  The most common
form is

@example
loglogerr (@var{x}, @var{y}, @var{ey}, @var{fmt})
@end example

@noindent
which produces a double logarithm plot of @var{y} versus @var{x}
with errors in the @var{y}-scale defined by @var{ey} and the plot
format defined by @var{fmt}.  @xref{XREFerrorbar,,errorbar}, for available
formats and additional information.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.
@seealso{@ref{XREFerrorbar,,errorbar}, @ref{XREFsemilogxerr,,semilogxerr}, @ref{XREFsemilogyerr,,semilogyerr}}
@end deftypefn


Finally, the @code{polar} function allows you to easily plot data in
polar coordinates.  However, the display coordinates remain rectangular
and linear.  For example,

@example
@group
polar (0:0.1:10*pi, 0:0.1:10*pi);
title ("Example polar plot from 0 to 10*pi");
@end group
@end example

@noindent
produces the spiral plot shown in @ref{fig:polar}.

@float Figure,fig:polar
@center @image{polar,4in}
@caption{Polar plot.}
@end float

@c polar scripts/plot/draw/polar.m
@anchor{XREFpolar}
@deftypefn  {} {} polar (@var{theta}, @var{rho})
@deftypefnx {} {} polar (@var{theta}, @var{rho}, @var{fmt})
@deftypefnx {} {} polar (@var{cplx})
@deftypefnx {} {} polar (@var{cplx}, @var{fmt})
@deftypefnx {} {} polar (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} polar (@dots{})
Create a 2-D plot from polar coordinates @var{theta} and @var{rho}.

If a single complex input @var{cplx} is given then the real part is used
for @var{theta} and the imaginary part is used for @var{rho}.

The optional argument @var{fmt} specifies the line format in the same way
as @code{plot}.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created plot.

Implementation Note: The polar axis is drawn using line and text objects
encapsulated in an hggroup.  The hggroup properties are linked to the
original axes object such that altering an appearance property, for example
@code{fontname}, will update the polar axis.  Two new properties are
added to the original axes--@code{rtick}, @code{ttick}--which replace
@code{xtick}, @code{ytick}.  The first is a list of tick locations in the
radial (rho) direction; The second is a list of tick locations in the
angular (theta) direction specified in degrees, i.e., in the range 0--359.
@seealso{@ref{XREFrose,,rose}, @ref{XREFcompass,,compass}, @ref{XREFplot,,plot}}
@end deftypefn


@c pie scripts/plot/draw/pie.m
@anchor{XREFpie}
@deftypefn  {} {} pie (@var{x})
@deftypefnx {} {} pie (@dots{}, @var{explode})
@deftypefnx {} {} pie (@dots{}, @var{labels})
@deftypefnx {} {} pie (@var{hax}, @dots{});
@deftypefnx {} {@var{h} =} pie (@dots{});
Plot a 2-D pie chart.

When called with a single vector argument, produce a pie chart of the
elements in @var{x}.  The size of the ith slice is the percentage that the
element @var{x}i represents of the total sum of @var{x}:
@code{pct = @var{x}(i) / sum (@var{x})}.

The optional input @var{explode} is a vector of the same length as @var{x}
that, if nonzero, "explodes" the slice from the pie chart.

The optional input @var{labels} is a cell array of strings of the same
length as @var{x} specifying the label for each slice.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a list of handles to the patch
and text objects generating the plot.

Note: If @code{sum (@var{x}) @leq{} 1} then the elements of @var{x} are
interpreted as percentages directly and are not normalized by @code{sum
(x)}.  Furthermore, if the sum is less than 1 then there will be a missing
slice in the pie plot to represent the missing, unspecified percentage.

@seealso{@ref{XREFpie3,,pie3}, @ref{XREFbar,,bar}, @ref{XREFhist,,hist}, @ref{XREFrose,,rose}}
@end deftypefn


@c pie3 scripts/plot/draw/pie3.m
@anchor{XREFpie3}
@deftypefn  {} {} pie3 (@var{x})
@deftypefnx {} {} pie3 (@dots{}, @var{explode})
@deftypefnx {} {} pie3 (@dots{}, @var{labels})
@deftypefnx {} {} pie3 (@var{hax}, @dots{});
@deftypefnx {} {@var{h} =} pie3 (@dots{});
Plot a 3-D pie chart.

Called with a single vector argument, produces a 3-D pie chart of the
elements in @var{x}.  The size of the ith slice is the percentage that the
element @var{x}i represents of the total sum of @var{x}:
@code{pct = @var{x}(i) / sum (@var{x})}.

The optional input @var{explode} is a vector of the same length as @var{x}
that, if nonzero, "explodes" the slice from the pie chart.

The optional input @var{labels} is a cell array of strings of the same
length as @var{x} specifying the label for each slice.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a list of graphics handles to the
patch, surface, and text objects generating the plot.

Note: If @code{sum (@var{x}) @leq{} 1} then the elements of @var{x} are
interpreted as percentages directly and are not normalized by @code{sum
(x)}.  Furthermore, if the sum is less than 1 then there will be a missing
slice in the pie plot to represent the missing, unspecified percentage.

@seealso{@ref{XREFpie,,pie}, @ref{XREFbar,,bar}, @ref{XREFhist,,hist}, @ref{XREFrose,,rose}}
@end deftypefn


@c quiver scripts/plot/draw/quiver.m
@anchor{XREFquiver}
@deftypefn  {} {} quiver (@var{u}, @var{v})
@deftypefnx {} {} quiver (@var{x}, @var{y}, @var{u}, @var{v})
@deftypefnx {} {} quiver (@dots{}, @var{s})
@deftypefnx {} {} quiver (@dots{}, @var{style})
@deftypefnx {} {} quiver (@dots{}, "filled")
@deftypefnx {} {} quiver (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} quiver (@dots{})

Plot a 2-D vector field with arrows.

Plot the (@var{u}, @var{v}) components of a vector field at the grid points
defined by (@var{x}, @var{y}).  If the grid is uniform then @var{x} and
@var{y} can be specified as vectors and @code{meshgrid} is used to create
the 2-D grid.

If @var{x} and @var{y} are not given they are assumed to be
@code{(1:@var{m}, 1:@var{n})} where
@code{[@var{m}, @var{n}] = size (@var{u})}.

The optional input @var{s} is a scalar defining a scaling factor to use for
the arrows of the field relative to the mesh spacing.  A value of 1.0 will
result in the longest vector exactly filling one grid square.  A value of 0
disables all scaling.  The default value is 0.9.

The style to use for the plot can be defined with a line style @var{style}
of the same format as the @code{plot} command.  If a marker is specified
then the markers are drawn at the origin of the vectors (which are the grid
points defined by @var{x} and @var{y}).  When a marker is specified, the
arrowhead is not drawn.  If the argument @qcode{"filled"} is given then the
markers are filled.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to a quiver object.
A quiver object regroups the components of the quiver plot (body, arrow,
and marker), and allows them to be changed together.

Example:

@example
@group
[x, y] = meshgrid (1:2:20);
h = quiver (x, y, sin (2*pi*x/10), sin (2*pi*y/10));
set (h, "maxheadsize", 0.33);
@end group
@end example

@seealso{@ref{XREFquiver3,,quiver3}, @ref{XREFcompass,,compass}, @ref{XREFfeather,,feather}, @ref{XREFplot,,plot}}
@end deftypefn


@c quiver3 scripts/plot/draw/quiver3.m
@anchor{XREFquiver3}
@deftypefn  {} {} quiver3 (@var{u}, @var{v}, @var{w})
@deftypefnx {} {} quiver3 (@var{x}, @var{y}, @var{z}, @var{u}, @var{v}, @var{w})
@deftypefnx {} {} quiver3 (@dots{}, @var{s})
@deftypefnx {} {} quiver3 (@dots{}, @var{style})
@deftypefnx {} {} quiver3 (@dots{}, "filled")
@deftypefnx {} {} quiver3 (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} quiver3 (@dots{})

Plot a 3-D vector field with arrows.

Plot the (@var{u}, @var{v}, @var{w}) components of a vector field at the
grid points defined by (@var{x}, @var{y}, @var{z}).  If the grid is uniform
then @var{x}, @var{y}, and @var{z} can be specified as vectors and
@code{meshgrid} is used to create the 3-D grid.

If @var{x}, @var{y}, and @var{z} are not given they are assumed to be
@code{(1:@var{m}, 1:@var{n}, 1:@var{p})} where
@code{[@var{m}, @var{n}] = size (@var{u})} and
@code{@var{p} = max (size (@var{w}))}.

The optional input @var{s} is a scalar defining a scaling factor to use for
the arrows of the field relative to the mesh spacing.  A value of 1.0 will
result in the longest vector exactly filling one grid cube.  A value of 0
disables all scaling.  The default value is 0.9.

The style to use for the plot can be defined with a line style @var{style}
of the same format as the @code{plot} command.  If a marker is specified
then the markers are drawn at the origin of the vectors (which are the grid
points defined by @var{x}, @var{y}, @var{z}).  When a marker is specified,
the arrowhead is not drawn.  If the argument @qcode{"filled"} is given then
the markers are filled.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to a quiver object.
A quiver object regroups the components of the quiver plot (body, arrow,
and marker), and allows them to be changed together.

@example
@group
[x, y, z] = peaks (25);
surf (x, y, z);
hold on;
[u, v, w] = surfnorm (x, y, z / 10);
h = quiver3 (x, y, z, u, v, w);
set (h, "maxheadsize", 0.33);
@end group
@end example

@seealso{@ref{XREFquiver,,quiver}, @ref{XREFcompass,,compass}, @ref{XREFfeather,,feather}, @ref{XREFplot,,plot}}
@end deftypefn


@c compass scripts/plot/draw/compass.m
@anchor{XREFcompass}
@deftypefn  {} {} compass (@var{u}, @var{v})
@deftypefnx {} {} compass (@var{z})
@deftypefnx {} {} compass (@dots{}, @var{style})
@deftypefnx {} {} compass (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} compass (@dots{})

Plot the @code{(@var{u}, @var{v})} components of a vector field emanating
from the origin of a polar plot.

The arrow representing each vector has one end at the origin and the tip at
[@var{u}(i), @var{v}(i)].  If a single complex argument @var{z} is given,
then @code{@var{u} = real (@var{z})} and @code{@var{v} = imag (@var{z})}.

The style to use for the plot can be defined with a line style @var{style}
of the same format as the @code{plot} command.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a vector of graphics handles to the
line objects representing the drawn vectors.

@example
@group
a = toeplitz ([1;randn(9,1)], [1,randn(1,9)]);
compass (eig (a));
@end group
@end example

@seealso{@ref{XREFpolar,,polar}, @ref{XREFfeather,,feather}, @ref{XREFquiver,,quiver}, @ref{XREFrose,,rose}, @ref{XREFplot,,plot}}
@end deftypefn


@c feather scripts/plot/draw/feather.m
@anchor{XREFfeather}
@deftypefn  {} {} feather (@var{u}, @var{v})
@deftypefnx {} {} feather (@var{z})
@deftypefnx {} {} feather (@dots{}, @var{style})
@deftypefnx {} {} feather (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} feather (@dots{})

Plot the @code{(@var{u}, @var{v})} components of a vector field emanating
from equidistant points on the x-axis.

If a single complex argument @var{z} is given, then
@code{@var{u} = real (@var{z})} and @code{@var{v} = imag (@var{z})}.

The style to use for the plot can be defined with a line style @var{style}
of the same format as the @code{plot} command.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a vector of graphics handles to the
line objects representing the drawn vectors.

@example
@group
phi = [0 : 15 : 360] * pi/180;
feather (sin (phi), cos (phi));
@end group
@end example

@seealso{@ref{XREFplot,,plot}, @ref{XREFquiver,,quiver}, @ref{XREFcompass,,compass}}
@end deftypefn


@c pcolor scripts/plot/draw/pcolor.m
@anchor{XREFpcolor}
@deftypefn  {} {} pcolor (@var{x}, @var{y}, @var{c})
@deftypefnx {} {} pcolor (@var{c})
@deftypefnx {} {} pcolor (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} pcolor (@dots{})
Produce a 2-D density plot.

A @code{pcolor} plot draws rectangles with colors from the matrix @var{c}
over the two-dimensional region represented by the matrices @var{x} and
@var{y}.  @var{x} and @var{y} are the coordinates of the mesh's vertices
and are typically the output of @code{meshgrid}.  If @var{x} and @var{y} are
vectors, then a typical vertex is (@var{x}(j), @var{y}(i), @var{c}(i,j)).
Thus, columns of @var{c} correspond to different @var{x} values and rows
of @var{c} correspond to different @var{y} values.

The values in @var{c} are scaled to span the range of the current
colormap.  Limits may be placed on the color axis by the command
@code{caxis}, or by setting the @code{clim} property of the parent axis.

The face color of each cell of the mesh is determined by interpolating
the values of @var{c} for each of the cell's vertices; Contrast this with
@code{imagesc} which renders one cell for each element of @var{c}.

@code{shading} modifies an attribute determining the manner by which the
face color of each cell is interpolated from the values of @var{c},
and the visibility of the cells' edges.  By default the attribute is
@qcode{"faceted"}, which renders a single color for each cell's face with
the edge visible.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
surface object.

@seealso{@ref{XREFcaxis,,caxis}, @ref{XREFshading,,shading}, @ref{XREFmeshgrid,,meshgrid}, @ref{XREFcontour,,contour}, @ref{XREFimagesc,,imagesc}}
@end deftypefn


@c area scripts/plot/draw/area.m
@anchor{XREFarea}
@deftypefn  {} {} area (@var{y})
@deftypefnx {} {} area (@var{x}, @var{y})
@deftypefnx {} {} area (@dots{}, @var{lvl})
@deftypefnx {} {} area (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} area (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} area (@dots{})
Area plot of the columns of @var{y}.

This plot shows the contributions of each column value to the row sum.
It is functionally similar to @code{plot (@var{x}, cumsum (@var{y}, 2))},
except that the area under the curve is shaded.

If the @var{x} argument is omitted it defaults to @code{1:rows (@var{y})}.
A value @var{lvl} can be defined that determines where the base level of
the shading under the curve should be defined.  The default level is 0.

Additional property/value pairs are passed directly to the underlying patch
object.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the hggroup
object comprising the area patch objects.  The @qcode{"BaseValue"} property
of the hggroup can be used to adjust the level where shading begins.

Example: Verify identity sin^2 + cos^2 = 1

@example
@group
t = linspace (0, 2*pi, 100)';
y = [sin(t).^2, cos(t).^2];
area (t, y);
legend ("sin^2", "cos^2", "location", "NorthEastOutside");
@end group
@end example
@seealso{@ref{XREFplot,,plot}, @ref{XREFpatch,,patch}}
@end deftypefn


@c fill scripts/plot/draw/fill.m
@anchor{XREFfill}
@deftypefn  {} {} fill (@var{x}, @var{y}, @var{c})
@deftypefnx {} {} fill (@var{x1}, @var{y1}, @var{c1}, @var{x2}, @var{y2}, @var{c2})
@deftypefnx {} {} fill (@dots{}, @var{prop}, @var{val})
@deftypefnx {} {} fill (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} fill (@dots{})
Create one or more filled 2-D polygons.

The inputs @var{x} and @var{y} are the coordinates of the polygon vertices.
If the inputs are matrices then the rows represent different vertices and
each column produces a different polygon.  @code{fill} will close any open
polygons before plotting.

The input @var{c} determines the color of the polygon.  The simplest form
is a single color specification such as a @code{plot} format or an
RGB-triple.  In this case the polygon(s) will have one unique color.  If
@var{c} is a vector or matrix then the color data is first scaled using
@code{caxis} and then indexed into the current colormap.  A row vector will
color each polygon (a column from matrices @var{x} and @var{y}) with a
single computed color.  A matrix @var{c} of the same size as @var{x} and
@var{y} will compute the color of each vertex and then interpolate the face
color between the vertices.

Multiple property/value pairs for the underlying patch object may be
specified, but they must appear in pairs.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a vector of graphics handles to
the created patch objects.

Example: red square

@example
@group
vertices = [0 0
            1 0
            1 1
            0 1];
fill (vertices(:,1), vertices(:,2), "r");
axis ([-0.5 1.5, -0.5 1.5])
axis equal
@end group
@end example

@seealso{@ref{XREFpatch,,patch}, @ref{XREFcaxis,,caxis}, @ref{XREFcolormap,,colormap}}
@end deftypefn


@c comet scripts/plot/draw/comet.m
@anchor{XREFcomet}
@deftypefn  {} {} comet (@var{y})
@deftypefnx {} {} comet (@var{x}, @var{y})
@deftypefnx {} {} comet (@var{x}, @var{y}, @var{p})
@deftypefnx {} {} comet (@var{hax}, @dots{})
Produce a simple comet style animation along the trajectory provided by
the input coordinate vectors (@var{x}, @var{y}).

If @var{x} is not specified it defaults to the indices of @var{y}.

The speed of the comet may be controlled by @var{p}, which represents the
time each point is displayed before moving to the next one.  The default for
@var{p} is 0.1 seconds.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.
@seealso{@ref{XREFcomet3,,comet3}}
@end deftypefn


@c comet3 scripts/plot/draw/comet3.m
@anchor{XREFcomet3}
@deftypefn  {} {} comet3 (@var{z})
@deftypefnx {} {} comet3 (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} comet3 (@var{x}, @var{y}, @var{z}, @var{p})
@deftypefnx {} {} comet3 (@var{hax}, @dots{})
Produce a simple comet style animation along the trajectory provided by
the input coordinate vectors (@var{x}, @var{y}, @var{z}).

If only @var{z} is specified then @var{x}, @var{y} default to the indices
of @var{z}.

The speed of the comet may be controlled by @var{p}, which represents the
time each point is displayed before moving to the next one.  The default for
@var{p} is 0.1 seconds.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.
@seealso{@ref{XREFcomet,,comet}}
@end deftypefn


@node Axis Configuration
@subsubsection Axis Configuration

The axis function may be used to change the axis limits of an existing
plot and various other axis properties, such as the aspect ratio and the
appearance of tic marks.

@c axis scripts/plot/appearance/axis.m
@anchor{XREFaxis}
@deftypefn  {} {} axis ()
@deftypefnx {} {} axis ([@var{x_lo} @var{x_hi}])
@deftypefnx {} {} axis ([@var{x_lo} @var{x_hi} @var{y_lo} @var{y_hi}])
@deftypefnx {} {} axis ([@var{x_lo} @var{x_hi} @var{y_lo} @var{y_hi} @var{z_lo} @var{z_hi}])
@deftypefnx {} {} axis ([@var{x_lo} @var{x_hi} @var{y_lo} @var{y_hi} @var{z_lo} @var{z_hi} @var{c_lo} @var{c_hi}])
@deftypefnx {} {} axis (@var{option})
@deftypefnx {} {} axis (@var{option1}, @var{option2}, @dots{})
@deftypefnx {} {} axis (@var{hax}, @dots{})
@deftypefnx {} {@var{limits} =} axis ()
Set axis limits and appearance.

The argument @var{limits} should be a 2-, 4-, 6-, or 8-element vector.  The
first and second elements specify the lower and upper limits for the
x-axis.  The third and fourth specify the limits for the y-axis, the fifth
and sixth specify the limits for the z-axis, and the seventh and eighth
specify the limits for the color axis.  The special values -Inf and Inf may
be used to indicate that the limit should be automatically computed based
on the data in the axes.

Without any arguments, @code{axis} turns autoscaling on.

With one output argument, @code{@var{limits} = axis} returns the current
axis limits.

The vector argument specifying limits is optional, and additional string
arguments may be used to specify various axis properties.

The following options control the aspect ratio of the axes.

@table @asis
@item @qcode{"square"}
Force a square axis aspect ratio.

@item @qcode{"equal"}
Force x-axis unit distance to equal y-axis (and z-axis) unit distance.

@item @qcode{"normal"}
Restore default aspect ratio.
@end table

@noindent
The following options control the way axis limits are interpreted.

@table @asis
@item  @qcode{"auto"}
@itemx @qcode{"auto[xyz]"}
Set the specified axes to have nice limits around the data or all if no
axes are specified.

@item @qcode{"manual"}
Fix the current axes limits.

@item @qcode{"tight"}
Fix axes to the limits of the data.

@item @qcode{"image"}
Equivalent to @qcode{"tight"} and @qcode{"equal"}.

@item @nospell{@qcode{"vis3d"}}
Set aspect ratio modes to @qcode{"manual"} for rotation without stretching.
@end table

@noindent
The following options affect the appearance of tick marks.

@table @asis
@item @qcode{"tic[xyz]"}
Turn tick marks on for all axes, or turn them on for the specified axes and
off for the remainder.

@item @qcode{"label[xyz]"}
Turn tick labels on for all axes, or turn them on for the specified axes
and off for the remainder.

@item @qcode{"nolabel"}
Turn tick labels off for all axes.
@end table

Note: If there are no tick marks for an axes then there can be no labels.

@noindent
The following options affect the direction of increasing values on the axes.

@table @asis
@item @qcode{"xy"}
Default y-axis, larger values are near the top.

@item @qcode{"ij"}
Reverse y-axis, smaller values are near the top.
@end table

@noindent
The following options affects the visibility of the axes.

@table @asis
@item @qcode{"on"}
Make the axes visible.

@item @qcode{"off"}
Hide the axes.
@end table

If the first argument @var{hax} is an axes handle, then operate on this
axes rather than the current axes returned by @code{gca}.

Example 1: set X/Y limits and force a square aspect ratio

@example
axis ([1, 2, 3, 4], "square");
@end example

Example 2: enable tick marks on all axes,
           enable tick mark labels only on the y-axis

@example
axis ("tic", "labely");
@end example

@seealso{@ref{XREFxlim,,xlim}, @ref{XREFylim,,ylim}, @ref{XREFzlim,,zlim}, @ref{XREFcaxis,,caxis}, @ref{XREFdaspect,,daspect}, @ref{XREFpbaspect,,pbaspect}, @ref{XREFbox,,box}, @ref{XREFgrid,,grid}}
@end deftypefn


Similarly the axis limits of the colormap can be changed with the caxis
function.

@c caxis scripts/plot/appearance/caxis.m
@anchor{XREFcaxis}
@deftypefn  {} {} caxis ([cmin cmax])
@deftypefnx {} {} caxis ("auto")
@deftypefnx {} {} caxis ("manual")
@deftypefnx {} {} caxis (@var{hax}, @dots{})
@deftypefnx {} {@var{limits} =} caxis ()
Query or set color axis limits for plots.

The limits argument should be a 2-element vector specifying the lower and
upper limits to assign to the first and last value in the colormap.  Data
values outside this range are clamped to the first and last colormap
entries.

If the @qcode{"auto"} option is given then automatic colormap limits are
applied.  The automatic algorithm sets @var{cmin} to the minimum data value
and @var{cmax} to the maximum data value.  If @qcode{"manual"} is specified
then the @qcode{"climmode"} property is set to @qcode{"manual"} and the
numeric values in the @qcode{"clim"} property are used for limits.

If the first argument @var{hax} is an axes handle, then operate on
this axes rather than the current axes returned by @code{gca}.

Called without arguments the current color axis limits are returned.

Programming Note: The color axis affects the display of image, patch, and
surface graphics objects, but @strong{only} if the @qcode{"cdata"} property
has indexed data and the @qcode{"cdatamapping"} property is set to
@qcode{"scaled"}.  Graphic objects with true color @code{cdata}, or
@qcode{"direct"} @code{cdatamapping} are not affected.
@seealso{@ref{XREFcolormap,,colormap}, @ref{XREFaxis,,axis}}
@end deftypefn


The @code{xlim}, @code{ylim}, and @code{zlim} functions may be used to
get or set individual axis limits.  Each has the same form.

@c Add cross-references and function index entries for other limit functions.
@anchor{XREFylim}
@anchor{XREFzlim}
@findex ylim
@findex zlim
@c xlim scripts/plot/appearance/xlim.m
@anchor{XREFxlim}
@deftypefn  {} {@var{xlimits} =} xlim ()
@deftypefnx {} {@var{xmode} =} xlim ("mode")
@deftypefnx {} {} xlim ([@var{x_lo} @var{x_hi}])
@deftypefnx {} {} xlim ("auto")
@deftypefnx {} {} xlim ("manual")
@deftypefnx {} {} xlim (@var{hax}, @dots{})
Query or set the limits of the x-axis for the current plot.

Called without arguments @code{xlim} returns the x-axis limits of the
current plot.

With the input query @qcode{"mode"}, return the current x-limit calculation
mode which is either @qcode{"auto"} or @qcode{"manual"}.

If passed a 2-element vector [@var{x_lo} @var{x_hi}], the limits of the
x-axis are set to these values and the mode is set to @qcode{"manual"}.
The special values -Inf and Inf can be used to indicate that either
the lower axis limit or upper axis limit should be automatically calculated.

The current plotting mode can be changed by using either @qcode{"auto"}
or @qcode{"manual"} as the argument.

If the first argument @var{hax} is an axes handle, then operate on
this axes rather than the current axes returned by @code{gca}.

Programming Note: The @code{xlim} function operates by modifying the
@qcode{"xlim"} and @qcode{"xlimmode"} properties of an axes object.  These
properties can be directly inspected and altered with @code{get}/@code{set}.
@seealso{@ref{XREFylim,,ylim}, @ref{XREFzlim,,zlim}, @ref{XREFaxis,,axis}, @ref{XREFset,,set}, @ref{XREFget,,get}, @ref{XREFgca,,gca}}
@end deftypefn


The @code{xticks}, @code{yticks}, @code{zticks}, @code{rticks}, and
@code{thetaticks} functions may be used to get or set the tick mark locations
and modes on the respective axis.  Each has the same form, although mode
options are not currently available for @code{rticks}, and @code{thetaticks}.

@c FIXME: Update this section if polarplot and polar axes changes change the
@c        associated axis properties.
@anchor{XREFyticks}
@anchor{XREFzticks}
@anchor{XREFrticks}
@anchor{XREFthetaticks}
@findex yticks
@findex zticks
@findex rticks
@findex thetaticks
@c xticks scripts/plot/appearance/xticks.m
@anchor{XREFxticks}
@deftypefn  {} {@var{tickval} =} xticks
@deftypefnx {} {@var{mode} =} xticks ("mode")
@deftypefnx {} {} xticks (@var{tickval})
@deftypefnx {} {} xticks ("auto")
@deftypefnx {} {} xticks ("manual")
@deftypefnx {} {@dots{} =} xticks (@var{hax}, @dots{})
Query or set the tick values on the x-axis of the current axis.

When called without an argument, return the current tick locations as
specified in the @qcode{"xtick"} axes property.  These locations can be
changed by calling @code{xticks} with a vector of tick values.  Note:
ascending order is not required.

When called with argument @qcode{"mode"}, @code{xticks} returns the current
value of the axes property @qcode{"xtickmode"}.  This property can be
changed by calling @code{xticks} with either @qcode{"auto"} (algorithm
determines tick positions) or @qcode{"manual"} (tick values remain fixed
regardless of axes resizing or rotation).  Note: Specifying xtick values
will also set the property @qcode{"xtickmode"} to @qcode{"manual"}.

If the first argument @var{hax} is an axes handle, then operate on
this axis rather than the current axes returned by @code{gca}.

Requesting a return value when calling @code{xticks} to set a property value
will result in an error.

@seealso{@ref{XREFxticklabels,,xticklabels}, @ref{XREFyticks,,yticks}, @ref{XREFzticks,,zticks}, @ref{XREFrticks,,rticks}, @ref{XREFthetaticks,,thetaticks}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn


The @code{xticklabels}, @code{yticklabels}, and @code{zticklabels} functions
may be used to get or set the label assigned to each tick location and the
labeling mode on the respective axis.  Each has the same form.

@c FIXME: Update this section if polarplot and polar axes changes change the
@c        associated axis properties.
@c        Matlab also implements rticklabels and thetaticklabels.
@anchor{XREFyticklabels}
@anchor{XREFzticklabels}
@findex yticklabels
@findex zticklabels
@c xticklabels scripts/plot/appearance/xticklabels.m
@anchor{XREFxticklabels}
@deftypefn  {} {@var{tickval} =} xticklabels
@deftypefnx {} {@var{mode} =} xticklabels ("mode")
@deftypefnx {} {} xticklabels (@var{tickval})
@deftypefnx {} {} xticklabels ("auto")
@deftypefnx {} {} xticklabels ("manual")
@deftypefnx {} {@dots{} =} xticklabels (@var{hax}, @dots{})
Query or set the tick labels on the x-axis of the current axis.

When called without an argument, return a cell array of strings of the
current tick labels as specified in the @qcode{"xticklabel"} axes property.
These labels can be changed by calling @code{xticklabels} with a cell array
of strings.  Note: a vector of numbers will be mapped to a cell array of
strings.  If fewer labels are specified than the current number of ticks,
blank labels will be appended to the array.

When called with argument @qcode{"mode"}, @code{xticklabels} returns the
current value of the axes property @qcode{"xticklabelmode"}.  This property
can be changed by calling @code{xticklabels} with either @qcode{"auto"}
(algorithm determines tick labels) or @qcode{"manual"} (tick labels remain
fixed).  Note: Specifying xticklabel values will also set the
@qcode{"xticklabelmode"} and @qcode{"xticks"} properties to
@qcode{"manual"}.

If the first argument @var{hax} is an axes handle, then operate on
this axis rather than the current axes returned by @code{gca}.

Requesting a return value when calling @code{xticklabels} to set a property
value will result in an error.

@seealso{@ref{XREFxticks,,xticks}, @ref{XREFyticklabels,,yticklabels}, @ref{XREFzticklabels,,zticklabels}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn


@node Two-dimensional Function Plotting
@subsubsection Two-dimensional Function Plotting
@cindex plotting, two-dimensional functions

Octave can plot a function from a function handle, inline function, or
string defining the function without the user needing to explicitly
create the data to be plotted.  The function @code{fplot} also generates
two-dimensional plots with linear axes using a function name and limits
for the range of the x-coordinate instead of the x and y data.  For
example,

@example
@group
fplot (@@sin, [-10, 10], 201);
@end group
@end example

@noindent
produces a plot that is equivalent to the one above, but also includes a
legend displaying the name of the plotted function.

@c fplot scripts/plot/draw/fplot.m
@anchor{XREFfplot}
@deftypefn  {} {} fplot (@var{fn}, @var{limits})
@deftypefnx {} {} fplot (@dots{}, @var{tol})
@deftypefnx {} {} fplot (@dots{}, @var{n})
@deftypefnx {} {} fplot (@dots{}, @var{fmt})
@deftypefnx {} {[@var{x}, @var{y}] =} fplot (@dots{})
Plot a function @var{fn} within the range defined by @var{limits}.

@var{fn} is a function handle, inline function, or string containing the
name of the function to evaluate.

The limits of the plot are of the form @w{@code{[@var{xlo}, @var{xhi}]}} or
@w{@code{[@var{xlo}, @var{xhi}, @var{ylo}, @var{yhi}]}}.

The next three arguments are all optional and any number of them may be
given in any order.

@var{tol} is the relative tolerance to use for the plot and defaults
to 2e-3 (.2%).

@var{n} is the minimum number of points to use.  When @var{n} is specified,
the maximum stepsize will be @code{(@var{xhi} - @var{xlo}) / @var{n}}.  More
than @var{n} points may still be used in order to meet the relative
tolerance requirement.

The @var{fmt} argument specifies the linestyle to be used by the plot
command.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

With no output arguments the results are immediately plotted.  With two
output arguments the 2-D plot data is returned.  The data can subsequently
be plotted manually with @code{plot (@var{x}, @var{y})}.

Example:

@example
@group
fplot (@@cos, [0, 2*pi])
fplot ("[cos(x), sin(x)]", [0, 2*pi])
@end group
@end example

Programming Notes:

@code{fplot} works best with continuous functions.  Functions with
discontinuities are unlikely to plot well.  This restriction may be removed
in the future.

@code{fplot} performance is better when the function accepts and returns a
vector argument.  Consider this when writing user-defined functions and use
element-by-element operators such as @code{.*}, @code{./}, etc.  See the
function @code{vectorize} for potentially converting inline or anonymous
functions to vectorized versions.

@seealso{@ref{XREFezplot,,ezplot}, @ref{XREFplot,,plot}, @ref{XREFvectorize,,vectorize}}
@end deftypefn


Other functions that can create two-dimensional plots directly from a
function include @code{ezplot}, @code{ezcontour}, @code{ezcontourf} and
@code{ezpolar}.

@c ezplot scripts/plot/draw/ezplot.m
@anchor{XREFezplot}
@deftypefn  {} {} ezplot (@var{f})
@deftypefnx {} {} ezplot (@var{f2v})
@deftypefnx {} {} ezplot (@var{fx}, @var{fy})
@deftypefnx {} {} ezplot (@dots{}, @var{dom})
@deftypefnx {} {} ezplot (@dots{}, @var{n})
@deftypefnx {} {} ezplot (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} ezplot (@dots{})

Plot the 2-D curve defined by the function @var{f}.

The function @var{f} may be a string, inline function, or function handle
and can have either one or two variables.  If @var{f} has one variable, then
the function is plotted over the domain @code{-2*pi < @var{x} < 2*pi}
with 500 points.

If @var{f2v} is a function of two variables then the implicit function
@code{@var{f}(@var{x},@var{y}) = 0} is calculated over the meshed domain
@code{-2*pi <= @var{x} | @var{y} <= 2*pi} with 60 points in each dimension.

For example:

@example
ezplot (@@(@var{x}, @var{y}) @var{x}.^2 - @var{y}.^2 - 1)
@end example

If two functions are passed as inputs then the parametric function

@example
@group
@var{x} = @var{fx} (@var{t})
@var{y} = @var{fy} (@var{t})
@end group
@end example

@noindent
is plotted over the domain @code{-2*pi <= @var{t} <= 2*pi} with 500 points.

If @var{dom} is a two element vector, it represents the minimum and maximum
values of both @var{x} and @var{y}, or @var{t} for a parametric plot.  If
@var{dom} is a four element vector, then the minimum and maximum values are
@code{[xmin xmax ymin ymax]}.

@var{n} is a scalar defining the number of points to use in plotting
the function.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a vector of graphics handles to
the created line objects.

@seealso{@ref{XREFplot,,plot}, @ref{XREFezplot3,,ezplot3}, @ref{XREFezpolar,,ezpolar}, @ref{XREFezcontour,,ezcontour}, @ref{XREFezcontourf,,ezcontourf}, @ref{XREFezmesh,,ezmesh}, @ref{XREFezmeshc,,ezmeshc}, @ref{XREFezsurf,,ezsurf}, @ref{XREFezsurfc,,ezsurfc}}
@end deftypefn


@c ezcontour scripts/plot/draw/ezcontour.m
@anchor{XREFezcontour}
@deftypefn  {} {} ezcontour (@var{f})
@deftypefnx {} {} ezcontour (@dots{}, @var{dom})
@deftypefnx {} {} ezcontour (@dots{}, @var{n})
@deftypefnx {} {} ezcontour (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} ezcontour (@dots{})

Plot the contour lines of a function.

@var{f} is a string, inline function, or function handle with two arguments
defining the function.  By default the plot is over the meshed domain
@code{-2*pi <= @var{x} | @var{y} <= 2*pi} with 60 points in each dimension.

If @var{dom} is a two element vector, it represents the minimum and maximum
values of both @var{x} and @var{y}.  If @var{dom} is a four element vector,
then the minimum and maximum values are @code{[xmin xmax ymin ymax]}.

@var{n} is a scalar defining the number of points to use in each dimension.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created plot.

Example:

@example
@group
f = @@(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
ezcontour (f, [-3, 3]);
@end group
@end example

@seealso{@ref{XREFcontour,,contour}, @ref{XREFezcontourf,,ezcontourf}, @ref{XREFezplot,,ezplot}, @ref{XREFezmeshc,,ezmeshc}, @ref{XREFezsurfc,,ezsurfc}}
@end deftypefn


@c ezcontourf scripts/plot/draw/ezcontourf.m
@anchor{XREFezcontourf}
@deftypefn  {} {} ezcontourf (@var{f})
@deftypefnx {} {} ezcontourf (@dots{}, @var{dom})
@deftypefnx {} {} ezcontourf (@dots{}, @var{n})
@deftypefnx {} {} ezcontourf (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} ezcontourf (@dots{})

Plot the filled contour lines of a function.

@var{f} is a string, inline function, or function handle with two arguments
defining the function.  By default the plot is over the meshed domain
@code{-2*pi <= @var{x} | @var{y} <= 2*pi} with 60 points in each dimension.

If @var{dom} is a two element vector, it represents the minimum and maximum
values of both @var{x} and @var{y}.  If @var{dom} is a four element vector,
then the minimum and maximum values are @code{[xmin xmax ymin ymax]}.

@var{n} is a scalar defining the number of points to use in each dimension.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created plot.

Example:

@example
@group
f = @@(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
ezcontourf (f, [-3, 3]);
@end group
@end example

@seealso{@ref{XREFcontourf,,contourf}, @ref{XREFezcontour,,ezcontour}, @ref{XREFezplot,,ezplot}, @ref{XREFezmeshc,,ezmeshc}, @ref{XREFezsurfc,,ezsurfc}}
@end deftypefn


@c ezpolar scripts/plot/draw/ezpolar.m
@anchor{XREFezpolar}
@deftypefn  {} {} ezpolar (@var{f})
@deftypefnx {} {} ezpolar (@dots{}, @var{dom})
@deftypefnx {} {} ezpolar (@dots{}, @var{n})
@deftypefnx {} {} ezpolar (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} ezpolar (@dots{})

Plot a 2-D function in polar coordinates.

The function @var{f} is a string, inline function, or function handle with
a single argument.  The expected form of the function is
@code{@var{rho} = @var{f}(@var{theta})}.
By default the plot is over the domain @code{0 <= @var{theta} <= 2*pi}
with 500 points.

If @var{dom} is a two element vector, it represents the minimum and maximum
values of @var{theta}.

@var{n} is a scalar defining the number of points to use in plotting
the function.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created plot.

Example:

@example
ezpolar (@@(t) sin (5/4 * t), [0, 8*pi]);
@end example

@seealso{@ref{XREFpolar,,polar}, @ref{XREFezplot,,ezplot}}
@end deftypefn


@node Two-dimensional Geometric Shapes
@subsubsection Two-dimensional Geometric Shapes

@c rectangle scripts/plot/draw/rectangle.m
@anchor{XREFrectangle}
@deftypefn  {} {} rectangle ()
@deftypefnx {} {} rectangle (@dots{}, "Position", @var{pos})
@deftypefnx {} {} rectangle (@dots{}, "Curvature", @var{curv})
@deftypefnx {} {} rectangle (@dots{}, "EdgeColor", @var{ec})
@deftypefnx {} {} rectangle (@dots{}, "FaceColor", @var{fc})
@deftypefnx {} {} rectangle (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} rectangle (@dots{})
Draw a rectangular patch defined by @var{pos} and @var{curv}.

The variable @code{@var{pos}(1:2)} defines the lower left-hand corner of
the patch and @code{@var{pos}(3:4)} defines its width and height.  By
default, the value of @var{pos} is @code{[0, 0, 1, 1]}.

The variable @var{curv} defines the curvature of the sides of the rectangle
and may be a scalar or two-element vector with values between 0 and 1.
A value of 0 represents no curvature of the side, whereas a value of 1
means that the side is entirely curved into the arc of a circle.
If @var{curv} is a two-element vector, then the first element is the
curvature along the x-axis of the patch and the second along y-axis.

If @var{curv} is a scalar, it represents the curvature of the shorter of the
two sides of the rectangle and the curvature of the other side is defined
by

@example
min (pos(1:2)) / max (pos(1:2)) * curv
@end example

Additional property/value pairs are passed to the underlying patch command.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
rectangle object.
@seealso{@ref{XREFpatch,,patch}, @ref{XREFline,,line}, @ref{XREFcylinder,,cylinder}, @ref{XREFellipsoid,,ellipsoid}, @ref{XREFsphere,,sphere}}
@end deftypefn


@node Three-Dimensional Plots
@subsection Three-Dimensional Plots
@cindex plotting, three-dimensional

The function @code{mesh} produces mesh surface plots.  For example,

@example
@group
tx = ty = linspace (-8, 8, 41)';
[xx, yy] = meshgrid (tx, ty);
r = sqrt (xx .^ 2 + yy .^ 2) + eps;
tz = sin (r) ./ r;
mesh (tx, ty, tz);
xlabel ("tx");
ylabel ("ty");
zlabel ("tz");
title ("3-D Sombrero plot");
@end group
@end example

@noindent
produces the familiar ``sombrero'' plot shown in @ref{fig:mesh}.  Note
the use of the function @code{meshgrid} to create matrices of X and Y
coordinates to use for plotting the Z data.  The @code{ndgrid} function
is similar to @code{meshgrid}, but works for N-dimensional matrices.

@float Figure,fig:mesh
@center @image{mesh,4in}
@caption{Mesh plot.}
@end float

The @code{meshc} function is similar to @code{mesh}, but also produces a
plot of contours for the surface.

The @code{plot3} function displays arbitrary three-dimensional data,
without requiring it to form a surface.  For example,

@example
@group
t = 0:0.1:10*pi;
r = linspace (0, 1, numel (t));
z = linspace (0, 1, numel (t));
plot3 (r.*sin (t), r.*cos (t), z);
xlabel ("r.*sin (t)");
ylabel ("r.*cos (t)");
zlabel ("z");
title ("plot3 display of 3-D helix");
@end group
@end example

@noindent
displays the spiral in three dimensions shown in @ref{fig:plot3}.

@float Figure,fig:plot3
@center @image{plot3,4in}
@caption{Three-dimensional spiral.}
@end float

Finally, the @code{view} function changes the viewpoint for
three-dimensional plots.

@c mesh scripts/plot/draw/mesh.m
@anchor{XREFmesh}
@deftypefn  {} {} mesh (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} mesh (@var{z})
@deftypefnx {} {} mesh (@dots{}, @var{c})
@deftypefnx {} {} mesh (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} mesh (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} mesh (@dots{})
Plot a 3-D wireframe mesh.

The wireframe mesh is plotted using rectangles.  The vertices of the
rectangles [@var{x}, @var{y}] are typically the output of @code{meshgrid}.
over a 2-D rectangular region in the x-y plane.  @var{z} determines the
height above the plane of each vertex.  If only a single @var{z} matrix is
given, then it is plotted over the meshgrid
@code{@var{x} = 1:columns (@var{z}), @var{y} = 1:rows (@var{z})}.
Thus, columns of @var{z} correspond to different @var{x} values and rows
of @var{z} correspond to different @var{y} values.

The color of the mesh is computed by linearly scaling the @var{z} values
to fit the range of the current colormap.  Use @code{caxis} and/or
change the colormap to control the appearance.

Optionally, the color of the mesh can be specified independently of @var{z}
by supplying a color matrix, @var{c}.

Any property/value pairs are passed directly to the underlying surface
object.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
surface object.

@seealso{@ref{XREFezmesh,,ezmesh}, @ref{XREFmeshc,,meshc}, @ref{XREFmeshz,,meshz}, @ref{XREFtrimesh,,trimesh}, @ref{XREFcontour,,contour}, @ref{XREFsurf,,surf}, @ref{XREFsurface,,surface}, @ref{XREFmeshgrid,,meshgrid}, @ref{XREFhidden,,hidden}, @ref{XREFshading,,shading}, @ref{XREFcolormap,,colormap}, @ref{XREFcaxis,,caxis}}
@end deftypefn


@c meshc scripts/plot/draw/meshc.m
@anchor{XREFmeshc}
@deftypefn  {} {} meshc (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} meshc (@var{z})
@deftypefnx {} {} meshc (@dots{}, @var{c})
@deftypefnx {} {} meshc (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} meshc (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} meshc (@dots{})
Plot a 3-D wireframe mesh with underlying contour lines.

The wireframe mesh is plotted using rectangles.  The vertices of the
rectangles [@var{x}, @var{y}] are typically the output of @code{meshgrid}.
over a 2-D rectangular region in the x-y plane.  @var{z} determines the
height above the plane of each vertex.  If only a single @var{z} matrix is
given, then it is plotted over the meshgrid
@code{@var{x} = 1:columns (@var{z}), @var{y} = 1:rows (@var{z})}.
Thus, columns of @var{z} correspond to different @var{x} values and rows
of @var{z} correspond to different @var{y} values.

The color of the mesh is computed by linearly scaling the @var{z} values
to fit the range of the current colormap.  Use @code{caxis} and/or
change the colormap to control the appearance.

Optionally the color of the mesh can be specified independently of @var{z}
by supplying a color matrix, @var{c}.

Any property/value pairs are passed directly to the underlying surface
object.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a 2-element vector with a graphics
handle to the created surface object and to the created contour plot.

@seealso{@ref{XREFezmeshc,,ezmeshc}, @ref{XREFmesh,,mesh}, @ref{XREFmeshz,,meshz}, @ref{XREFcontour,,contour}, @ref{XREFsurfc,,surfc}, @ref{XREFsurface,,surface}, @ref{XREFmeshgrid,,meshgrid}, @ref{XREFhidden,,hidden}, @ref{XREFshading,,shading}, @ref{XREFcolormap,,colormap}, @ref{XREFcaxis,,caxis}}
@end deftypefn


@c meshz scripts/plot/draw/meshz.m
@anchor{XREFmeshz}
@deftypefn  {} {} meshz (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} meshz (@var{z})
@deftypefnx {} {} meshz (@dots{}, @var{c})
@deftypefnx {} {} meshz (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} meshz (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} meshz (@dots{})
Plot a 3-D wireframe mesh with a surrounding curtain.

The wireframe mesh is plotted using rectangles.  The vertices of the
rectangles [@var{x}, @var{y}] are typically the output of @code{meshgrid}.
over a 2-D rectangular region in the x-y plane.  @var{z} determines the
height above the plane of each vertex.  If only a single @var{z} matrix is
given, then it is plotted over the meshgrid
@code{@var{x} = 1:columns (@var{z}), @var{y} = 1:rows (@var{z})}.
Thus, columns of @var{z} correspond to different @var{x} values and rows
of @var{z} correspond to different @var{y} values.

The color of the mesh is computed by linearly scaling the @var{z} values
to fit the range of the current colormap.  Use @code{caxis} and/or
change the colormap to control the appearance.

Optionally the color of the mesh can be specified independently of @var{z}
by supplying a color matrix, @var{c}.

Any property/value pairs are passed directly to the underlying surface
object.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
surface object.

@seealso{@ref{XREFmesh,,mesh}, @ref{XREFmeshc,,meshc}, @ref{XREFcontour,,contour}, @ref{XREFsurf,,surf}, @ref{XREFsurface,,surface}, @ref{XREFwaterfall,,waterfall}, @ref{XREFmeshgrid,,meshgrid}, @ref{XREFhidden,,hidden}, @ref{XREFshading,,shading}, @ref{XREFcolormap,,colormap}, @ref{XREFcaxis,,caxis}}
@end deftypefn


@c hidden scripts/plot/appearance/hidden.m
@anchor{XREFhidden}
@deftypefn  {} {} hidden
@deftypefnx {} {} hidden on
@deftypefnx {} {} hidden off
@deftypefnx {} {@var{mode} =} hidden (@dots{})
Control mesh hidden line removal.

When called with no argument the hidden line removal state is toggled.

When called with one of the modes @qcode{"on"} or @qcode{"off"} the state
is set accordingly.

The optional output argument @var{mode} is the current state.

Hidden Line Removal determines what graphic objects behind a mesh plot
are visible.  The default is for the mesh to be opaque and lines behind
the mesh are not visible.  If hidden line removal is turned off then
objects behind the mesh can be seen through the faces (openings) of the
mesh, although the mesh grid lines are still opaque.

@seealso{@ref{XREFmesh,,mesh}, @ref{XREFmeshc,,meshc}, @ref{XREFmeshz,,meshz}, @ref{XREFezmesh,,ezmesh}, @ref{XREFezmeshc,,ezmeshc}, @ref{XREFtrimesh,,trimesh}, @ref{XREFwaterfall,,waterfall}}
@end deftypefn


@c surf scripts/plot/draw/surf.m
@anchor{XREFsurf}
@deftypefn  {} {} surf (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} surf (@var{z})
@deftypefnx {} {} surf (@dots{}, @var{c})
@deftypefnx {} {} surf (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} surf (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} surf (@dots{})
Plot a 3-D surface mesh.

The surface mesh is plotted using shaded rectangles.  The vertices of the
rectangles [@var{x}, @var{y}] are typically the output of @code{meshgrid}.
over a 2-D rectangular region in the x-y plane.  @var{z} determines the
height above the plane of each vertex.  If only a single @var{z} matrix is
given, then it is plotted over the meshgrid
@code{@var{x} = 1:columns (@var{z}), @var{y} = 1:rows (@var{z})}.
Thus, columns of @var{z} correspond to different @var{x} values and rows
of @var{z} correspond to different @var{y} values.

The color of the surface is computed by linearly scaling the @var{z} values
to fit the range of the current colormap.  Use @code{caxis} and/or
change the colormap to control the appearance.

Optionally, the color of the surface can be specified independently of
@var{z} by supplying a color matrix, @var{c}.

Any property/value pairs are passed directly to the underlying surface
object.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
surface object.

Note: The exact appearance of the surface can be controlled with the
@code{shading} command or by using @code{set} to control surface object
properties.
@seealso{@ref{XREFezsurf,,ezsurf}, @ref{XREFsurfc,,surfc}, @ref{XREFsurfl,,surfl}, @ref{XREFsurfnorm,,surfnorm}, @ref{XREFtrisurf,,trisurf}, @ref{XREFcontour,,contour}, @ref{XREFmesh,,mesh}, @ref{XREFsurface,,surface}, @ref{XREFmeshgrid,,meshgrid}, @ref{XREFhidden,,hidden}, @ref{XREFshading,,shading}, @ref{XREFcolormap,,colormap}, @ref{XREFcaxis,,caxis}}
@end deftypefn


@c surfc scripts/plot/draw/surfc.m
@anchor{XREFsurfc}
@deftypefn  {} {} surfc (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} surfc (@var{z})
@deftypefnx {} {} surfc (@dots{}, @var{c})
@deftypefnx {} {} surfc (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} surfc (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} surfc (@dots{})
Plot a 3-D surface mesh with underlying contour lines.

The surface mesh is plotted using shaded rectangles.  The vertices of the
rectangles [@var{x}, @var{y}] are typically the output of @code{meshgrid}.
over a 2-D rectangular region in the x-y plane.  @var{z} determines the
height above the plane of each vertex.  If only a single @var{z} matrix is
given, then it is plotted over the meshgrid
@code{@var{x} = 1:columns (@var{z}), @var{y} = 1:rows (@var{z})}.
Thus, columns of @var{z} correspond to different @var{x} values and rows
of @var{z} correspond to different @var{y} values.

The color of the surface is computed by linearly scaling the @var{z} values
to fit the range of the current colormap.  Use @code{caxis} and/or
change the colormap to control the appearance.

Optionally, the color of the surface can be specified independently of
@var{z} by supplying a color matrix, @var{c}.

Any property/value pairs are passed directly to the underlying surface
object.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
surface object.

Note: The exact appearance of the surface can be controlled with the
@code{shading} command or by using @code{set} to control surface object
properties.
@seealso{@ref{XREFezsurfc,,ezsurfc}, @ref{XREFsurf,,surf}, @ref{XREFsurfl,,surfl}, @ref{XREFsurfnorm,,surfnorm}, @ref{XREFtrisurf,,trisurf}, @ref{XREFcontour,,contour}, @ref{XREFmesh,,mesh}, @ref{XREFsurface,,surface}, @ref{XREFmeshgrid,,meshgrid}, @ref{XREFhidden,,hidden}, @ref{XREFshading,,shading}, @ref{XREFcolormap,,colormap}, @ref{XREFcaxis,,caxis}}
@end deftypefn


@c surfl scripts/plot/draw/surfl.m
@anchor{XREFsurfl}
@deftypefn  {} {} surfl (@var{z})
@deftypefnx {} {} surfl (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} surfl (@dots{}, @var{lsrc})
@deftypefnx {} {} surfl (@var{x}, @var{y}, @var{z}, @var{lsrc}, @var{P})
@deftypefnx {} {} surfl (@dots{}, "cdata")
@deftypefnx {} {} surfl (@dots{}, "light")
@deftypefnx {} {} surfl (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} surfl (@dots{})
Plot a 3-D surface using shading based on various lighting models.

The surface mesh is plotted using shaded rectangles.  The vertices of the
rectangles [@var{x}, @var{y}] are typically the output of @code{meshgrid}.
over a 2-D rectangular region in the x-y plane.  @var{z} determines the
height above the plane of each vertex.  If only a single @var{z} matrix is
given, then it is plotted over the meshgrid
@code{@var{x} = 1:columns (@var{z}), @var{y} = 1:rows (@var{z})}.
Thus, columns of @var{z} correspond to different @var{x} values and rows
of @var{z} correspond to different @var{y} values.

The default lighting mode @qcode{"cdata"}, changes the cdata property of the
surface object to give the impression of a lighted surface.
@strong{Warning:} The alternative mode @qcode{"light"} mode which creates a
light object to illuminate the surface is not implemented (yet).

The light source location can be specified using @var{lsrc}.  It can be
given as a 2-element vector [azimuth, elevation] in degrees, or as a
3-element vector [lx, ly, lz].  The default value is rotated 45 degrees
counterclockwise to the current view.

The material properties of the surface can specified using a 4-element
vector @var{P} = [@var{AM} @var{D} @var{SP} @var{exp}] which defaults to
@var{p} = [0.55 0.6 0.4 10].

@table @asis
@item @qcode{"AM"} strength of ambient light

@item @qcode{"D"} strength of diffuse reflection

@item @qcode{"SP"} strength of specular reflection

@item @qcode{"EXP"} specular exponent
@end table

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
surface object.

Example:

@example
@group
colormap (bone (64));
surfl (peaks);
shading interp;
@end group
@end example
@seealso{@ref{XREFdiffuse,,diffuse}, @ref{XREFspecular,,specular}, @ref{XREFsurf,,surf}, @ref{XREFshading,,shading}, @ref{XREFcolormap,,colormap}, @ref{XREFcaxis,,caxis}}
@end deftypefn


@c surfnorm scripts/plot/draw/surfnorm.m
@anchor{XREFsurfnorm}
@deftypefn  {} {} surfnorm (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} surfnorm (@var{z})
@deftypefnx {} {} surfnorm (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} surfnorm (@var{hax}, @dots{})
@deftypefnx {} {[@var{nx}, @var{ny}, @var{nz}] =} surfnorm (@dots{})
Find the vectors normal to a meshgridded surface.

If @var{x} and @var{y} are vectors, then a typical vertex is
(@var{x}(j), @var{y}(i), @var{z}(i,j)).  Thus, columns of @var{z} correspond
to different @var{x} values and rows of @var{z} correspond to different
@var{y} values.  If only a single input @var{z} is given then @var{x} is
taken to be @code{1:columns (@var{z})} and @var{y} is
@code{1:rows (@var{z})}.

If no return arguments are requested, a surface plot with the normal
vectors to the surface is plotted.

Any property/value input pairs are assigned to the surface object.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

If output arguments are requested then the components of the normal
vectors are returned in @var{nx}, @var{ny}, and @var{nz} and no plot is
made.  The normal vectors are unnormalized (magnitude != 1).  To normalize,
use

@example
@group
len = sqrt (nx.^2 + ny.^2 + nz.^2);
nx ./= len;  ny ./= len;  nz ./= len;
@end group
@end example

An example of the use of @code{surfnorm} is

@example
surfnorm (peaks (25));
@end example

Algorithm: The normal vectors are calculated by taking the cross product
of the diagonals of each of the quadrilateral faces in the meshgrid to find
the normal vectors at the center of each face.  Next, for each meshgrid
point the four nearest normal vectors are averaged to obtain the final
normal to the surface at the meshgrid point.

For surface objects, the @qcode{"VertexNormals"} property contains
equivalent information, except possibly near the boundary of the surface
where different interpolation schemes may yield slightly different values.

@seealso{@ref{XREFisonormals,,isonormals}, @ref{XREFquiver3,,quiver3}, @ref{XREFsurf,,surf}, @ref{XREFmeshgrid,,meshgrid}}
@end deftypefn


@c isosurface scripts/plot/draw/isosurface.m
@anchor{XREFisosurface}
@deftypefn  {} {@var{fv} =} isosurface (@var{v}, @var{isoval})
@deftypefnx {} {@var{fv} =} isosurface (@var{v})
@deftypefnx {} {@var{fv} =} isosurface (@var{x}, @var{y}, @var{z}, @var{v}, @var{isoval})
@deftypefnx {} {@var{fv} =} isosurface (@var{x}, @var{y}, @var{z}, @var{v})
@deftypefnx {} {@var{fvc} =} isosurface (@dots{}, @var{col})
@deftypefnx {} {@var{fv} =} isosurface (@dots{}, "noshare")
@deftypefnx {} {@var{fv} =} isosurface (@dots{}, "verbose")
@deftypefnx {} {[@var{f}, @var{v}] =} isosurface (@dots{})
@deftypefnx {} {[@var{f}, @var{v}, @var{c}] =} isosurface (@dots{})
@deftypefnx {} {} isosurface (@dots{})

Calculate isosurface of 3-D volume data.

An isosurface connects points with the same value and is analogous to a
contour plot, but in three dimensions.

The input argument @var{v} is a three-dimensional array that contains data
sampled over a volume.

The input @var{isoval} is a scalar that specifies the value for the
isosurface.  If @var{isoval} is omitted or empty, a @nospell{"good"} value
for an isosurface is determined from @var{v}.

When called with a single output argument @code{isosurface} returns a
structure array @var{fv} that contains the fields @var{faces} and
@var{vertices} computed at the points
@code{[@var{x}, @var{y}, @var{z}] = meshgrid (1:l, 1:m, 1:n)} where
@code{[l, m, n] = size (@var{v})}.  The output @var{fv} can be
used directly as input to the @code{patch} function.

If called with additional input arguments @var{x}, @var{y}, and @var{z}
that are three-dimensional arrays with the same size as @var{v} or
vectors with lengths corresponding to the dimensions of @var{v}, then the
volume data is taken at the specified points.  If @var{x}, @var{y}, or
@var{z} are empty, the grid corresponds to the indices (@code{1:n}) in
the respective direction (@pxref{XREFmeshgrid,,meshgrid}).

The optional input argument @var{col}, which is a three-dimensional array
of the same size as @var{v}, specifies coloring of the isosurface.  The
color data is interpolated, as necessary, to match @var{isoval}.  The
output structure array, in this case, has the additional field
@var{facevertexcdata}.

If given the string input argument @qcode{"noshare"}, vertices may be
returned multiple times for different faces.  The default behavior is to
eliminate vertices shared by adjacent faces with @code{unique} which may be
time consuming.

The string input argument @qcode{"verbose"} is supported for @sc{matlab}
compatibility, but has no effect.

Any string arguments must be passed after the other arguments.

If called with two or three output arguments, return the information about
the faces @var{f}, vertices @var{v}, and color data @var{c} as separate
arrays instead of a single structure array.

If called with no output argument, the isosurface geometry is directly
plotted with the @code{patch} command and a light object is added to
the axes if not yet present.

For example,

@example
@group
[x, y, z] = meshgrid (1:5, 1:5, 1:5);
v = rand (5, 5, 5);
isosurface (x, y, z, v, .5);
@end group
@end example

@noindent
will directly draw a random isosurface geometry in a graphics window.

An example of an isosurface geometry with different additional coloring:
@c Set example in small font to prevent overfull line

@smallexample
N = 15;    # Increase number of vertices in each direction
iso = .4;  # Change isovalue to .1 to display a sphere
lin = linspace (0, 2, N);
[x, y, z] = meshgrid (lin, lin, lin);
v = abs ((x-.5).^2 + (y-.5).^2 + (z-.5).^2);
figure ();

subplot (2,2,1); view (-38, 20);
[f, vert] = isosurface (x, y, z, v, iso);
p = patch ("Faces", f, "Vertices", vert, "EdgeColor", "none");
pbaspect ([1 1 1]);
isonormals (x, y, z, v, p)
set (p, "FaceColor", "green", "FaceLighting", "gouraud");
light ("Position", [1 1 5]);

subplot (2,2,2); view (-38, 20);
p = patch ("Faces", f, "Vertices", vert, "EdgeColor", "blue");
pbaspect ([1 1 1]);
isonormals (x, y, z, v, p)
set (p, "FaceColor", "none", "EdgeLighting", "gouraud");
light ("Position", [1 1 5]);

subplot (2,2,3); view (-38, 20);
[f, vert, c] = isosurface (x, y, z, v, iso, y);
p = patch ("Faces", f, "Vertices", vert, "FaceVertexCData", c, ...
           "FaceColor", "interp", "EdgeColor", "none");
pbaspect ([1 1 1]);
isonormals (x, y, z, v, p)
set (p, "FaceLighting", "gouraud");
light ("Position", [1 1 5]);

subplot (2,2,4); view (-38, 20);
p = patch ("Faces", f, "Vertices", vert, "FaceVertexCData", c, ...
           "FaceColor", "interp", "EdgeColor", "blue");
pbaspect ([1 1 1]);
isonormals (x, y, z, v, p)
set (p, "FaceLighting", "gouraud");
light ("Position", [1 1 5]);
@end smallexample

@seealso{@ref{XREFisonormals,,isonormals}, @ref{XREFisocolors,,isocolors}, @ref{XREFisocaps,,isocaps}, @ref{XREFsmooth3,,smooth3}, @ref{XREFreducevolume,,reducevolume}, @ref{XREFreducepatch,,reducepatch}, @ref{XREFpatch,,patch}}
@end deftypefn


@c isonormals scripts/plot/draw/isonormals.m
@anchor{XREFisonormals}
@deftypefn  {} {@var{vn} =} isonormals (@var{val}, @var{vert})
@deftypefnx {} {@var{vn} =} isonormals (@var{val}, @var{hp})
@deftypefnx {} {@var{vn} =} isonormals (@var{x}, @var{y}, @var{z}, @var{val}, @var{vert})
@deftypefnx {} {@var{vn} =} isonormals (@var{x}, @var{y}, @var{z}, @var{val}, @var{hp})
@deftypefnx {} {@var{vn} =} isonormals (@dots{}, "negate")
@deftypefnx {} {} isonormals (@var{val}, @var{hp})
@deftypefnx {} {} isonormals (@var{x}, @var{y}, @var{z}, @var{val}, @var{hp})
@deftypefnx {} {} isonormals (@dots{}, "negate")

Calculate normals to an isosurface.

The vertex normals @var{vn} are calculated from the gradient of the
3-dimensional array @var{val} (size: lxmxn) containing the data for an
isosurface geometry.  The normals point towards smaller values in @var{val}.

If called with one output argument @var{vn}, and the second input argument
@var{vert} holds the vertices of an isosurface, then the normals @var{vn}
are calculated at the vertices @var{vert} on a grid given by
@code{[x, y, z] = meshgrid (1:l, 1:m, 1:n)}.  The output argument
@var{vn} has the same size as @var{vert} and can be used to set the
@qcode{"VertexNormals"} property of the corresponding patch.

If called with additional input arguments @var{x}, @var{y}, and @var{z},
which are 3-dimensional arrays with the same size as @var{val},
then the volume data is taken at these points.  Instead of the vertex data
@var{vert}, a patch handle @var{hp} can be passed to the function.

If the last input argument is the string @qcode{"negate"}, compute the
reverse vector normals of an isosurface geometry (i.e., pointed towards
larger values in @var{val}).

If no output argument is given, the property @qcode{"VertexNormals"} of
the patch associated with the patch handle @var{hp} is changed directly.

@seealso{@ref{XREFisosurface,,isosurface}, @ref{XREFisocolors,,isocolors}, @ref{XREFsmooth3,,smooth3}}
@end deftypefn


@c isocaps scripts/plot/draw/isocaps.m
@anchor{XREFisocaps}
@deftypefn  {} {@var{fvc} =} isocaps (@var{v}, @var{isoval})
@deftypefnx {} {@var{fvc} =} isocaps (@var{v})
@deftypefnx {} {@var{fvc} =} isocaps (@var{x}, @var{y}, @var{z}, @var{v}, @var{isoval})
@deftypefnx {} {@var{fvc} =} isocaps (@var{x}, @var{y}, @var{z}, @var{v})
@deftypefnx {} {@var{fvc} =} isocaps (@dots{}, @var{which_caps})
@deftypefnx {} {@var{fvc} =} isocaps (@dots{}, @var{which_plane})
@deftypefnx {} {@var{fvc} =} isocaps (@dots{}, @qcode{"verbose"})
@deftypefnx {} {[@var{faces}, @var{vertices}, @var{fvcdata}] =} isocaps (@dots{})
@deftypefnx {} {} isocaps (@dots{})

Create end-caps for isosurfaces of 3-D data.

This function places caps at the open ends of isosurfaces.

The input argument @var{v} is a three-dimensional array that contains data
sampled over a volume.

The input @var{isoval} is a scalar that specifies the value for the
isosurface.  If @var{isoval} is omitted or empty, a @nospell{"good"} value
for an isosurface is determined from @var{v}.

When called with a single output argument, @code{isocaps} returns a
structure array @var{fvc} with the fields: @code{faces}, @code{vertices},
and @code{facevertexcdata}.  The results are computed at the points
@code{[@var{x}, @var{y}, @var{z}] = meshgrid (1:l, 1:m, 1:n)} where
@code{[l, m, n] = size (@var{v})}.  The output @var{fvc} can be used
directly as input to the @code{patch} function.

If called with additional input arguments @var{x}, @var{y}, and @var{z}
that are three-dimensional arrays with the same size as @var{v} or
vectors with lengths corresponding to the dimensions of @var{v}, then the
volume data is taken at the specified points.  If @var{x}, @var{y}, or
@var{z} are empty, the grid corresponds to the indices (@code{1:n}) in
the respective direction (@pxref{XREFmeshgrid,,meshgrid}).

The optional parameter @var{which_caps} can have one of the following
string values which defines how the data will be enclosed:

@table @asis
@item @qcode{"above"}, @qcode{"a"} (default)
for end-caps that enclose the data above @var{isoval}.

@item @qcode{"below"}, @qcode{"b"}
for end-caps that enclose the data below @var{isoval}.
@end table

The optional parameter @var{which_plane} can have one of the following
string values to define which end-cap should be drawn:

@table @asis
@item @qcode{"all"} (default)
for all of the end-caps.

@item @qcode{"xmin"}
for end-caps at the lower x-plane of the data.

@item @qcode{"xmax"}
for end-caps at the upper x-plane of the data.

@item @qcode{"ymin"}
for end-caps at the lower y-plane of the data.

@item @qcode{"ymax"}
for end-caps at the upper y-plane of the data.

@item @qcode{"zmin"}
for end-caps at the lower z-plane of the data.

@item @qcode{"zmax"}
for end-caps at the upper z-plane of the data.
@end table

The string input argument @qcode{"verbose"} is supported for @sc{matlab}
compatibility, but has no effect.

If called with two or three output arguments, the data for faces
@var{faces}, vertices @var{vertices}, and the color data
@var{facevertexcdata} are returned in separate arrays instead of a single
structure.

If called with no output argument, the end-caps are drawn directly in the
current figure with the @code{patch} command.

@seealso{@ref{XREFisosurface,,isosurface}, @ref{XREFisonormals,,isonormals}, @ref{XREFpatch,,patch}}
@end deftypefn


@c isocolors scripts/plot/draw/isocolors.m
@anchor{XREFisocolors}
@deftypefn  {} {@var{cdat} =} isocolors (@var{c}, @var{v})
@deftypefnx {} {@var{cdat} =} isocolors (@var{x}, @var{y}, @var{z}, @var{c}, @var{v})
@deftypefnx {} {@var{cdat} =} isocolors (@var{x}, @var{y}, @var{z}, @var{r}, @var{g}, @var{b}, @var{v})
@deftypefnx {} {@var{cdat} =} isocolors (@var{r}, @var{g}, @var{b}, @var{v})
@deftypefnx {} {@var{cdat} =} isocolors (@dots{}, @var{p})
@deftypefnx {} {} isocolors (@dots{})

Compute isosurface colors.

If called with one output argument, and the first input argument @var{c}
is a three-dimensional array that contains indexed color values, and the
second input argument @var{v} are the vertices of an isosurface geometry,
then return a matrix @var{cdat} with color data information for the geometry
at computed points @code{[x, y, z] = meshgrid (1:l, 1:m, 1:n)}.  The output
argument @var{cdat} can be used to manually set the
@qcode{"FaceVertexCData"} property of an isosurface patch object.

If called with additional input arguments @var{x}, @var{y} and @var{z} which
are three-dimensional arrays of the same size as @var{c} then the
color data is taken at those specified points.

Instead of indexed color data @var{c}, @code{isocolors} can also be called
with RGB values @var{r}, @var{g}, @var{b}.  If input arguments @var{x},
@var{y}, @var{z} are not given then @code{meshgrid} computed values are
used.

Optionally, a patch handle @var{p} can be given as the last input argument
to all function call variations and the vertex data will be extracted
from the isosurface patch object.  Finally, if no output argument is given
then the colors of the patch given by the patch handle @var{p} are changed.

@seealso{@ref{XREFisosurface,,isosurface}, @ref{XREFisonormals,,isonormals}}
@end deftypefn


@c smooth3 scripts/plot/draw/smooth3.m
@anchor{XREFsmooth3}
@deftypefn  {} {@var{smoothed_data} =} smooth3 (@var{data})
@deftypefnx {} {@var{smoothed_data} =} smooth3 (@var{data}, @var{method})
@deftypefnx {} {@var{smoothed_data} =} smooth3 (@var{data}, @var{method}, @var{sz})
@deftypefnx {} {@var{smoothed_data} =} smooth3 (@var{data}, @var{method}, @var{sz}, @var{std_dev})
Smooth values of 3-dimensional matrix @var{data}.

This function can be used, for example, to reduce the impact of noise in
@var{data} before calculating isosurfaces.

@var{data} must be a non-singleton 3-dimensional matrix.  The smoothed data
from this matrix is returned in @var{smoothed_data} which is of the same
size as @var{data}.

The option input @var{method} determines which convolution kernel is used
for the smoothing process.  Possible choices:

@table @asis
@item @qcode{"box"}, @qcode{"b"} (default)
to use a convolution kernel with sharp edges.

@item @qcode{"gaussian"}, @qcode{"g"}
to use a convolution kernel that is represented by a non-correlated
trivariate normal distribution function.
@end table

@var{sz} is either a vector of 3 elements representing the size of the
convolution kernel in x-, y- and z-direction or a scalar, in which case
the same size is used in all three dimensions.  The default value is 3.

When @var{method} is @qcode{"gaussian"}, @var{std_dev} defines the standard
deviation of the trivariate normal distribution function.  @var{std_dev} is
either a vector of 3 elements representing the standard deviation of the
Gaussian convolution kernel in x-, y- and z-directions or a scalar, in which
case the same value is used in all three dimensions.  The default value is
0.65.

@seealso{@ref{XREFisosurface,,isosurface}, @ref{XREFisonormals,,isonormals}, @ref{XREFpatch,,patch}}
@end deftypefn


@c reducevolume scripts/plot/draw/reducevolume.m
@anchor{XREFreducevolume}
@deftypefn  {} {[@var{nx}, @var{ny}, @var{nz}, @var{nv}] =} reducevolume (@var{v}, @var{r})
@deftypefnx {} {[@var{nx}, @var{ny}, @var{nz}, @var{nv}] =} reducevolume (@var{x}, @var{y}, @var{z}, @var{v}, @var{r})
@deftypefnx {} {@var{nv} =} reducevolume (@dots{})

Reduce the volume of the dataset in @var{v} according to the values in
@var{r}.

@var{v} is a matrix that is non-singleton in the first 3 dimensions.

@var{r} can either be a vector of 3 elements representing the reduction
factors in the x-, y-, and z-directions or a scalar, in which case the same
reduction factor is used in all three dimensions.

@code{reducevolume} reduces the number of elements of @var{v} by taking
only every @var{r}-th element in the respective dimension.

Optionally, @var{x}, @var{y}, and @var{z} can be supplied to represent the
set of coordinates of @var{v}.  They can either be matrices of the same size
as @var{v} or vectors with sizes according to the dimensions of @var{v}, in
which case they are expanded to matrices (@pxref{XREFmeshgrid,,meshgrid}).

If @code{reducevolume} is called with two arguments then @var{x}, @var{y},
and @var{z} are assumed to match the respective indices of @var{v}.

The reduced matrix is returned in @var{nv}.

Optionally, the reduced set of coordinates are returned in @var{nx},
@var{ny}, and @var{nz}, respectively.

Examples:

@example
@group
@var{v} = reshape (1:6*8*4, [6 8 4]);
@var{nv} = reducevolume (@var{v}, [4 3 2]);
@end group
@end example

@example
@group
@var{v} = reshape (1:6*8*4, [6 8 4]);
@var{x} = 1:3:24;  @var{y} = -14:5:11;  @var{z} = linspace (16, 18, 4);
[@var{nx}, @var{ny}, @var{nz}, @var{nv}] = reducevolume (@var{x}, @var{y}, @var{z}, @var{v}, [4 3 2]);
@end group
@end example

@seealso{@ref{XREFisosurface,,isosurface}, @ref{XREFisonormals,,isonormals}}
@end deftypefn


@c reducepatch scripts/plot/draw/reducepatch.m
@anchor{XREFreducepatch}
@deftypefn  {} {@var{reduced_fv} =} reducepatch (@var{fv})
@deftypefnx {} {@var{reduced_fv} =} reducepatch (@var{faces}, @var{vertices})
@deftypefnx {} {@var{reduced_fv} =} reducepatch (@var{patch_handle})
@deftypefnx {} {} reducepatch (@var{patch_handle})
@deftypefnx {} {@var{reduced_fv} =} reducepatch (@dots{}, @var{reduction_factor})
@deftypefnx {} {@var{reduced_fv} =} reducepatch (@dots{}, "fast")
@deftypefnx {} {@var{reduced_fv} =} reducepatch (@dots{}, "verbose")
@deftypefnx {} {[@var{reduced_faces}, @var{reduces_vertices}] =} reducepatch (@dots{})

Reduce the number of faces and vertices in a patch object while retaining
the overall shape of the patch.

The input patch can be represented by a structure @var{fv} with the
fields @code{faces} and @code{vertices}, by two matrices @var{faces} and
@var{vertices} (see, e.g., the result of @code{isosurface}), or by a
handle to a patch object @var{patch_handle} (@pxref{XREFpatch,,patch}).

The number of faces and vertices in the patch is reduced by iteratively
collapsing the shortest edge of the patch to its midpoint (as discussed,
e.g., here:
@url{https://libigl.github.io/libigl/tutorial/tutorial.html#meshdecimation}).

Currently, only patches consisting of triangles are supported.  The
resulting patch also consists only of triangles.

If @code{reducepatch} is called with a handle to a valid patch
@var{patch_handle}, and without any output arguments, then the given
patch is updated immediately.

If the @var{reduction_factor} is omitted, the resulting structure
@var{reduced_fv} includes approximately 50% of the faces of the original
patch.  If @var{reduction_factor} is a fraction between 0 (excluded) and 1
(excluded), a patch with approximately the corresponding fraction of faces
is determined.
If @var{reduction_factor} is an integer greater than or equal to 1, the
resulting patch has approximately @var{reduction_factor} faces.  Depending
on the geometry of the patch, the resulting number of faces can differ from
the given value of @var{reduction_factor}.  This is especially true when
many shared vertices are detected.

For the reduction, it is necessary that vertices of touching faces are
shared.  Shared vertices are detected automatically.  This detection can be
skipped by passing the optional string argument @qcode{"fast"}.

With the optional string arguments @qcode{"verbose"}, additional status
messages are printed to the command window.

Any string input arguments must be passed after all other arguments.

If called with one output argument, the reduced faces and vertices are
returned in a structure @var{reduced_fv} with the fields @code{faces} and
@code{vertices} (see the one output option of @code{isosurface}).

If called with two output arguments, the reduced faces and vertices are
returned in two separate matrices @var{reduced_faces} and
@var{reduced_vertices}.

@seealso{@ref{XREFisosurface,,isosurface}, @ref{XREFisonormals,,isonormals}, @ref{XREFreducevolume,,reducevolume}, @ref{XREFpatch,,patch}}
@end deftypefn


@c shrinkfaces scripts/plot/draw/shrinkfaces.m
@anchor{XREFshrinkfaces}
@deftypefn  {} {} shrinkfaces (@var{p}, @var{sf})
@deftypefnx {} {@var{nfv} =} shrinkfaces (@var{p}, @var{sf})
@deftypefnx {} {@var{nfv} =} shrinkfaces (@var{fv}, @var{sf})
@deftypefnx {} {@var{nfv} =} shrinkfaces (@var{f}, @var{v}, @var{sf})
@deftypefnx {} {[@var{nf}, @var{nv}] =} shrinkfaces (@dots{})

Reduce the size of faces in a patch by the shrink factor @var{sf}.

The patch object can be specified by a graphics handle (@var{p}), a patch
structure (@var{fv}) with the fields @qcode{"faces"} and @qcode{"vertices"},
or as two separate matrices (@var{f}, @var{v}) of faces and vertices.

The shrink factor @var{sf} is a positive number specifying the percentage
of the original area the new face will occupy.  If no factor is given the
default is 0.3 (a reduction to 30% of the original size).  A factor greater
than 1.0 will result in the expansion of faces.

Given a patch handle as the first input argument and no output parameters,
perform the shrinking of the patch faces in place and redraw the patch.

If called with one output argument, return a structure with fields
@qcode{"faces"}, @qcode{"vertices"}, and @qcode{"facevertexcdata"}
containing the data after shrinking.  This structure can be used directly
as an input argument to the @code{patch} function.

@strong{Caution:}: Performing the shrink operation on faces which are not
convex can lead to undesirable results.

Example: a triangulated 3/4 circle and the corresponding shrunken version.

@example
@group
[phi r] = meshgrid (linspace (0, 1.5*pi, 16), linspace (1, 2, 4));
tri = delaunay (phi(:), r(:));
v = [r(:).*sin(phi(:)) r(:).*cos(phi(:))];
clf ()
p = patch ("Faces", tri, "Vertices", v, "FaceColor", "none");
fv = shrinkfaces (p);
patch (fv)
axis equal
grid on
@end group
@end example

@seealso{@ref{XREFpatch,,patch}}
@end deftypefn


@c diffuse scripts/plot/appearance/diffuse.m
@anchor{XREFdiffuse}
@deftypefn {} {} diffuse (@var{sx}, @var{sy}, @var{sz}, @var{lv})
Calculate the diffuse reflection strength of a surface defined by the normal
vector elements @var{sx}, @var{sy}, @var{sz}.

The light source location vector @var{lv} can be given as a 2-element vector
[azimuth, elevation] in degrees or as a 3-element vector [x, y, z].
@seealso{@ref{XREFspecular,,specular}, @ref{XREFsurfl,,surfl}}
@end deftypefn


@c specular scripts/plot/appearance/specular.m
@anchor{XREFspecular}
@deftypefn  {} {} specular (@var{sx}, @var{sy}, @var{sz}, @var{lv}, @var{vv})
@deftypefnx {} {} specular (@var{sx}, @var{sy}, @var{sz}, @var{lv}, @var{vv}, @var{se})
Calculate the specular reflection strength of a surface defined by the
normal vector elements @var{sx}, @var{sy}, @var{sz} using Phong's
approximation.

The light source location and viewer location vectors are specified using
parameters @var{lv} and @var{vv} respectively.  The location vectors can
given as 2-element vectors [azimuth, elevation] in degrees or as 3-element
vectors [x, y, z].

An optional sixth argument specifies the specular exponent (spread)
@var{se}.  If not given, @var{se} defaults to 10.
@seealso{@ref{XREFdiffuse,,diffuse}, @ref{XREFsurfl,,surfl}}
@end deftypefn


@c lighting scripts/plot/appearance/lighting.m
@anchor{XREFlighting}
@deftypefn  {} {} lighting (@var{type})
@deftypefnx {} {} lighting (@var{hax}, @var{type})
Set the lighting of patch or surface graphic objects.

Valid arguments for @var{type} are

@table @asis
@item @qcode{"flat"}
Draw objects with faceted lighting effects.

@item @qcode{"gouraud"}
Draw objects with linear interpolation of the lighting effects between the
vertices.

@item @qcode{"none"}
Draw objects without light and shadow effects.
@end table

If the first argument @var{hax} is an axes handle, then change the lighting
effects of objects in this axes, rather than the current axes returned by
@code{gca}.

The lighting effects are only visible if at least one light object is
present and visible in the same axes.

@seealso{@ref{XREFlight,,light}, @ref{XREFfill,,fill}, @ref{XREFmesh,,mesh}, @ref{XREFpatch,,patch}, @ref{XREFpcolor,,pcolor}, @ref{XREFsurf,,surf}, @ref{XREFsurface,,surface}, @ref{XREFshading,,shading}}
@end deftypefn


@c material scripts/plot/appearance/material.m
@anchor{XREFmaterial}
@deftypefn  {} {} material shiny
@deftypefnx {} {} material dull
@deftypefnx {} {} material metal
@deftypefnx {} {} material default
@deftypefnx {} {} material ([@var{as}, @var{ds}, @var{ss}])
@deftypefnx {} {} material ([@var{as}, @var{ds}, @var{ss}, @var{se}])
@deftypefnx {} {} material ([@var{as}, @var{ds}, @var{ss}, @var{se}, @var{scr}])
@deftypefnx {} {} material (@var{hlist}, @dots{})
@deftypefnx {} {@var{mtypes} =} material ()
@deftypefnx {} {@var{refl_props} =} material (@var{mtype_string})
Set reflectance properties for the lighting of surfaces and patches.

This function changes the ambient, diffuse, and specular strengths, as well
as the specular exponent and specular color reflectance, of all
@code{patch} and @code{surface} objects in the current axes.  This can be
used to simulate, to some extent, the reflectance properties of certain
materials when used with @code{light}.

When called with a string, the aforementioned properties are set
according to the values in the following table:

@multitable @columnfractions .0 .2 .15 .15 .15 .15 .15 .0
@headitem @tab @var{mtype} @tab ambient- strength @tab diffuse-
strength @tab specular- strength @tab specular- exponent @tab specular-
color- reflectance @tab
@item @tab @qcode{"shiny"} @tab 0.3 @tab 0.6 @tab 0.9 @tab 20 @tab 1.0 @tab
@item @tab @qcode{"dull"} @tab 0.3 @tab 0.8 @tab 0.0 @tab 10 @tab 1.0 @tab
@item @tab @qcode{"metal"} @tab 0.3 @tab 0.3 @tab 1.0 @tab 25 @tab 0.5 @tab
@item @tab @qcode{"default"} @tab @qcode{"default"} @tab @qcode{"default"} @tab @qcode{"default"} @tab
@qcode{"default"} @tab @qcode{"default"} @tab
@end multitable

When called with a vector of three elements, the ambient, diffuse, and
specular strengths of all @code{patch} and @code{surface} objects in the
current axes are updated.  An optional fourth vector element updates the
specular exponent, and an optional fifth vector element updates the
specular color reflectance.

A list of graphic handles can also be passed as the first argument.  In
this case, the properties of these handles and all child @code{patch} and
@code{surface} objects will be updated.

Additionally, @code{material} can be called with a single output argument.
If called without input arguments, a column cell vector @var{mtypes} with
the strings for all available materials is returned.  If the one input
argument @var{mtype_string} is the name of a material, a 1x5 cell vector
@var{refl_props} with the reflectance properties of that material is
returned.  In both cases, no graphic properties are changed.

@seealso{@ref{XREFlight,,light}, @ref{XREFfill,,fill}, @ref{XREFmesh,,mesh}, @ref{XREFpatch,,patch}, @ref{XREFpcolor,,pcolor}, @ref{XREFsurf,,surf}, @ref{XREFsurface,,surface}}
@end deftypefn


@c camlight scripts/plot/draw/camlight.m
@anchor{XREFcamlight}
@deftypefn  {} {} camlight {}
@deftypefnx {} {} camlight right
@deftypefnx {} {} camlight left
@deftypefnx {} {} camlight headlight
@deftypefnx {} {} camlight (@var{az}, @var{el})
@deftypefnx {} {} camlight (@dots{}, @var{style})
@deftypefnx {} {} camlight (@var{hl}, @dots{})
@deftypefnx {} {@var{h} =} camlight (@dots{})
Add a light object to a figure using a simple interface.

When called with no arguments, a light object is added to the current plot
and is placed slightly above and to the right of the camera's current
position: this is equivalent to @code{camlight right}.  The commands
@code{camlight left} and @code{camlight headlight} behave similarly with
the placement being either left of the camera position or centered on the
camera position.

For more control, the light position can be specified by an azimuthal
rotation @var{az} and an elevation angle @var{el}, both in degrees,
relative to the current properties of the camera.

The optional string @var{style} specifies whether the light is a local point
source (@qcode{"local"}, the default) or placed at infinite distance
(@qcode{"infinite"}).

If the first argument @var{hl} is a handle to a light object, then act on
this light object rather than creating a new object.

The optional return value @var{h} is a graphics handle to the light object.
This can be used to move or further change properties of the light object.

Examples:

Add a light object to a plot

@example
@group
@c doctest: +SKIP
sphere (36);
camlight
@end group
@end example

Position the light source exactly

@example
@group
@c doctest: +SKIP
camlight (45, 30);
@end group
@end example

Here the light is first pitched upwards (@pxref{XREFcamup,,camup}) from the
camera position (@pxref{XREFcampos,,campos}) by 30 degrees.  It is then
yawed by 45 degrees to the right.  Both rotations are centered around the
camera target (@pxref{XREFcamtarget,,camtarget}).

Return a handle to further manipulate the light object

@example
@group
@c doctest: +SKIP
clf
sphere (36);
hl = camlight ("left");
set (hl, "color", "r");
@end group
@end example

@seealso{@ref{XREFlight,,light}}
@end deftypefn


@c meshgrid scripts/plot/util/meshgrid.m
@anchor{XREFmeshgrid}
@deftypefn  {} {[@var{xx}, @var{yy}] =} meshgrid (@var{x}, @var{y})
@deftypefnx {} {[@var{xx}, @var{yy}, @var{zz}] =} meshgrid (@var{x}, @var{y}, @var{z})
@deftypefnx {} {[@var{xx}, @var{yy}] =} meshgrid (@var{x})
@deftypefnx {} {[@var{xx}, @var{yy}, @var{zz}] =} meshgrid (@var{x})
Given vectors of @var{x} and @var{y} coordinates, return matrices @var{xx}
and @var{yy} corresponding to a full 2-D grid.

The rows of @var{xx} are copies of @var{x}, and the columns of @var{yy} are
copies of @var{y}.  If @var{y} is omitted, then it is assumed to be the same
as @var{x}.

If the optional @var{z} input is given, or @var{zz} is requested, then the
output will be a full 3-D grid.  If @var{z} is omitted and @var{zz} is
requested, it is assumed to be the same as @var{y}.

@code{meshgrid} is most frequently used to produce input for a 2-D or 3-D
function that will be plotted.  The following example creates a surface
plot of the ``sombrero'' function.

@example
@group
f = @@(x,y) sin (sqrt (x.^2 + y.^2)) ./ sqrt (x.^2 + y.^2);
range = linspace (-8, 8, 41);
[@var{X}, @var{Y}] = meshgrid (range, range);
Z = f (X, Y);
surf (X, Y, Z);
@end group
@end example

Programming Note: @code{meshgrid} is restricted to 2-D or 3-D grid
generation.  The @code{ndgrid} function will generate 1-D through N-D
grids.  However, the functions are not completely equivalent.  If @var{x}
is a vector of length M and @var{y} is a vector of length N, then
@code{meshgrid} will produce an output grid which is NxM@.  @code{ndgrid}
will produce an output which is @nospell{MxN} (transpose) for the same
input.  Some core functions expect @code{meshgrid} input and others expect
@code{ndgrid} input.  Check the documentation for the function in question
to determine the proper input format.
@seealso{@ref{XREFndgrid,,ndgrid}, @ref{XREFmesh,,mesh}, @ref{XREFcontour,,contour}, @ref{XREFsurf,,surf}}
@end deftypefn


@c ndgrid scripts/plot/util/ndgrid.m
@anchor{XREFndgrid}
@deftypefn  {} {[@var{y1}, @var{y2}, @dots{}, @var{y}n] =} ndgrid (@var{x1}, @var{x2}, @dots{}, @var{x}n)
@deftypefnx {} {[@var{y1}, @var{y2}, @dots{}, @var{y}n] =} ndgrid (@var{x})
Given n vectors @var{x1}, @dots{}, @var{x}n, @code{ndgrid} returns n
arrays of dimension n.

The elements of the i-th output argument contains the elements of the
vector @var{x}i repeated over all dimensions different from the i-th
dimension.  Calling ndgrid with only one input argument @var{x} is
equivalent to calling ndgrid with all n input arguments equal to @var{x}:

[@var{y1}, @var{y2}, @dots{}, @var{y}n] = ndgrid (@var{x}, @dots{}, @var{x})

Programming Note: @code{ndgrid} is very similar to the function
@code{meshgrid} except that the first two dimensions are transposed in
comparison to @code{meshgrid}.  Some core functions expect @code{meshgrid}
input and others expect @code{ndgrid} input.  Check the documentation for
the function in question to determine the proper input format.
@seealso{@ref{XREFmeshgrid,,meshgrid}}
@end deftypefn


@c plot3 scripts/plot/draw/plot3.m
@anchor{XREFplot3}
@deftypefn  {} {} plot3 (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} plot3 (@var{x}, @var{y}, @var{z}, @var{prop}, @var{value}, @dots{})
@deftypefnx {} {} plot3 (@var{x}, @var{y}, @var{z}, @var{fmt})
@deftypefnx {} {} plot3 (@var{x}, @var{cplx})
@deftypefnx {} {} plot3 (@var{cplx})
@deftypefnx {} {} plot3 (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} plot3 (@dots{})
Produce 3-D plots.

Many different combinations of arguments are possible.  The simplest
form is

@example
plot3 (@var{x}, @var{y}, @var{z})
@end example

@noindent
in which the arguments are taken to be the vertices of the points to
be plotted in three dimensions.  If all arguments are vectors of the
same length, then a single continuous line is drawn.  If all arguments
are matrices, then each column of is treated as a separate line.  No attempt
is made to transpose the arguments to make the number of rows match.

If only two arguments are given, as

@example
plot3 (@var{x}, @var{cplx})
@end example

@noindent
the real and imaginary parts of the second argument are used
as the @var{y} and @var{z} coordinates, respectively.

If only one argument is given, as

@example
plot3 (@var{cplx})
@end example

@noindent
the real and imaginary parts of the argument are used as the @var{y}
and @var{z} values, and they are plotted versus their index.

Arguments may also be given in groups of three as

@example
plot3 (@var{x1}, @var{y1}, @var{z1}, @var{x2}, @var{y2}, @var{z2}, @dots{})
@end example

@noindent
in which each set of three arguments is treated as a separate line or
set of lines in three dimensions.

To plot multiple one- or two-argument groups, separate each group
with an empty format string, as

@example
plot3 (@var{x1}, @var{c1}, "", @var{c2}, "", @dots{})
@end example

Multiple property-value pairs may be specified which will affect the line
objects drawn by @code{plot3}.  If the @var{fmt} argument is supplied it
will format the line objects in the same manner as @code{plot}.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created plot.

Example:

@example
@group
z = [0:0.05:5];
plot3 (cos (2*pi*z), sin (2*pi*z), z, ";helix;");
plot3 (z, exp (2i*pi*z), ";complex sinusoid;");
@end group
@end example
@seealso{@ref{XREFezplot3,,ezplot3}, @ref{XREFplot,,plot}}
@end deftypefn


@c view scripts/plot/appearance/view.m
@anchor{XREFview}
@deftypefn  {} {} view (@var{azimuth}, @var{elevation})
@deftypefnx {} {} view ([@var{azimuth} @var{elevation}])
@deftypefnx {} {} view ([@var{x} @var{y} @var{z}])
@deftypefnx {} {} view (2)
@deftypefnx {} {} view (3)
@deftypefnx {} {} view (@var{hax}, @dots{})
@deftypefnx {} {[@var{azimuth}, @var{elevation}] =} view ()
Query or set the viewpoint for the current axes.

The parameters @var{azimuth} and @var{elevation} can be given as two
arguments or as 2-element vector.  The viewpoint can also be specified with
Cartesian coordinates @var{x}, @var{y}, and @var{z}.

The call @code{view (2)} sets the viewpoint to @w{@var{azimuth} = 0}
and @w{@var{elevation} = 90}, which is the default for 2-D graphs.

The call @code{view (3)} sets the viewpoint to @w{@var{azimuth} = -37.5}
and @w{@var{elevation} = 30}, which is the default for 3-D graphs.

If the first argument @var{hax} is an axes handle, then operate on
this axes rather than the current axes returned by @code{gca}.

If no inputs are given, return the current @var{azimuth} and
@var{elevation}.
@end deftypefn


@c camlookat scripts/plot/appearance/camlookat.m
@anchor{XREFcamlookat}
@deftypefn  {} {} camlookat ()
@deftypefnx {} {} camlookat (@var{h})
@deftypefnx {} {} camlookat (@var{handle_list})
@deftypefnx {} {} camlookat (@var{hax})
Move the camera and adjust its properties to look at objects.

When the input is a handle @var{h}, the camera is set to point toward the
center of the bounding box of @var{h}.  The camera's position is adjusted so
the bounding box approximately fills the field of view.

This command fixes the camera's viewing direction
(@code{camtarget() - campos()}), camera up vector (@pxref{XREFcamup,,camup})
and viewing angle (@pxref{XREFcamva,,camva}).  The camera target
(@pxref{XREFcamtarget,,camtarget}) and camera position
(@pxref{XREFcampos,,campos}) are changed.


If the argument is a list @var{handle_list}, then a single bounding box for
all the objects is computed and the camera is then adjusted as above.

If the argument is an axis object @var{hax}, then the children of the axis
are used as @var{handle_list}.  When called with no inputs, it uses the
current axis (@pxref{XREFgca,,gca}).

@seealso{@ref{XREFcamorbit,,camorbit}, @ref{XREFcamzoom,,camzoom}, @ref{XREFcamroll,,camroll}}
@end deftypefn


@c campos scripts/plot/appearance/campos.m
@anchor{XREFcampos}
@deftypefn  {} {@var{P} =} campos ()
@deftypefnx {} {} campos ([@var{x} @var{y} @var{z}])
@deftypefnx {} {@var{mode} =} campos ("mode")
@deftypefnx {} {} campos (@var{mode})
@deftypefnx {} {} campos (@var{ax}, @dots{})
Set or get the camera position.

The default camera position is determined automatically based on the scene.
For example, to get the camera position:

@example
@group
hf = figure();
peaks()
p = campos ()
  @result{} p =
      -27.394  -35.701   64.079
@end group
@end example

We can then move the camera further up the z-axis:

@example
@group
campos (p + [0 0 10])
campos ()
  @result{} ans =
      -27.394  -35.701   74.079
@end group
@end example

Having made that change, the camera position @var{mode} is now manual:

@example
@group
campos ("mode")
  @result{} manual
@end group
@end example

We can set it back to automatic:

@example
@group
campos ("auto")
campos ()
  @result{} ans =
      -27.394  -35.701   64.079
close (hf)
@end group
@end example

By default, these commands affect the current axis; alternatively, an axis
can be specified by the optional argument @var{ax}.

@seealso{@ref{XREFcamup,,camup}, @ref{XREFcamtarget,,camtarget}, @ref{XREFcamva,,camva}}
@end deftypefn


@c camorbit scripts/plot/appearance/camorbit.m
@anchor{XREFcamorbit}
@deftypefn  {} {} camorbit (@var{theta}, @var{phi})
@deftypefnx {} {} camorbit (@var{theta}, @var{phi}, @var{coorsys})
@deftypefnx {} {} camorbit (@var{theta}, @var{phi}, @var{coorsys}, @var{dir})
@deftypefnx {} {} camorbit (@var{theta}, @var{phi}, "data")
@deftypefnx {} {} camorbit (@var{theta}, @var{phi}, "data", "z")
@deftypefnx {} {} camorbit (@var{theta}, @var{phi}, "data", "x")
@deftypefnx {} {} camorbit (@var{theta}, @var{phi}, "data", "y")
@deftypefnx {} {} camorbit (@var{theta}, @var{phi}, "data", [@var{x} @var{y} @var{z}])
@deftypefnx {} {} camorbit (@var{theta}, @var{phi}, "camera")
@deftypefnx {} {} camorbit (@var{hax}, @dots{})
Rotate the camera up/down and left/right around its target.

Move the camera @var{phi} degrees up and @var{theta} degrees to the right,
as if it were in an orbit around its target.
Example:

@example
@group
@c doctest: +SKIP
sphere ()
camorbit (30, 20)
@end group
@end example

These rotations are centered around the camera target
(@pxref{XREFcamtarget,,camtarget}).
First the camera position is pitched up or down by rotating it @var{phi}
degrees around an axis orthogonal to both the viewing direction
(specifically @code{camtarget() - campos()}) and the camera ``up vector''
(@pxref{XREFcamup,,camup}).
Example:

@example
@group
@c doctest: +SKIP
camorbit (0, 20)
@end group
@end example

The second rotation depends on the coordinate system @var{coorsys} and
direction @var{dir} inputs.
The default for @var{coorsys} is @qcode{"data"}.  In this case, the camera
is yawed left or right by rotating it @var{theta} degrees around an axis
specified by @var{dir}.
The default for @var{dir} is @qcode{"z"}, corresponding to the vector
@code{[0, 0, 1]}.
Example:

@example
@group
@c doctest: +SKIP
camorbit (30, 0)
@end group
@end example

When @var{coorsys} is set to @qcode{"camera"}, the camera is moved left or
right by rotating it around an axis parallel to the camera up vector
(@pxref{XREFcamup,,camup}).
The input @var{dir} should not be specified in this case.
Example:

@example
@group
@c doctest: +SKIP
camorbit (30, 0, "camera")
@end group
@end example

(Note: the rotation by @var{phi} is unaffected by @qcode{"camera"}.)

The @code{camorbit} command modifies two camera properties:
@pxref{XREFcampos,,campos} and @pxref{XREFcamup,,camup}.

By default, this command affects the current axis; alternatively, an axis
can be specified by the optional argument @var{hax}.

@seealso{@ref{XREFcamzoom,,camzoom}, @ref{XREFcamroll,,camroll}, @ref{XREFcamlookat,,camlookat}}
@end deftypefn


@c camroll scripts/plot/appearance/camroll.m
@anchor{XREFcamroll}
@deftypefn  {} {} camroll (@var{theta})
@deftypefnx {} {} camroll (@var{ax}, @var{theta})
Roll the camera.

Roll the camera clockwise by @var{theta} degrees.
For example, the following command will roll the camera by
30 degrees clockwise (to the right); this will cause the scene
to appear to roll by 30 degrees to the left:

@example
@group
@c doctest: +SKIP
peaks ()
camroll (30)
@end group
@end example

Roll the camera back:

@example
@group
@c doctest: +SKIP
camroll (-30)
@end group
@end example

The following command restores the default camera roll:

@example
@group
@c doctest: +SKIP
camup ("auto")
@end group
@end example

By default, these commands affect the current axis; alternatively, an axis
can be specified by the optional argument @var{ax}.

@seealso{@ref{XREFcamzoom,,camzoom}, @ref{XREFcamorbit,,camorbit}, @ref{XREFcamlookat,,camlookat}, @ref{XREFcamup,,camup}}
@end deftypefn


@c camtarget scripts/plot/appearance/camtarget.m
@anchor{XREFcamtarget}
@deftypefn  {} {@var{T} =} camtarget ()
@deftypefnx {} {} camtarget ([@var{x} @var{y} @var{z}])
@deftypefnx {} {@var{mode} =} camtarget ("mode")
@deftypefnx {} {} camtarget (@var{mode})
@deftypefnx {} {} camtarget (@var{ax}, @dots{})
Set or get where the camera is pointed.

The camera target is a point in space where the camera is pointing.
Usually, it is determined automatically based on the scene:

@example
@group
hf = figure();
sphere (36)
v = camtarget ()
  @result{} v =
      0   0   0
@end group
@end example

We can turn the camera to point at a new target:

@example
@group
camtarget ([1 1 1])
camtarget ()
  @result{}   1   1   1
@end group
@end example

Having done so, the camera target @var{mode} is manual:

@example
@group
camtarget ("mode")
  @result{} manual
@end group
@end example

This means, for example, adding new objects to the scene will not retarget
the camera:

@example
@group
hold on;
peaks ()
camtarget ()
  @result{}   1   1   1
@end group
@end example

We can reset it to be automatic:

@example
@group
@c doctest: +XFAIL
@c https://savannah.gnu.org/bugs/?44503
camtarget ("auto")
camtarget ()
  @result{}   0   0   0.76426
close (hf)
@end group
@end example

By default, these commands affect the current axis; alternatively, an axis
can be specified by the optional argument @var{ax}.

@seealso{@ref{XREFcampos,,campos}, @ref{XREFcamup,,camup}, @ref{XREFcamva,,camva}}
@end deftypefn


@c camup scripts/plot/appearance/camup.m
@anchor{XREFcamup}
@deftypefn  {} {@var{up} =} camup ()
@deftypefnx {} {} camup ([@var{x} @var{y} @var{z}])
@deftypefnx {} {@var{mode} =} camup ("mode")
@deftypefnx {} {} camup (@var{mode})
@deftypefnx {} {} camup (@var{ax}, @dots{})
Set or get the camera up vector.

By default, the camera is oriented so that ``up'' corresponds to the
positive z-axis:

@example
@group
hf = figure ();
sphere (36)
v = camup ()
  @result{} v =
      0   0   1
@end group
@end example

Specifying a new ``up vector'' rolls the camera and sets the mode to manual:

@example
@group
camup ([1 1 0])
camup ()
  @result{}   1   1   0
camup ("mode")
  @result{} manual
@end group
@end example

Modifying the up vector does not modify the camera target
(@pxref{XREFcamtarget,,camtarget}).  Thus, the camera up vector might not be
orthogonal to the direction of the camera's view:

@example
@group
camup ([1 2 3])
dot (camup (), camtarget () - campos ())
  @result{} 6...
@end group
@end example

A consequence is that ``pulling back'' on the up vector does not pitch the
camera view (as that would require changing the target).  Setting the up
vector is thus typically used only to roll the camera.  A more intuitive
command for this purpose is @pxref{XREFcamroll,,camroll}.

Finally, we can reset the up vector to automatic mode:

@example
@group
camup ("auto")
camup ()
  @result{}   0   0   1
close (hf)
@end group
@end example

By default, these commands affect the current axis; alternatively, an axis
can be specified by the optional argument @var{ax}.

@seealso{@ref{XREFcampos,,campos}, @ref{XREFcamtarget,,camtarget}, @ref{XREFcamva,,camva}}
@end deftypefn


@c camva scripts/plot/appearance/camva.m
@anchor{XREFcamva}
@deftypefn  {} {@var{a} =} camva ()
@deftypefnx {} {} camva (@var{a})
@deftypefnx {} {@var{mode} =} camva ("mode")
@deftypefnx {} {} camva (@var{mode})
@deftypefnx {} {} camva (@var{ax}, @dots{})
Set or get the camera viewing angle.

The camera has a viewing angle which determines how much can be seen.  By
default this is:

@example
@group
hf = figure();
sphere (36)
a = camva ()
  @result{} a =  10.340
@end group
@end example

To get a wider-angle view, we could double the viewing angle.  This will
also set the mode to manual:

@example
@group
camva (2*a)
camva ("mode")
  @result{} manual
@end group
@end example

We can set it back to automatic:

@example
@group
camva ("auto")
camva ("mode")
  @result{} auto
camva ()
  @result{} ans =  10.340
close (hf)
@end group
@end example

By default, these commands affect the current axis; alternatively, an axis
can be specified by the optional argument @var{ax}.

@seealso{@ref{XREFcampos,,campos}, @ref{XREFcamtarget,,camtarget}, @ref{XREFcamup,,camup}}
@end deftypefn


@c camzoom scripts/plot/appearance/camzoom.m
@anchor{XREFcamzoom}
@deftypefn  {} {} camzoom (@var{zf})
@deftypefnx {} {} camzoom (@var{ax}, @var{zf})
Zoom the camera in or out.

A value of @var{zf} larger than 1 ``zooms in'' such that the scene appears
magnified:

@example
@group
hf = figure ();
sphere (36)
camzoom (1.2)
@end group
@end example

A value smaller than 1 ``zooms out'' so the camera can see more of the
scene:

@example
@group
camzoom (0.5)
@end group
@end example

Technically speaking, zooming affects the ``viewing angle''.  The following
command resets to the default zoom:

@example
@group
camva ("auto")
close (hf)
@end group
@end example

By default, these commands affect the current axis; alternatively, an axis
can be specified by the optional argument @var{ax}.

@seealso{@ref{XREFcamroll,,camroll}, @ref{XREFcamorbit,,camorbit}, @ref{XREFcamlookat,,camlookat}, @ref{XREFcamva,,camva}}
@end deftypefn


@c slice scripts/plot/draw/slice.m
@anchor{XREFslice}
@deftypefn  {} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{sx}, @var{sy}, @var{sz})
@deftypefnx {} {} slice (@var{x}, @var{y}, @var{z}, @var{v}, @var{xi}, @var{yi}, @var{zi})
@deftypefnx {} {} slice (@var{v}, @var{sx}, @var{sy}, @var{sz})
@deftypefnx {} {} slice (@var{v}, @var{xi}, @var{yi}, @var{zi})
@deftypefnx {} {} slice (@dots{}, @var{method})
@deftypefnx {} {} slice (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} slice (@dots{})
Plot slices of 3-D data/scalar fields.

Each element of the 3-dimensional array @var{v} represents a scalar value at
a location given by the parameters @var{x}, @var{y}, and @var{z}.  The
parameters @var{x}, @var{x}, and @var{z} are either 3-dimensional arrays of
the same size as the array @var{v} in the @qcode{"meshgrid"} format or
vectors.  The parameters @var{xi}, etc.@: respect a similar format to
@var{x}, etc., and they represent the points at which the array @var{vi}
is interpolated using interp3.  The vectors @var{sx}, @var{sy}, and
@var{sz} contain points of orthogonal slices of the respective axes.

If @var{x}, @var{y}, @var{z} are omitted, they are assumed to be
@code{x = 1:size (@var{v}, 2)}, @code{y = 1:size (@var{v}, 1)} and
@code{z = 1:size (@var{v}, 3)}.

@var{method} is one of:

@table @asis
@item @qcode{"nearest"}
Return the nearest neighbor.

@item @qcode{"linear"}
Linear interpolation from nearest neighbors.

@item @qcode{"cubic"}
Cubic interpolation from four nearest neighbors (not implemented yet).

@item @qcode{"spline"}
Cubic spline interpolation---smooth first and second derivatives
throughout the curve.
@end table

The default method is @qcode{"linear"}.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
surface object.

Examples:

@example
@group
[x, y, z] = meshgrid (linspace (-8, 8, 32));
v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
slice (x, y, z, v, [], 0, []);

[xi, yi] = meshgrid (linspace (-7, 7));
zi = xi + yi;
slice (x, y, z, v, xi, yi, zi);
@end group
@end example
@seealso{@ref{XREFinterp3,,interp3}, @ref{XREFsurface,,surface}, @ref{XREFpcolor,,pcolor}}
@end deftypefn


@c ribbon scripts/plot/draw/ribbon.m
@anchor{XREFribbon}
@deftypefn  {} {} ribbon (@var{y})
@deftypefnx {} {} ribbon (@var{x}, @var{y})
@deftypefnx {} {} ribbon (@var{x}, @var{y}, @var{width})
@deftypefnx {} {} ribbon (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} ribbon (@dots{})
Draw a ribbon plot for the columns of @var{y} vs. @var{x}.

If @var{x} is omitted, a vector containing the row numbers is assumed
(@code{1:rows (Y)}).  Alternatively, @var{x} can also be a vector with
same number of elements as rows of @var{y} in which case the same
@var{x} is used for each column of @var{y}.

The optional parameter @var{width} specifies the width of a single ribbon
(default is 0.75).

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a vector of graphics handles to
the surface objects representing each ribbon.
@seealso{@ref{XREFsurface,,surface}, @ref{XREFwaterfall,,waterfall}}
@end deftypefn


@c shading scripts/plot/appearance/shading.m
@anchor{XREFshading}
@deftypefn  {} {} shading (@var{type})
@deftypefnx {} {} shading (@var{hax}, @var{type})
Set the shading of patch or surface graphic objects.

Valid arguments for @var{type} are

@table @asis
@item @qcode{"flat"}
Single colored patches with invisible edges.

@item @qcode{"faceted"}
Single colored patches with black edges.

@item @qcode{"interp"}
Colors between patch vertices are interpolated and the patch edges are
invisible.
@end table

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.
@seealso{@ref{XREFfill,,fill}, @ref{XREFmesh,,mesh}, @ref{XREFpatch,,patch}, @ref{XREFpcolor,,pcolor}, @ref{XREFsurf,,surf}, @ref{XREFsurface,,surface}, @ref{XREFhidden,,hidden}, @ref{XREFlighting,,lighting}}
@end deftypefn


@c scatter3 scripts/plot/draw/scatter3.m
@anchor{XREFscatter3}
@deftypefn  {} {} scatter3 (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} scatter3 (@var{x}, @var{y}, @var{z}, @var{s})
@deftypefnx {} {} scatter3 (@var{x}, @var{y}, @var{z}, @var{s}, @var{c})
@deftypefnx {} {} scatter3 (@dots{}, @var{style})
@deftypefnx {} {} scatter3 (@dots{}, "filled")
@deftypefnx {} {} scatter3 (@dots{}, @var{prop}, @var{val})
@deftypefnx {} {} scatter3 (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} scatter3 (@dots{})
Draw a 3-D scatter plot.

A marker is plotted at each point defined by the coordinates in the vectors
@var{x}, @var{y}, and @var{z}.

The size of the markers is determined by @var{s}, which can be a scalar
or a vector of the same length as @var{x}, @var{y}, and @var{z}.  If @var{s}
is not given, or is an empty matrix, then a default value of 8 points is
used.

The color of the markers is determined by @var{c}, which can be a string
defining a fixed color; a 3-element vector giving the red, green, and blue
components of the color; a vector of the same length as @var{x} that gives
a scaled index into the current colormap; or an @nospell{Nx3} matrix
defining the RGB color of each marker individually.

The marker to use can be changed with the @var{style} argument, that is a
string defining a marker in the same manner as the @code{plot} command.
If no marker is specified it defaults to @qcode{"o"} or circles.
If the argument @qcode{"filled"} is given then the markers are filled.

Additional property/value pairs are passed directly to the underlying
patch object.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the hggroup
object representing the points.

@example
@group
[x, y, z] = peaks (20);
scatter3 (x(:), y(:), z(:), [], z(:));
@end group
@end example

@seealso{@ref{XREFscatter,,scatter}, @ref{XREFpatch,,patch}, @ref{XREFplot,,plot}}
@end deftypefn


@c waterfall scripts/plot/draw/waterfall.m
@anchor{XREFwaterfall}
@deftypefn  {} {} waterfall (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} waterfall (@var{z})
@deftypefnx {} {} waterfall (@dots{}, @var{c})
@deftypefnx {} {} waterfall (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} waterfall (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} waterfall (@dots{})
Plot a 3-D waterfall plot.

A waterfall plot is similar to a @code{meshz} plot except only
mesh lines for the rows of @var{z} (x-values) are shown.

The wireframe mesh is plotted using rectangles.  The vertices of the
rectangles [@var{x}, @var{y}] are typically the output of @code{meshgrid}.
over a 2-D rectangular region in the x-y plane.  @var{z} determines the
height above the plane of each vertex.  If only a single @var{z} matrix is
given, then it is plotted over the meshgrid
@code{@var{x} = 1:columns (@var{z}), @var{y} = 1:rows (@var{z})}.
Thus, columns of @var{z} correspond to different @var{x} values and rows
of @var{z} correspond to different @var{y} values.

The color of the mesh is computed by linearly scaling the @var{z} values
to fit the range of the current colormap.  Use @code{caxis} and/or
change the colormap to control the appearance.

Optionally the color of the mesh can be specified independently of @var{z}
by supplying a color matrix, @var{c}.

Any property/value pairs are passed directly to the underlying surface
object.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
surface object.

@seealso{@ref{XREFmeshz,,meshz}, @ref{XREFmesh,,mesh}, @ref{XREFmeshc,,meshc}, @ref{XREFcontour,,contour}, @ref{XREFsurf,,surf}, @ref{XREFsurface,,surface}, @ref{XREFribbon,,ribbon}, @ref{XREFmeshgrid,,meshgrid}, @ref{XREFhidden,,hidden}, @ref{XREFshading,,shading}, @ref{XREFcolormap,,colormap}, @ref{XREFcaxis,,caxis}}
@end deftypefn


@menu
* Aspect Ratio::
* Three-dimensional Function Plotting::
* Three-dimensional Geometric Shapes::
@end menu

@node Aspect Ratio
@subsubsection Aspect Ratio

For three-dimensional plots the aspect ratio can be set for data with
@code{daspect} and for the plot box with @code{pbaspect}.
@xref{Axis Configuration}, for controlling the x-, y-, and z-limits for
plotting.

@c daspect scripts/plot/appearance/daspect.m
@anchor{XREFdaspect}
@deftypefn  {} {@var{data_aspect_ratio} =} daspect ()
@deftypefnx {} {} daspect (@var{data_aspect_ratio})
@deftypefnx {} {} daspect (@var{mode})
@deftypefnx {} {@var{data_aspect_ratio_mode} =} daspect ("mode")
@deftypefnx {} {} daspect (@var{hax}, @dots{})
Query or set the data aspect ratio of the current axes.

The aspect ratio is a normalized 3-element vector representing the span of
the x, y, and z-axis limits.

@code{daspect (@var{mode})}

Set the data aspect ratio mode of the current axes.  @var{mode} is
either @qcode{"auto"} or @qcode{"manual"}.

@code{daspect (@qcode{"mode"})}

Return the data aspect ratio mode of the current axes.

@code{daspect (@var{hax}, @dots{})}

Operate on the axes in handle @var{hax} instead of the current axes.

@seealso{@ref{XREFaxis,,axis}, @ref{XREFpbaspect,,pbaspect}, @ref{XREFxlim,,xlim}, @ref{XREFylim,,ylim}, @ref{XREFzlim,,zlim}}
@end deftypefn


@c pbaspect scripts/plot/appearance/pbaspect.m
@anchor{XREFpbaspect}
@deftypefn  {} {@var{plot_box_aspect_ratio} =} pbaspect ( )
@deftypefnx {} {} pbaspect (@var{plot_box_aspect_ratio})
@deftypefnx {} {} pbaspect (@var{mode})
@deftypefnx {} {@var{plot_box_aspect_ratio_mode} =} pbaspect ("mode")
@deftypefnx {} {} pbaspect (@var{hax}, @dots{})

Query or set the plot box aspect ratio of the current axes.

The aspect ratio is a normalized 3-element vector representing the rendered
lengths of the x, y, and z axes.

@code{pbaspect(@var{mode})}

Set the plot box aspect ratio mode of the current axes.  @var{mode} is
either @qcode{"auto"} or @qcode{"manual"}.

@code{pbaspect ("mode")}

Return the plot box aspect ratio mode of the current axes.

@code{pbaspect (@var{hax}, @dots{})}

Operate on the axes in handle @var{hax} instead of the current axes.

@seealso{@ref{XREFaxis,,axis}, @ref{XREFdaspect,,daspect}, @ref{XREFxlim,,xlim}, @ref{XREFylim,,ylim}, @ref{XREFzlim,,zlim}}
@end deftypefn


@node Three-dimensional Function Plotting
@subsubsection Three-dimensional Function Plotting

@c ezplot3 scripts/plot/draw/ezplot3.m
@anchor{XREFezplot3}
@deftypefn  {} {} ezplot3 (@var{fx}, @var{fy}, @var{fz})
@deftypefnx {} {} ezplot3 (@dots{}, @var{dom})
@deftypefnx {} {} ezplot3 (@dots{}, @var{n})
@deftypefnx {} {} ezplot3 (@dots{}, "animate")
@deftypefnx {} {} ezplot3 (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} ezplot3 (@dots{})

Plot a parametrically defined curve in three dimensions.

@var{fx}, @var{fy}, and @var{fz} are strings, inline functions,
or function handles with one argument defining the function.  By
default the plot is over the domain @code{0 <= @var{t} <= 2*pi}
with 500 points.

If @var{dom} is a two element vector, it represents the minimum and maximum
values of @var{t}.

@var{n} is a scalar defining the number of points to use in plotting the
function.

If the @qcode{"animate"} option is given then the plotting is animated
in the style of @code{comet3}.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created plot.

@example
@group
fx = @@(t) cos (t);
fy = @@(t) sin (t);
fz = @@(t) t;
ezplot3 (fx, fy, fz, [0, 10*pi], 100);
@end group
@end example

@seealso{@ref{XREFplot3,,plot3}, @ref{XREFcomet3,,comet3}, @ref{XREFezplot,,ezplot}, @ref{XREFezmesh,,ezmesh}, @ref{XREFezsurf,,ezsurf}}
@end deftypefn


@c ezmesh scripts/plot/draw/ezmesh.m
@anchor{XREFezmesh}
@deftypefn  {} {} ezmesh (@var{f})
@deftypefnx {} {} ezmesh (@var{fx}, @var{fy}, @var{fz})
@deftypefnx {} {} ezmesh (@dots{}, @var{dom})
@deftypefnx {} {} ezmesh (@dots{}, @var{n})
@deftypefnx {} {} ezmesh (@dots{}, "circ")
@deftypefnx {} {} ezmesh (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} ezmesh (@dots{})

Plot the mesh defined by a function.

@var{f} is a string, inline function, or function handle with two arguments
defining the function.  By default the plot is over the meshed domain
@code{-2*pi <= @var{x} | @var{y} <= 2*pi} with 60 points in each dimension.

If three functions are passed, then plot the parametrically defined
function @code{[@var{fx}(@var{s}, @var{t}), @var{fy}(@var{s}, @var{t}),
@var{fz}(@var{s}, @var{t})]}.

If @var{dom} is a two element vector, it represents the minimum and maximum
values of both @var{x} and @var{y}.  If @var{dom} is a four element vector,
then the minimum and maximum values are @code{[xmin xmax ymin ymax]}.

@var{n} is a scalar defining the number of points to use in each dimension.

If the argument @qcode{"circ"} is given, then the function is plotted over
a disk centered on the middle of the domain @var{dom}.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
surface object.

Example 1: 2-argument function

@example
@group
f = @@(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
ezmesh (f, [-3, 3]);
@end group
@end example

Example 2: parametrically defined function

@example
@group
fx = @@(s,t) cos (s) .* cos (t);
fy = @@(s,t) sin (s) .* cos (t);
fz = @@(s,t) sin (t);
ezmesh (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);
@end group
@end example

@seealso{@ref{XREFmesh,,mesh}, @ref{XREFezmeshc,,ezmeshc}, @ref{XREFezplot,,ezplot}, @ref{XREFezsurf,,ezsurf}, @ref{XREFezsurfc,,ezsurfc}, @ref{XREFhidden,,hidden}}
@end deftypefn


@c ezmeshc scripts/plot/draw/ezmeshc.m
@anchor{XREFezmeshc}
@deftypefn  {} {} ezmeshc (@var{f})
@deftypefnx {} {} ezmeshc (@var{fx}, @var{fy}, @var{fz})
@deftypefnx {} {} ezmeshc (@dots{}, @var{dom})
@deftypefnx {} {} ezmeshc (@dots{}, @var{n})
@deftypefnx {} {} ezmeshc (@dots{}, "circ")
@deftypefnx {} {} ezmeshc (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} ezmeshc (@dots{})

Plot the mesh and contour lines defined by a function.

@var{f} is a string, inline function, or function handle with two arguments
defining the function.  By default the plot is over the meshed domain
@code{-2*pi <= @var{x} | @var{y} <= 2*pi} with 60 points in each dimension.

If three functions are passed, then plot the parametrically defined
function @code{[@var{fx}(@var{s}, @var{t}), @var{fy}(@var{s}, @var{t}),
@var{fz}(@var{s}, @var{t})]}.

If @var{dom} is a two element vector, it represents the minimum and maximum
values of both @var{x} and @var{y}.  If @var{dom} is a four element vector,
then the minimum and maximum values are @code{[xmin xmax ymin ymax]}.

@var{n} is a scalar defining the number of points to use in each dimension.

If the argument @qcode{"circ"} is given, then the function is plotted over
a disk centered on the middle of the domain @var{dom}.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a 2-element vector with a graphics
handle for the created mesh plot and a second handle for the created contour
plot.

Example: 2-argument function

@example
@group
f = @@(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
ezmeshc (f, [-3, 3]);
@end group
@end example

@seealso{@ref{XREFmeshc,,meshc}, @ref{XREFezmesh,,ezmesh}, @ref{XREFezplot,,ezplot}, @ref{XREFezsurf,,ezsurf}, @ref{XREFezsurfc,,ezsurfc}, @ref{XREFhidden,,hidden}}
@end deftypefn


@c ezsurf scripts/plot/draw/ezsurf.m
@anchor{XREFezsurf}
@deftypefn  {} {} ezsurf (@var{f})
@deftypefnx {} {} ezsurf (@var{fx}, @var{fy}, @var{fz})
@deftypefnx {} {} ezsurf (@dots{}, @var{dom})
@deftypefnx {} {} ezsurf (@dots{}, @var{n})
@deftypefnx {} {} ezsurf (@dots{}, "circ")
@deftypefnx {} {} ezsurf (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} ezsurf (@dots{})

Plot the surface defined by a function.

@var{f} is a string, inline function, or function handle with two arguments
defining the function.  By default the plot is over the meshed domain
@code{-2*pi <= @var{x} | @var{y} <= 2*pi} with 60 points in each dimension.

If three functions are passed, then plot the parametrically defined
function @code{[@var{fx}(@var{s}, @var{t}), @var{fy}(@var{s}, @var{t}),
@var{fz}(@var{s}, @var{t})]}.

If @var{dom} is a two element vector, it represents the minimum and maximum
values of both @var{x} and @var{y}.  If @var{dom} is a four element vector,
then the minimum and maximum values are @code{[xmin xmax ymin ymax]}.

@var{n} is a scalar defining the number of points to use in each dimension.

If the argument @qcode{"circ"} is given, then the function is plotted over
a disk centered on the middle of the domain @var{dom}.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
surface object.

Example 1: 2-argument function

@example
@group
f = @@(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
ezsurf (f, [-3, 3]);
@end group
@end example

Example 2: parametrically defined function

@example
@group
fx = @@(s,t) cos (s) .* cos (t);
fy = @@(s,t) sin (s) .* cos (t);
fz = @@(s,t) sin (t);
ezsurf (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);
@end group
@end example

@seealso{@ref{XREFsurf,,surf}, @ref{XREFezsurfc,,ezsurfc}, @ref{XREFezplot,,ezplot}, @ref{XREFezmesh,,ezmesh}, @ref{XREFezmeshc,,ezmeshc}, @ref{XREFshading,,shading}}
@end deftypefn


@c ezsurfc scripts/plot/draw/ezsurfc.m
@anchor{XREFezsurfc}
@deftypefn  {} {} ezsurfc (@var{f})
@deftypefnx {} {} ezsurfc (@var{fx}, @var{fy}, @var{fz})
@deftypefnx {} {} ezsurfc (@dots{}, @var{dom})
@deftypefnx {} {} ezsurfc (@dots{}, @var{n})
@deftypefnx {} {} ezsurfc (@dots{}, "circ")
@deftypefnx {} {} ezsurfc (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} ezsurfc (@dots{})

Plot the surface and contour lines defined by a function.

@var{f} is a string, inline function, or function handle with two arguments
defining the function.  By default the plot is over the meshed domain
@code{-2*pi <= @var{x} | @var{y} <= 2*pi} with 60 points in each dimension.

If three functions are passed, then plot the parametrically defined
function @code{[@var{fx}(@var{s}, @var{t}), @var{fy}(@var{s}, @var{t}),
@var{fz}(@var{s}, @var{t})]}.

If @var{dom} is a two element vector, it represents the minimum and maximum
values of both @var{x} and @var{y}.  If @var{dom} is a four element vector,
then the minimum and maximum values are @code{[xmin xmax ymin ymax]}.

@var{n} is a scalar defining the number of points to use in each dimension.

If the argument @qcode{"circ"} is given, then the function is plotted over
a disk centered on the middle of the domain @var{dom}.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a 2-element vector with a graphics
handle for the created surface plot and a second handle for the created
contour plot.

Example:

@example
@group
f = @@(x,y) sqrt (abs (x .* y)) ./ (1 + x.^2 + y.^2);
ezsurfc (f, [-3, 3]);
@end group
@end example

@seealso{@ref{XREFsurfc,,surfc}, @ref{XREFezsurf,,ezsurf}, @ref{XREFezplot,,ezplot}, @ref{XREFezmesh,,ezmesh}, @ref{XREFezmeshc,,ezmeshc}, @ref{XREFshading,,shading}}
@end deftypefn


@node Three-dimensional Geometric Shapes
@subsubsection Three-dimensional Geometric Shapes

@c cylinder scripts/plot/draw/cylinder.m
@anchor{XREFcylinder}
@deftypefn  {} {} cylinder
@deftypefnx {} {} cylinder (@var{r})
@deftypefnx {} {} cylinder (@var{r}, @var{n})
@deftypefnx {} {} cylinder (@var{hax}, @dots{})
@deftypefnx {} {[@var{x}, @var{y}, @var{z}] =} cylinder (@dots{})
Plot a 3-D unit cylinder.

The optional input @var{r} is a vector specifying the radius along the
unit z-axis.  The default is [1 1] indicating radius 1 at @code{Z == 0}
and at @code{Z == 1}.

The optional input @var{n} determines the number of faces around the
circumference of the cylinder.  The default value is 20.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

If outputs are requested @code{cylinder} returns three matrices in
@code{meshgrid} format, such that @code{surf (@var{x}, @var{y}, @var{z})}
generates a unit cylinder.

Example:

@example
@group
[x, y, z] = cylinder (10:-1:0, 50);
surf (x, y, z);
title ("a cone");
@end group
@end example
@seealso{@ref{XREFellipsoid,,ellipsoid}, @ref{XREFrectangle,,rectangle}, @ref{XREFsphere,,sphere}}
@end deftypefn


@c sphere scripts/plot/draw/sphere.m
@anchor{XREFsphere}
@deftypefn  {} {} sphere ()
@deftypefnx {} {} sphere (@var{n})
@deftypefnx {} {} sphere (@var{hax}, @dots{})
@deftypefnx {} {[@var{x}, @var{y}, @var{z}] =} sphere (@dots{})
Plot a 3-D unit sphere.

The optional input @var{n} determines the number of faces around the
circumference of the sphere.  The default value is 20.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

If outputs are requested @code{sphere} returns three matrices in
@code{meshgrid} format such that @code{surf (@var{x}, @var{y}, @var{z})}
generates a unit sphere.

Example:

@example
@group
[x, y, z] = sphere (40);
surf (3*x, 3*y, 3*z);
axis equal;
title ("sphere of radius 3");
@end group
@end example
@seealso{@ref{XREFcylinder,,cylinder}, @ref{XREFellipsoid,,ellipsoid}, @ref{XREFrectangle,,rectangle}}
@end deftypefn


@c ellipsoid scripts/plot/draw/ellipsoid.m
@anchor{XREFellipsoid}
@deftypefn  {} {} ellipsoid (@var{xc}, @var{yc}, @var{zc}, @var{xr}, @var{yr}, @var{zr}, @var{n})
@deftypefnx {} {} ellipsoid (@dots{}, @var{n})
@deftypefnx {} {} ellipsoid (@var{hax}, @dots{})
@deftypefnx {} {[@var{x}, @var{y}, @var{z}] =} ellipsoid (@dots{})
Plot a 3-D ellipsoid.

The inputs @var{xc}, @var{yc}, @var{zc} specify the center of the ellipsoid.
The inputs @var{xr}, @var{yr}, @var{zr} specify the semi-major axis lengths.

The optional input @var{n} determines the number of faces around the
circumference of the cylinder.  The default value is 20.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

If outputs are requested @code{ellipsoid} returns three matrices in
@code{meshgrid} format, such that @code{surf (@var{x}, @var{y}, @var{z})}
generates the ellipsoid.
@seealso{@ref{XREFcylinder,,cylinder}, @ref{XREFrectangle,,rectangle}, @ref{XREFsphere,,sphere}}
@end deftypefn


@node Plot Annotations
@subsection Plot Annotations

You can add titles, axis labels, legends, and arbitrary text to an
existing plot.  For example:

@example
@group
x = -10:0.1:10;
plot (x, sin (x));
title ("sin(x) for x = -10:0.1:10");
xlabel ("x");
ylabel ("sin (x)");
text (pi, 0.7, "arbitrary text");
legend ("sin (x)");
@end group
@end example

The functions @code{grid} and @code{box} may also be used to add grid
and border lines to the plot.  By default, the grid is off and the
border lines are on.

Finally, arrows, text and rectangular or elliptic boxes can be added to
highlight parts of a plot using the @code{annotation} function.  Those objects
are drawn in an invisible axes, on top of every other axes.

@c title scripts/plot/appearance/title.m
@anchor{XREFtitle}
@deftypefn  {} {} title (@var{string})
@deftypefnx {} {} title (@var{string}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} title (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} title (@dots{})
Specify the string used as a title for the current axis.

An optional list of @var{property}/@var{value} pairs can be used to change
the appearance of the created title text object.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created text
object.
@seealso{@ref{XREFxlabel,,xlabel}, @ref{XREFylabel,,ylabel}, @ref{XREFzlabel,,zlabel}, @ref{XREFtext,,text}}
@end deftypefn


@c legend scripts/plot/appearance/legend.m
@anchor{XREFlegend}
@deftypefn  {} {} legend ()
@deftypefnx {} {} legend (@var{str1}, @var{str2}, @dots{})
@deftypefnx {} {} legend (@var{charmat})
@deftypefnx {} {} legend (@{@var{cellstr}@})
@deftypefnx {} {} legend (@dots{}, "location", @var{pos})
@deftypefnx {} {} legend (@dots{}, "orientation", @var{orient})
@deftypefnx {} {} legend (@var{hax}, @dots{})
@deftypefnx {} {} legend (@var{hobjs}, @dots{})
@deftypefnx {} {} legend (@var{hax}, @var{hobjs}, @dots{})
@deftypefnx {} {} legend ("@var{option}")
@deftypefnx {} {} legend (@dots{}, @{@var{cellstr}@}, @var{property}, @var{value}, @dots{})
@deftypefnx {} {[@var{hleg}, @var{hleg_obj}, @var{hplot}, @var{labels}] =} legend (@dots{})

Display a legend for the current axes using the specified strings as labels.

Legend entries may be specified as individual character string arguments,
a character array, or a cell array of character strings.  When label names
might be confused with options to @code{legend}, the labels should be
protected by specifying them as a cell array of strings.

If the first argument @var{hax} is an axes handle, then add a legend to this
axes, rather than the current axes returned by @code{gca}.

Legend labels are associated with the axes' children; The first label is
assigned to the first object that was plotted in the axes, the second label
to the next object plotted, etc.  To label specific data objects, without
labeling all objects, provide their graphic handles in the input
@var{hobjs}.

The optional parameter @var{pos} specifies the location of the legend as
follows:

@multitable @columnfractions 0.06 0.14 0.80
@headitem @tab pos @tab location of the legend
@item @tab north @tab center top
@item @tab south @tab center bottom
@item @tab east @tab right center
@item @tab west @tab left center
@item @tab northeast @tab right top (default)
@item @tab northwest @tab left top
@item @tab southeast @tab right bottom
@item @tab southwest @tab left bottom
@sp 1
@item @tab outside @tab can be appended to any location string @*
@item @tab         @tab which will place the legend outside the axes
@end multitable

The optional parameter @var{orient} determines if the legend elements are
placed vertically or horizontally.  The allowed values are
@qcode{"vertical"} (default) or @qcode{"horizontal"}.

The following customizations are available using @var{option}:

@table @asis
@item @qcode{"show"}
  Show legend on the plot

@item @qcode{"hide"}
  Hide legend on the plot

@item @qcode{"toggle"}
  Toggle between @qcode{"hide"} and @qcode{"show"}

@item @qcode{"boxon"}
  Show a box around legend (default)

@item @qcode{"boxoff"}
  Hide the box around legend

@item @qcode{"right"}
  Place label text to the right of the keys (default)

@item @qcode{"left"}
  Place label text to the left of the keys

@item @qcode{"off"}
  Delete the legend object
@end table

The @code{legend} function creates a graphics object which has various
properties that can be manipulated with @code{get}/@code{set}.
Alternatively, properties can be set directly when calling @code{legend} by
including @var{property}/@var{value} pairs.  If using this calling form, the
labels must be specified as a cell array of strings.

The optional output values are

@table @var
@item hleg
  The graphics handle of the legend object.

@item hleg_obj
  Graphics handles to the text, patch, and line objects which form the
  legend.

@item hplot
  Graphics handles to the plot objects which were used in making the legend.

@item labels
  A cell array of strings of the labels in the legend.
@end table

Implementation Note: The legend label text is either provided in the call to
@code{legend} or is taken from the @code{DisplayName} property of the
graphics objects.  Only data objects, such as line, patch, and surface, have
this property whereas axes, figures, etc.@: do not so they are never present
in a legend.  If no labels or @code{DisplayName} properties are available,
then the label text is simply @qcode{"data1"}, @qcode{"data2"}, @dots{},
@nospell{@qcode{"dataN"}}.  No more than 20 data labels will be
automatically generated.  To label more, call @code{legend} explicitly and
provide all labels.

The legend @code{FontSize} property is initially set to 90% of the axes
@code{FontSize} to which it is attached.  Use @code{set} to override this
if necessary.

A legend is implemented as an additional axes object with the @code{tag}
property set to @qcode{"legend"}.  Properties of the legend object may be
manipulated directly by using @code{set}.
@end deftypefn


@c text scripts/plot/appearance/text.m
@anchor{XREFtext}
@deftypefn  {} {} text (@var{x}, @var{y}, @var{string})
@deftypefnx {} {} text (@var{x}, @var{y}, @var{z}, @var{string})
@deftypefnx {} {} text (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {@var{h} =} text (@dots{})
Create a text object with text @var{string} at position @var{x}, @var{y},
(@var{z}) on the current axes.

Multiple locations can be specified if @var{x}, @var{y}, (@var{z}) are
vectors.  Multiple strings can be specified with a character matrix or
a cell array of strings.

Optional property/value pairs may be used to control the appearance of the
text.

The optional return value @var{h} is a vector of graphics handles to the
created text objects.

Programming Note: The full list of properties is documented at
@ref{Text Properties,,Text Properties}.
@seealso{@ref{XREFgtext,,gtext}, @ref{XREFtitle,,title}, @ref{XREFxlabel,,xlabel}, @ref{XREFylabel,,ylabel}, @ref{XREFzlabel,,zlabel}}
@end deftypefn


See @ref{Text Properties} for the properties that you can set.

@c Add cross-references and function index entries for other label functions.
@anchor{XREFylabel}
@anchor{XREFzlabel}
@findex ylabel
@findex zlabel
@c xlabel scripts/plot/appearance/xlabel.m
@anchor{XREFxlabel}
@deftypefn  {} {} xlabel (@var{string})
@deftypefnx {} {} xlabel (@var{string}, @var{property}, @var{val}, @dots{})
@deftypefnx {} {} xlabel (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} xlabel (@dots{})
Specify the string used to label the x-axis of the current axis.

An optional list of @var{property}/@var{value} pairs can be used to change
the properties of the created text label.

If the first argument @var{hax} is an axes handle, then operate on
this axes rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created text
object.
@seealso{@ref{XREFylabel,,ylabel}, @ref{XREFzlabel,,zlabel}, @ref{XREFdatetick,,datetick}, @ref{XREFtitle,,title}, @ref{XREFtext,,text}}
@end deftypefn


@c clabel scripts/plot/appearance/clabel.m
@anchor{XREFclabel}
@deftypefn  {} {} clabel (@var{c}, @var{h})
@deftypefnx {} {} clabel (@var{c}, @var{h}, @var{v})
@deftypefnx {} {} clabel (@var{c}, @var{h}, "manual")
@deftypefnx {} {} clabel (@var{c})
@deftypefnx {} {} clabel (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {@var{h} =} clabel (@dots{})
Add labels to the contours of a contour plot.

The contour levels are specified by the contour matrix @var{c} which is
returned by @code{contour}, @code{contourc}, @code{contourf}, and
@code{contour3}.  Contour labels are rotated to match the local line
orientation and centered on the line.  The position of labels along the
contour line is chosen randomly.

If the argument @var{h} is a handle to a contour group object, then label
this plot rather than the one in the current axes returned by @code{gca}.

By default, all contours are labeled.  However, the contours to label can be
specified by the vector @var{v}.  If the @qcode{"manual"} argument is
given then the contours to label can be selected with the mouse.

Additional property/value pairs that are valid properties of text objects
can be given and are passed to the underlying text objects.  Moreover,
the contour group property @qcode{"LabelSpacing"} is available which
determines the spacing between labels on a contour to be specified.  The
default is 144 points, or 2 inches.

The optional return value @var{h} is a vector of graphics handles to
the text objects representing each label.
The @qcode{"userdata"} property of the text objects contains the numerical
value of the contour label.

An example of the use of @code{clabel} is

@example
@group
[c, h] = contour (peaks (), -4 : 6);
clabel (c, h, -4:2:6, "fontsize", 12);
@end group
@end example

@seealso{@ref{XREFcontour,,contour}, @ref{XREFcontourf,,contourf}, @ref{XREFcontour3,,contour3}, @ref{XREFmeshc,,meshc}, @ref{XREFsurfc,,surfc}, @ref{XREFtext,,text}}
@end deftypefn


@c box scripts/plot/appearance/box.m
@anchor{XREFbox}
@deftypefn  {} {} box
@deftypefnx {} {} box on
@deftypefnx {} {} box off
@deftypefnx {} {} box (@var{hax}, @dots{})
Control display of the axes border.

The argument may be either @qcode{"on"} or @qcode{"off"}.  If it is
omitted, the current box state is toggled.

If the first argument @var{hax} is an axes handle, then operate on this
axes rather than the current axes returned by @code{gca}.
@seealso{@ref{XREFaxis,,axis}, @ref{XREFgrid,,grid}}
@end deftypefn


@c grid scripts/plot/appearance/grid.m
@anchor{XREFgrid}
@deftypefn  {} {} grid
@deftypefnx {} {} grid on
@deftypefnx {} {} grid off
@deftypefnx {} {} grid minor
@deftypefnx {} {} grid minor on
@deftypefnx {} {} grid minor off
@deftypefnx {} {} grid (@var{hax}, @dots{})
Control the display of plot grid lines.

The function state input may be either @qcode{"on"} or @qcode{"off"}.
If it is omitted, the current grid state is toggled.

When the first argument is @qcode{"minor"} all subsequent commands
modify the minor grid rather than the major grid.

If the first argument @var{hax} is an axes handle, then operate on
this axes rather than the current axes returned by @code{gca}.

To control the grid lines for an individual axes use the @code{set}
function.  For example:

@example
set (gca, "ygrid", "on");
@end example
@seealso{@ref{XREFaxis,,axis}, @ref{XREFbox,,box}}
@end deftypefn


@c colorbar scripts/plot/draw/colorbar.m
@anchor{XREFcolorbar}
@deftypefn  {} {} colorbar
@deftypefnx {} {} colorbar (@dots{}, @var{loc})
@deftypefnx {} {} colorbar (@var{delete_option})
@deftypefnx {} {} colorbar (@var{hcb}, @dots{})
@deftypefnx {} {} colorbar (@var{hax}, @dots{})
@deftypefnx {} {} colorbar (@dots{}, "peer", @var{hax}, @dots{})
@deftypefnx {} {} colorbar (@dots{}, "location", @var{loc}, @dots{})
@deftypefnx {} {} colorbar (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {@var{h} =} colorbar (@dots{})
Add a colorbar to the current axes.

A colorbar displays the current colormap along with numerical rulings
so that the color scale can be interpreted.

The optional input @var{loc} determines the location of the colorbar.  If
present, it must be the last argument to @code{colorbar}.  Valid values for
@var{loc} are

@table @asis
@item @qcode{"EastOutside"}
Place the colorbar outside the plot to the right.  This is the default.

@item @qcode{"East"}
Place the colorbar inside the plot to the right.

@item @qcode{"WestOutside"}
Place the colorbar outside the plot to the left.

@item @qcode{"West"}
Place the colorbar inside the plot to the left.

@item @qcode{"NorthOutside"}
Place the colorbar above the plot.

@item @qcode{"North"}
Place the colorbar at the top of the plot.

@item @qcode{"SouthOutside"}
Place the colorbar under the plot.

@item @qcode{"South"}
Place the colorbar at the bottom of the plot.
@end table

To remove a colorbar from a plot use any one of the following keywords for
the @var{delete_option}: @qcode{"off"}, @qcode{"delete"}, @qcode{"hide"}.

If the first argument @var{hax} is an axes handle, then the colorbar is
added to this axes, rather than the current axes returned by @code{gca}.
Alternatively, If the argument @qcode{"peer"} is given, then the following
argument is treated as the axes handle in which to add the colorbar.  The
@qcode{"peer"} calling syntax may be removed in the future and is not
recommended.

If the first argument @var{hcb} is a handle to a colorbar object, then
operate on this colorbar directly.

Additional property/value pairs are passed directly to the underlying axes
object.

The optional return value @var{h} is a graphics handle to the created
colorbar object.

Implementation Note: A colorbar is created as an additional axes object
with the @qcode{"tag"} property set to @qcode{"colorbar"}.  The created
object has the extra property @qcode{"location"} which controls the
positioning of the colorbar.
@seealso{@ref{XREFcolormap,,colormap}}
@end deftypefn


@c annotation scripts/plot/appearance/annotation.m
@anchor{XREFannotation}
@deftypefn  {} {} annotation (@var{type})
@deftypefnx {} {} annotation ("line", @var{x}, @var{y})
@deftypefnx {} {} annotation ("arrow", @var{x}, @var{y})
@deftypefnx {} {} annotation ("doublearrow", @var{x}, @var{y})
@deftypefnx {} {} annotation ("textarrow", @var{x}, @var{y})
@deftypefnx {} {} annotation ("textbox", @var{pos})
@deftypefnx {} {} annotation ("rectangle", @var{pos})
@deftypefnx {} {} annotation ("ellipse", @var{pos})
@deftypefnx {} {} annotation (@dots{}, @var{prop}, @var{val})
@deftypefnx {} {} annotation (@var{hf}, @dots{})
@deftypefnx {} {@var{h} =} annotation (@dots{})
Draw annotations to emphasize parts of a figure.

You may build a default annotation by specifying only the @var{type}
of the annotation.

Otherwise you can select the type of annotation and then set its position
using either @var{x} and @var{y} coordinates for line-based annotations or a
position vector @var{pos} for others.  In either case, coordinates are
interpreted using the @qcode{"units"} property of the annotation object.
The default is @qcode{"normalized"}, which means the lower left hand corner
of the figure has coordinates @samp{[0 0]} and the upper right hand corner
@samp{[1 1]}.

If the first argument @var{hf} is a figure handle, then plot into this
figure, rather than the current figure returned by @code{gcf}.

Further arguments can be provided in the form of @var{prop}/@var{val} pairs
to customize the annotation appearance.

The optional return value @var{h} is a graphics handle to the created
annotation object.  This can be used with the @code{set} function to
customize an existing annotation object.

All annotation objects share two properties:

@itemize
@item @qcode{"units"}: the units in which coordinates are interpreted.@*
Its value may be one of @qcode{"centimeters"} | @qcode{"characters"} |
@qcode{"inches"} | @qcode{"@{normalized@}"} | @qcode{"pixels"} |
@qcode{"points"}.

@item @qcode{"position"}: a four-element vector [x0 y0 width height].@*
The vector specifies the coordinates (x0,y0) of the origin of the annotation
object, its width, and its height.  The width and height may be negative,
depending on the orientation of the object.

@end itemize

Valid annotation types and their specific properties are described
below:

@table @asis
@item @qcode{"line"}
Constructs a line.  @var{x} and @var{y} must be two-element vectors
specifying the x and y coordinates of the two ends of the line.

The line can be customized using @qcode{"linewidth"}, @qcode{"linestyle"},
and @qcode{"color"} properties the same way as for @code{line} objects.

@item @qcode{"arrow"}
Construct an arrow.  The second point in vectors @var{x} and @var{y}
specifies the arrowhead coordinates.

Besides line properties, the arrowhead can be customized using
@qcode{"headlength"}, @qcode{"headwidth"}, and @qcode{"headstyle"}
properties.  Supported values for @qcode{"headstyle"} property are:
[@qcode{"diamond"} | @qcode{"ellipse"} | @qcode{"plain"} |
@qcode{"rectangle"} | @qcode{"vback1"} | @qcode{"@{vback2@}"} |
@qcode{"vback3"}]

@item @qcode{"doublearrow"}
Construct a double arrow.  Vectors @var{x} and @var{y} specify the
arrowhead coordinates.

The line and the arrowhead can be customized as for arrow annotations, but
some property names are duplicated:
@qcode{"head1length"}/@qcode{"head2length"},
@qcode{"head1width"}/@qcode{"head2width"}, etc.  The index 1 marks the
properties of the arrowhead at the first point in @var{x} and @var{y}
coordinates.

@item @qcode{"textarrow"}
Construct an arrow with a text label at the opposite end from the arrowhead.

Use the @qcode{"string"} property to change the text string.
The line and the arrowhead can be customized as for arrow annotations, and
the text can be customized using the same properties as @code{text} graphics
objects.  Note, however, that some text property names are prefixed with
"text" to distinguish them from arrow properties:
@qcode{"textbackgroundcolor"}, @qcode{"textcolor"},
@qcode{"textedgecolor"}, @qcode{"textlinewidth"},
@qcode{"textmargin"}, @qcode{"textrotation"}.

@item @qcode{"textbox"}
Construct a box with text inside.  @var{pos} specifies the
@qcode{"position"} property of the annotation.

Use the @qcode{"string"} property to change the text string.
You may use @qcode{"backgroundcolor"}, @qcode{"edgecolor"},
@qcode{"linestyle"}, and @qcode{"linewidth"} properties to customize
the box background color and edge appearance.  A limited set of @code{text}
objects properties are also available; Besides @qcode{"font@dots{}"}
properties, you may also use @qcode{"horizontalalignment"} and
@qcode{"verticalalignment"} to position the text inside the box.

Finally, the @qcode{"fitboxtotext"} property controls the actual extent of
the box.  If @qcode{"on"} (the default) the box limits are fitted to the
text extent.

@item @qcode{"rectangle"}
Construct a rectangle.  @var{pos} specifies the @qcode{"position"} property
of the annotation.

You may use @qcode{"facecolor"}, @qcode{"color"}, @qcode{"linestyle"}, and
@qcode{"linewidth"} properties to customize the rectangle background color
and edge appearance.

@item @qcode{"ellipse"}
Construct an ellipse.  @var{pos} specifies the @qcode{"position"} property
of the annotation.

See @qcode{"rectangle"} annotations for customization.
@end table

@seealso{@ref{XREFxlabel,,xlabel}, @ref{XREFylabel,,ylabel}, @ref{XREFzlabel,,zlabel}, @ref{XREFtitle,,title}, @ref{XREFtext,,text}, @ref{XREFgtext,,gtext}, @ref{XREFlegend,,legend}, @ref{XREFcolorbar,,colorbar}}
@end deftypefn


@node Multiple Plots on One Page
@subsection Multiple Plots on One Page
@cindex plotting, multiple plots per figure

Octave can display more than one plot in a single figure.  The simplest
way to do this is to use the @code{subplot} function to divide the plot
area into a series of subplot windows that are indexed by an integer.
For example,

@example
@group
subplot (2, 1, 1)
fplot (@@sin, [-10, 10]);
subplot (2, 1, 2)
fplot (@@cos, [-10, 10]);
@end group
@end example

@noindent
creates a figure with two separate axes, one displaying a sine wave and the
other a cosine wave.  The first call to subplot divides the figure into two
plotting areas (two rows and one column) and makes the first plot area active.
The grid of plot areas created by @code{subplot} is numbered in row-major order
(left to right, top to bottom).  After plotting a sine wave, the next call to
subplot activates the second subplot area, but does not re-partition the
figure.

@c subplot scripts/plot/util/subplot.m
@anchor{XREFsubplot}
@deftypefn  {} {} subplot (@var{rows}, @var{cols}, @var{index})
@deftypefnx {} {} subplot (@var{rows}, @var{cols}, @var{index}, @var{hax})
@deftypefnx {} {} subplot (@var{rcn})
@deftypefnx {} {} subplot (@var{hax})
@deftypefnx {} {} subplot (@dots{}, "align")
@deftypefnx {} {} subplot (@dots{}, "replace")
@deftypefnx {} {} subplot (@dots{}, "position", @var{pos})
@deftypefnx {} {} subplot (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {@var{hax} =} subplot (@dots{})
Set up a plot grid with @var{rows} by @var{cols} subwindows and set the
current axes for plotting (@code{gca}) to the location given by @var{index}.

If an axes handle @var{hax} is provided after the (@var{rows}, @var{cols},
@var{index}) arguments, the corresponding axes is turned into a
subplot.

If only one numeric argument is supplied, then it must be a three digit
value specifying the number of rows in digit 1, the number of columns in
digit 2, and the plot index in digit 3.

The plot index runs row-wise; First, all columns in a row are numbered
and then the next row is filled.

For example, a plot with 2x3 grid will have plot indices running as follows:
@tex
\vskip 10pt
\hfil\vbox{\offinterlineskip\hrule
\halign{\vrule#&&\qquad\hfil#\hfil\qquad\vrule\cr
height13pt&1&2&3\cr height12pt&&&\cr\noalign{\hrule}
height13pt&4&5&6\cr height12pt&&&\cr\noalign{\hrule}}}
\hfil
\vskip 10pt
@end tex
@ifnottex

@example
@group
+-----+-----+-----+
|  1  |  2  |  3  |
+-----+-----+-----+
|  4  |  5  |  6  |
+-----+-----+-----+
@end group
@end example

@end ifnottex

@var{index} may also be a vector.  In this case, the new axes will enclose
the grid locations specified.  The first demo illustrates this:

@example
demo ("subplot", 1)
@end example

The index of the subplot to make active may also be specified by its axes
handle, @var{hax}, returned from a previous @code{subplot} command.

If the option @qcode{"align"} is given then the plot boxes of the subwindows
will align, but this may leave no room for axes tick marks or labels.

If the option @qcode{"replace"} is given then the subplot axes will be
reset, rather than just switching the current axes for plotting to the
requested subplot.

The @qcode{"position"} property can be used to exactly position the subplot
axes within the current figure.  The option @var{pos} is a 4-element vector
[x, y, width, height] that determines the location and size of the axes.
The values in @var{pos} are normalized in the range [0,1].

Any property/value pairs are passed directly to the underlying axes object.

If the output @var{hax} is requested, subplot returns the axes handle for
the subplot.  This is useful for modifying the properties of a subplot
using @code{set}.
@seealso{@ref{XREFaxes,,axes}, @ref{XREFplot,,plot}, @ref{XREFgca,,gca}, @ref{XREFset,,set}}
@end deftypefn


@node Multiple Plot Windows
@subsection Multiple Plot Windows
@cindex plotting, multiple plot windows

You can open multiple plot windows using the @code{figure} function.
For example,

@example
@group
figure (1);
fplot (@@sin, [-10, 10]);
figure (2);
fplot (@@cos, [-10, 10]);
@end group
@end example

@noindent
creates two figures, with the first displaying a sine wave and
the second a cosine wave.  Figure numbers must be positive integers.

@c figure scripts/plot/util/figure.m
@anchor{XREFfigure}
@deftypefn  {} {} figure
@deftypefnx {} {} figure @var{n}
@deftypefnx {} {} figure (@var{n})
@deftypefnx {} {} figure (@dots{}, "@var{property}", @var{value}, @dots{})
@deftypefnx {} {@var{h} =} figure (@dots{})
Create a new figure window for plotting.

If no arguments are specified, a new figure with the next available number
is created.

If called with an integer @var{n}, and no such numbered figure exists, then
a new figure with the specified number is created.  If the figure already
exists then it is made visible and becomes the current figure for plotting.

Multiple property-value pairs may be specified for the figure object, but
they must appear in pairs.

The optional return value @var{h} is a graphics handle to the created figure
object.

Programming Note: The full list of properties is documented at
@ref{Figure Properties,,Figure Properties}.
@seealso{@ref{XREFaxes,,axes}, @ref{XREFgcf,,gcf}, @ref{XREFclf,,clf}, @ref{XREFclose,,close}}
@end deftypefn


@node Manipulation of Plot Objects
@subsection Manipulation of Plot Objects
@cindex plotting, object manipulation

@c pan scripts/plot/util/pan.m
@anchor{XREFpan}
@deftypefn  {} {} pan
@deftypefnx {} {} pan on
@deftypefnx {} {} pan off
@deftypefnx {} {} pan xon
@deftypefnx {} {} pan yon
@deftypefnx {} {} pan (@var{hfig}, @var{option})
Control the interactive panning mode of a figure in the GUI.

Given the option @qcode{"on"} or @qcode{"off"}, set the interactive
pan mode on or off.

With no arguments, toggle the current pan mode on or off.

Given the option @qcode{"xon"} or @qcode{"yon"}, enable pan mode
for the x or y axis only.

If the first argument @var{hfig} is a figure, then operate on the given
figure rather than the current figure as returned by @code{gcf}.

@seealso{@ref{XREFrotate3d,,rotate3d}, @ref{XREFzoom,,zoom}}
@end deftypefn


@c rotate scripts/plot/util/rotate.m
@anchor{XREFrotate}
@deftypefn  {} {} rotate (@var{h}, @var{direction}, @var{alpha})
@deftypefnx {} {} rotate (@dots{}, @var{origin})
Rotate the plot object @var{h} through @var{alpha} degrees around the line
with direction @var{direction} and origin @var{origin}.

The default value of @var{origin} is the center of the axes object that is
the parent of @var{h}.

If @var{h} is a vector of handles, they must all have the same parent axes
object.

Graphics objects that may be rotated are lines, surfaces, patches, and
images.
@end deftypefn


@c rotate3d scripts/plot/util/rotate3d.m
@anchor{XREFrotate3d}
@deftypefn  {} {} rotate3d
@deftypefnx {} {} rotate3d on
@deftypefnx {} {} rotate3d off
@deftypefnx {} {} rotate3d (@var{hfig}, @var{option})
Control the interactive 3-D rotation mode of a figure in the GUI.

Given the option @qcode{"on"} or @qcode{"off"}, set the interactive
rotate mode on or off.

With no arguments, toggle the current rotate mode on or off.

If the first argument @var{hfig} is a figure, then operate on the given
figure rather than the current figure as returned by @code{gcf}.

@seealso{@ref{XREFpan,,pan}, @ref{XREFzoom,,zoom}}
@end deftypefn


@c zoom scripts/plot/util/zoom.m
@anchor{XREFzoom}
@deftypefn  {} {} zoom
@deftypefnx {} {} zoom (@var{factor})
@deftypefnx {} {} zoom on
@deftypefnx {} {} zoom off
@deftypefnx {} {} zoom xon
@deftypefnx {} {} zoom yon
@deftypefnx {} {} zoom out
@deftypefnx {} {} zoom reset
@deftypefnx {} {} zoom (@var{hfig}, @var{option})
Zoom the current axes object or control the interactive zoom mode of a
figure in the GUI.

Given a numeric argument greater than zero, zoom by the given factor.  If
the zoom factor is greater than one, zoom in on the plot.  If the factor
is less than one, zoom out.  If the zoom factor is a two- or three-element
vector, then the elements specify the zoom factors for the x, y, and z
axes respectively.

Given the option @qcode{"on"} or @qcode{"off"}, set the interactive zoom
mode on or off.

With no arguments, toggle the current zoom mode on or off.

Given the option @qcode{"xon"} or @qcode{"yon"}, enable zoom mode for the
x or y-axis only.

Given the option @qcode{"out"}, zoom to the initial zoom setting.

Given the option @qcode{"reset"}, store the current zoom setting so that
@code{zoom out} will return to this zoom level.

If the first argument @var{hfig} is a figure, then operate on the given
figure rather than the current figure as returned by @code{gcf}.

@seealso{@ref{XREFpan,,pan}, @ref{XREFrotate3d,,rotate3d}}
@end deftypefn


@node Manipulation of Plot Windows
@subsection Manipulation of Plot Windows
@cindex plotting, window manipulation

By default, Octave refreshes the plot window when a prompt is printed,
or when waiting for input.  The
@code{drawnow} function is used to cause a plot window to be updated.

@c drawnow libinterp/corefcn/graphics.cc
@anchor{XREFdrawnow}
@deftypefn  {} {} drawnow ()
@deftypefnx {} {} drawnow ("expose")
@deftypefnx {} {} drawnow (@var{term}, @var{file}, @var{debug_file})
Update figure windows and their children.

The event queue is flushed and any callbacks generated are executed.

With the optional argument @qcode{"expose"}, only graphic objects are
updated and no other events or callbacks are processed.

The third calling form of @code{drawnow} is for debugging and is
undocumented.
@seealso{@ref{XREFrefresh,,refresh}}
@end deftypefn


Only figures that are modified will be updated.  The @code{refresh}
function can also be used to cause an update of the current figure, even if
it is not modified.

@c refresh scripts/plot/util/refresh.m
@anchor{XREFrefresh}
@deftypefn  {} {} refresh ()
@deftypefnx {} {} refresh (@var{h})
Refresh a figure, forcing it to be redrawn.

When called without an argument the current figure is redrawn.  Otherwise,
the figure with graphic handle @var{h} is redrawn.
@seealso{@ref{XREFdrawnow,,drawnow}}
@end deftypefn


Normally, high-level plot functions like @code{plot} or @code{mesh} call
@code{newplot} to initialize the state of the current axes so that the
next plot is drawn in a blank window with default property settings.  To
have two plots superimposed over one another, use the @code{hold}
function.  For example,

@example
@group
hold on;
x = -10:0.1:10;
plot (x, sin (x));
plot (x, cos (x));
hold off;
@end group
@end example

@noindent
displays sine and cosine waves on the same axes.  If the hold state is
off, consecutive plotting commands like this will only display the last
plot.

@c newplot scripts/plot/util/newplot.m
@anchor{XREFnewplot}
@deftypefn  {} {} newplot ()
@deftypefnx {} {} newplot (@var{hfig})
@deftypefnx {} {} newplot (@var{hax})
@deftypefnx {} {@var{hax} =} newplot (@dots{})
Prepare graphics engine to produce a new plot.

This function is called at the beginning of all high-level plotting
functions.  It is not normally required in user programs.  @code{newplot}
queries the @qcode{"NextPlot"} field of the current figure and axes to
determine what to do.

@multitable @columnfractions .25 .75
@headitem Figure NextPlot @tab Action
@item @qcode{"new"} @tab Create a new figure and make it the current figure.

@item @qcode{"add"} (default) @tab Add new graphic objects to the current
figure.

@item @qcode{"replacechildren"} @tab Delete child objects whose
HandleVisibility is set to @qcode{"on"}.  Set NextPlot property to
@qcode{"add"}.  This typically clears a figure, but leaves in place hidden
objects such as menubars.  This is equivalent to @code{clf}.

@item @qcode{"replace"} @tab Delete all child objects of the figure and
reset all figure properties to their defaults.  However, the following
four properties are not reset: Position, Units, PaperPosition, PaperUnits.
This is equivalent to @code{clf reset}.
@end multitable

@multitable @columnfractions .25 .75
@headitem Axes NextPlot @tab Action
@item @qcode{"add"} @tab Add new graphic objects to the current axes.  This
is equivalent to @code{hold on}.

@item @qcode{"replacechildren"} @tab Delete child objects whose
HandleVisibility is set to @qcode{"on"}, but leave axes properties
unmodified.  This typically clears a plot, but preserves special settings
such as log scaling for axes.  This is equivalent to @code{cla}.

@item @qcode{"replace"} (default) @tab Delete all child objects of the
axes and reset all axes properties to their defaults.  However, the
following properties are not reset: Position, Units.  This is equivalent
to @code{cla reset}.
@end multitable

If the optional input @var{hfig} or @var{hax} is given then prepare the
specified figure or axes rather than the current figure and axes.

The optional return value @var{hax} is a graphics handle to the created
axes object (not figure).

@strong{Caution:} Calling @code{newplot} may change the current figure and
current axes.
@end deftypefn


@c hold scripts/plot/util/hold.m
@anchor{XREFhold}
@deftypefn  {} {} hold
@deftypefnx {} {} hold on
@deftypefnx {} {} hold off
@deftypefnx {} {} hold (@var{hax}, @dots{})
Toggle or set the @qcode{"hold"} state of the plotting engine which
determines whether new graphic objects are added to the plot or replace
the existing objects.

@table @code
@item hold on
Retain plot data and settings so that subsequent plot commands are displayed
on a single graph.  Line color and line style are advanced for each new plot
added.

@item hold all (deprecated)
Equivalent to @code{hold on}.

@item hold off
Restore default graphics settings which clear the graph and reset axes
properties before each new plot command.  (default).

@item hold
Toggle the current hold state.
@end table

When given the additional argument @var{hax}, the hold state is modified
for this axes rather than the current axes returned by @code{gca}.

To query the current hold state use the @code{ishold} function.
@seealso{@ref{XREFishold,,ishold}, @ref{XREFcla,,cla}, @ref{XREFclf,,clf}, @ref{XREFnewplot,,newplot}}
@end deftypefn


@c ishold scripts/plot/util/ishold.m
@anchor{XREFishold}
@deftypefn  {} {} ishold
@deftypefnx {} {} ishold (@var{hax})
@deftypefnx {} {} ishold (@var{hfig})
Return true if the next plot will be added to the current plot, or
false if the plot device will be cleared before drawing the next plot.

If the first argument is an axes handle @var{hax} or figure handle
@var{hfig} then operate on this plot rather than the current one.
@seealso{@ref{XREFhold,,hold}, @ref{XREFnewplot,,newplot}}
@end deftypefn

To clear the current figure, call the @code{clf} function.  To clear the
current axis, call the @code{cla} function.  To bring the current figure
to the top of the window stack, call the @code{shg} function.  To delete
a graphics object, call @code{delete} on its index.  To close the
figure window, call the @code{close} function.

@c clf scripts/plot/util/clf.m
@anchor{XREFclf}
@deftypefn  {} {} clf
@deftypefnx {} {} clf reset
@deftypefnx {} {} clf (@var{hfig})
@deftypefnx {} {} clf (@var{hfig}, "reset")
@deftypefnx {} {@var{h} =} clf (@dots{})
Clear the current figure window.

@code{clf} operates by deleting child graphics objects with visible
handles (HandleVisibility = @qcode{"on"}).

If the optional argument @qcode{"reset"} is specified, delete all child
objects including those with hidden handles and reset all figure
properties to their defaults.  However, the following properties are not
reset: Position, Units, PaperPosition, PaperUnits.

If the first argument @var{hfig} is a figure handle, then operate on
this figure rather than the current figure returned by @code{gcf}.

The optional return value @var{h} is the graphics handle of the figure
window that was cleared.
@seealso{@ref{XREFcla,,cla}, @ref{XREFclose,,close}, @ref{XREFdelete,,delete}, @ref{XREFreset,,reset}}
@end deftypefn


@c cla scripts/plot/util/cla.m
@anchor{XREFcla}
@deftypefn  {} {} cla
@deftypefnx {} {} cla reset
@deftypefnx {} {} cla (@var{hax})
@deftypefnx {} {} cla (@var{hax}, "reset")
Clear the current or specified (@var{hax}) axes object.

@code{cla} operates by deleting child graphic objects with visible
handles (@code{HandleVisibility} = @qcode{"on"}).  This typically clears the
axes of any visual objects, but leaves in place axes limits, tick marks and
labels, camera view, etc.  In addition, the automatic coloring and styling
of lines is reset by changing the axes properties @code{ColorOrderIndex},
@code{LinestyleOrderIndex} to 1.

If the optional argument @qcode{"reset"} is specified, delete all child
objects, including those with hidden handles, and reset all axes properties
to their defaults.  However, the following properties are not reset:
@code{Position}, @code{Units}.

If the first argument @var{hax} is an axes handle, then operate on
this axes rather than the current axes returned by @code{gca}.
@seealso{@ref{XREFclf,,clf}, @ref{XREFdelete,,delete}, @ref{XREFreset,,reset}}
@end deftypefn


@c shg scripts/plot/util/shg.m
@anchor{XREFshg}
@deftypefn {} {} shg
Show the graph window.

Currently, this is the same as executing @code{drawnow}.
@seealso{@ref{XREFdrawnow,,drawnow}, @ref{XREFfigure,,figure}}
@end deftypefn


@c delete scripts/miscellaneous/delete.m
@anchor{XREFdelete}
@deftypefn  {} {} delete (@var{file})
@deftypefnx {} {} delete (@var{file1}, @var{file2}, @dots{})
@deftypefnx {} {} delete (@var{handle})
Delete the named file or graphics handle.

@var{file} may contain globbing patterns such as @samp{*}.  Multiple files
to be deleted may be specified in the same function call.

@var{handle} may be a scalar or vector of graphic handles to delete.

Programming Note: Deleting graphics objects is the proper way to remove
features from a plot without clearing the entire figure.
@seealso{@ref{XREFclf,,clf}, @ref{XREFcla,,cla}, @ref{XREFunlink,,unlink}, @ref{XREFrmdir,,rmdir}}
@end deftypefn


@c close scripts/plot/util/close.m
@anchor{XREFclose}
@deftypefn  {} {} close
@deftypefnx {} {} close (@var{h})
@deftypefnx {} {} close @var{figname}
@deftypefnx {} {} close all
@deftypefnx {} {} close all hidden
@deftypefnx {} {} close all force
Close figure window(s).

When called with no arguments, close the current figure.  This is equivalent
to @code{close (gcf)}.  If the input @var{h} is a graphic handle, or vector
of graphics handles, then close each figure in @var{h}.  The figure to
close may also be specified by name @var{figname} which is matched against
the @qcode{"Name"} property of all figures.

If the argument @qcode{"all"} is given then all figures with visible handles
(HandleVisibility = @qcode{"on"}) are closed.

If the additional argument @qcode{"hidden"} is given then all figures,
including hidden ones, are closed.

If the additional argument @qcode{"force"} is given then figures are closed
even when @qcode{"closerequestfcn"} has been altered to prevent closing the
window.

Implementation Note: @code{close} operates by making the handle @var{h} the
current figure, and then calling the function specified by the
@qcode{"closerequestfcn"} property of the figure.  By default, the function
@code{closereq} is used.  It is possible that the function invoked will
delay or abort removing the figure.  To remove a figure without executing
any callback functions use @code{delete}.  When writing a callback function
to close a window do not use @code{close} to avoid recursion.

@seealso{@ref{XREFclosereq,,closereq}, @ref{XREFdelete,,delete}}
@end deftypefn


@c closereq scripts/plot/util/closereq.m
@anchor{XREFclosereq}
@deftypefn {} {} closereq ()
Close the current figure and delete all graphics objects associated with it.

By default, the @qcode{"closerequestfcn"} property of a new plot figure
points to this function.
@seealso{@ref{XREFclose,,close}, @ref{XREFdelete,,delete}}
@end deftypefn


@node Use of the @code{interpreter} Property
@subsection Use of the @code{interpreter} Property
@anchor{XREFinterpreterusage}

All text objects---such as titles, labels, legends, and text---include
the property @qcode{"interpreter"} that determines the manner in
which special control sequences in the text are rendered.

The interpreter property can take three values: @qcode{"none"}, @qcode{"tex"},
@qcode{"latex"}.  If the interpreter is set to @qcode{"none"} then no special
rendering occurs---the displayed text is a verbatim copy of the specified text.
Currently, the @qcode{"latex"} interpreter is not implemented for on-screen
display and is equivalent to @qcode{"none"}.  Note that Octave does not parse
or validate the text strings when in @qcode{"latex"} mode---it is the
responsibility of the programmer to generate valid strings which may include
wrapping sections that should appear in Math mode with @qcode{'$'} characters.

The @qcode{"tex"} option implements a subset of @TeX{} functionality when
rendering text.  This allows the insertion of special glyphs such as Greek
characters or mathematical symbols.  Special characters are inserted by using
a backslash (\) character followed by a code, as shown in @ref{tab:extended}.

Besides special glyphs, the formatting of the text can be changed within the
string by using the codes

@multitable @columnfractions .2 .2 .6 .2
@item @tab \bf @tab Bold font @tab
@item @tab \it @tab Italic font @tab
@item @tab \sl @tab Oblique Font @tab
@item @tab \rm @tab Normal font @tab
@end multitable

These codes may be used in conjunction with the @{ and @} characters to limit
the change to a part of the string.  For example,

@example
xlabel ('@{\bf H@} = a @{\bf V@}')
@end example

@noindent
where the character @qcode{'a'} will not appear in bold font.  Note that to
avoid having Octave interpret the backslash character in the strings,
the strings themselves should be in single quotes.

It is also possible to change the fontname and size within the text

@multitable @columnfractions .1 .4 .6 .1
@item @tab \fontname@{@var{fontname}@} @tab Specify the font to use @tab
@item @tab \fontsize@{@var{size}@} @tab Specify the size of the font to
use @tab
@end multitable

The color of the text may also be changed inline using either a string (e.g.,
"red") or numerically with a Red-Green-Blue (RGB) specification (e.g.,
[1 0 0], also red).

@multitable @columnfractions .1 .4 .6 .1
@item @tab \color@{@var{color}@} @tab Specify the color as a string @tab
@item @tab \color[rgb]@{@var{R} @var{G} @var{B}@} @tab Specify the color
numerically @tab
@end multitable

Finally, superscripting and subscripting can be controlled with the @qcode{'^'}
and @qcode{'_'} characters.  If the @qcode{'^'} or @qcode{'_'} is followed by a
@{ character, then all of the block surrounded by the @w{@{ @}} pair is
superscripted or subscripted.  Without the @w{@{ @}} pair, only the character
immediately following the @qcode{'^'} or @qcode{'_'} is changed.

@float Table,tab:extended
@tex
\vskip 6pt
\newdimen\cola \cola=78pt
\newdimen\colb \colb=78pt
\newdimen\colc \colc=78pt
\def\symtable#1#2#3{
\hbox to \hsize {\hfill\vbox{\offinterlineskip \tabskip=0pt
\hskip36pt #1
\vskip6pt
\halign{
\vrule height2.0ex depth1.ex width 0.6pt #2\tabskip=0.3em &
#2 \hfil & \vrule #2 & #2 \hfil & #2 \vrule &
#2 \hfil & \vrule #2 & #2 \hfil & #2 \vrule &
#2 \hfil & \vrule #2 & #2 \hfil & #2 \vrule
width 0.6pt \tabskip=0pt\cr
\noalign{\hrule height 0.6pt}
& Code && Sym && Code && Sym && Code && Sym &\cr
\noalign{\hrule}
#3
\noalign{\hrule height 0.6pt}
}
}\hfill}}
\hoffset72pt
\symtable{Greek Lowercase Letters} {#}
{& \hbox to \cola{$\backslash$alpha }    && $\alpha$
&& \hbox to \colb{$\backslash$beta }     && $\beta$
&& \hbox to \colc{$\backslash$gamma}     && $\gamma$     &\cr
& $\backslash$delta      && $\delta$
&& $\backslash$epsilon   && $\epsilon$
&& $\backslash$zeta      && $\zeta$      &\cr
& $\backslash$eta        && $\eta$
&& $\backslash$theta     && $\theta$
&& $\backslash$vartheta  && $\vartheta$  &\cr
& $\backslash$iota       && $\iota$
&& $\backslash$kappa     && $\kappa$
&& $\backslash$lambda    && $\lambda$    &\cr
& $\backslash$mu         && $\mu$
&& $\backslash$nu        && $\nu$
&& $\backslash$xi        && $\xi$        &\cr
& $\backslash$o          && $o$
&& $\backslash$pi        && $\pi$
&& $\backslash$varpi     && $\varpi$     &\cr
& $\backslash$rho        && $\rho$
&& $\backslash$sigma     && $\sigma$
&& $\backslash$varsigma  && $\varsigma$  &\cr
& $\backslash$tau        && $\tau$
&& $\backslash$upsilon   && $\upsilon$
&& $\backslash$phi       && $\phi$       &\cr
& $\backslash$chi        && $\chi$
&& $\backslash$psi       && $\psi$
&& $\backslash$omega     && $\omega$     &\cr}
\vskip12pt
\symtable{Greek Uppercase Letters} {#}
{& \hbox to \cola{$\backslash$Gamma}   && $\Gamma$
&& \hbox to \colb{$\backslash$Delta}   && $\Delta$
&& \hbox to \colc{$\backslash$Theta}   && $\Theta$      &\cr
& $\backslash$Lambda   && $\Lambda$
&& $\backslash$Xi      && $\Xi$
&& $\backslash$Pi      && $\Pi$         &\cr
& $\backslash$Sigma    && $\Sigma$
&& $\backslash$Upsilon && $\Upsilon$
&& $\backslash$Phi     && $\Phi$        &\cr
& $\backslash$Psi      && $\Psi$
&& $\backslash$Omega   && $\Omega$
&&    &&       &\cr}
\vskip12pt
\symtable{Misc Symbols Type Ord} {#}
{& \hbox to \cola{$\backslash$aleph}       && $\aleph$
&& \hbox to \colb{$\backslash$wp}          && $\wp$
&& \hbox to \colc{$\backslash$Re}          && $\Re$      &\cr
& $\backslash$Im           && $\Im$
&& $\backslash$partial     && $\partial$
&& $\backslash$infty       && $\infty$       &\cr
& $\backslash$prime        && $\prime$
&& $\backslash$nabla       && $\nabla$
&& $\backslash$surd        && $\surd$        &\cr
& $\backslash$angle        && $\angle$
&& $\backslash$forall      && $\forall$
&& $\backslash$exists      && $\exists$      &\cr
& $\backslash$neg          && $\neg$
&& $\backslash$clubsuit    && $\clubsuit$
&& $\backslash$diamondsuit && $\diamondsuit$ &\cr
& $\backslash$heartsuit    && $\heartsuit$
&& $\backslash$spadesuit   && $\spadesuit$
&&    &&       &\cr}
\vskip12pt
\symtable{``Large'' Operators} {#}
{& \hbox to \cola{$\backslash$int}   && $\int$
&& \hbox to \colb{}   &&
&& \hbox to \colc{}   &&       &\cr}
\vskip12pt
\symtable{Binary operators} {#}
{& \hbox to \cola{$\backslash$pm}     && $\pm$
&& \hbox to \colb{$\backslash$cdot}   && $\cdot$
&& \hbox to \colc{$\backslash$times}  && $\times$      &\cr
& $\backslash$ast     && $\ast$
&& $\backslash$circ   && $\circ$
&& $\backslash$bullet && $\bullet$     &\cr
& $\backslash$div     && $\div$
&& $\backslash$cap    && $\cap$
&& $\backslash$cup    && $\cup$        &\cr
& $\backslash$vee     && $\vee$
&& $\backslash$wedge  && $\wedge$
&& $\backslash$oplus  && $\oplus$      &\cr
& $\backslash$otimes  && $\otimes$
&& $\backslash$oslash && $\oslash$
&&    &&      &\cr}
@end tex
@ifnottex
@multitable @columnfractions .25 .25 .25 .25
@item Greek Lowercase Letters
@item @tab  \alpha      @tab  \beta        @tab  \gamma
@item @tab  \delta      @tab  \epsilon     @tab  \zeta
@item @tab  \eta        @tab  \theta       @tab  \vartheta
@item @tab  \iota       @tab  \kappa       @tab  \lambda
@item @tab  \mu         @tab  \nu          @tab  \xi
@item @tab  \o          @tab  \pi          @tab  \varpi
@item @tab  \rho        @tab  \sigma       @tab  \varsigma
@item @tab  \tau        @tab  \upsilon     @tab  \phi
@item @tab  \chi        @tab  \psi         @tab  \omega
@item Greek Uppercase Letters
@item @tab  \Gamma      @tab  \Delta       @tab  \Theta
@item @tab  \Lambda     @tab  \Xi          @tab  \Pi
@item @tab  \Sigma      @tab  \Upsilon     @tab  \Phi
@item @tab  \Psi        @tab  \Omega       @tab
@item Misc Symbols Type Ord
@item @tab  \aleph      @tab  \wp          @tab  \Re
@item @tab  \Im         @tab  \partial     @tab  \infty
@item @tab  \prime      @tab  \nabla       @tab  \surd
@item @tab  \angle      @tab  \forall      @tab  \exists
@item @tab  \neg        @tab  \clubsuit    @tab  \diamondsuit
@item @tab  \heartsuit  @tab  \spadesuit   @tab
@item ``Large'' Operators
@item @tab  \int
@item Binary Operators
@item @tab  \pm         @tab  \cdot        @tab  \times
@item @tab  \ast        @tab  \circ        @tab  \bullet
@item @tab  \div        @tab  \cap         @tab  \cup
@item @tab  \vee        @tab  \wedge       @tab  \oplus
@item @tab  \otimes     @tab  \oslash      @tab
@item Relations
@item @tab  \leq        @tab  \subset      @tab  \subseteq
@item @tab  \in         @tab  \geq         @tab  \supset
@item @tab  \supseteq   @tab  \ni          @tab  \mid
@item @tab  \equiv      @tab  \sim         @tab  \approx
@item @tab  \cong       @tab  \propto      @tab  \perp
@item Arrows
@item @tab  \leftarrow  @tab  \Leftarrow   @tab  \rightarrow
@item @tab  \Rightarrow @tab  \leftrightarrow @tab  \uparrow
@item @tab  \downarrow  @tab               @tab
@item Openings and Closings
@item @tab  \lfloor     @tab  \langle      @tab  \lceil
@item @tab  \rfloor     @tab  \rangle      @tab  \rceil
@item Alternate Names
@item @tab  \neq
@item Other
@item @tab  \ldots      @tab  \0          @tab  \copyright
@item @tab  \deg
@end multitable
@end ifnottex
@caption{Available special characters in @TeX{} mode}
@end float
@float
@tex
\vskip 6pt
\newdimen\cola \cola=78pt
\newdimen\colb \colb=78pt
\newdimen\colc \colc=78pt
\def\symtable#1#2#3{\hbox to \hsize {\hfill\vbox{\offinterlineskip \tabskip=0pt
\hskip36pt #1
\vskip6pt
\halign{
\vrule height2.0ex depth1.ex width 0.6pt #2\tabskip=0.3em &
#2 \hfil & \vrule #2 & #2 \hfil & #2 \vrule &
#2 \hfil & \vrule #2 & #2 \hfil & #2 \vrule &
#2 \hfil & \vrule #2 & #2 \hfil & #2 \vrule
width 0.6pt \tabskip=0pt\cr
\noalign{\hrule height 0.6pt}
& Code && Sym && Code && Sym && Code && Sym &\cr
\noalign{\hrule}
#3
\noalign{\hrule height 0.6pt}
}
}\hfill}}
\hoffset72pt
\vskip12pt
\symtable{Relations} {#}
{& \hbox to \cola{$\backslash$leq}      && $\leq$
&& \hbox to \colb{$\backslash$subset}   && $\subset$
&& \hbox to \colc{$\backslash$subseteq} && $\subseteq$    &\cr
& $\backslash$in        && $\in$
&& $\backslash$geq      && $\geq$
&& $\backslash$supset   && $\supset$      &\cr
& $\backslash$supseteq  && $\supseteq$
&& $\backslash$ni       && $\ni$
&& $\backslash$mid      && $\mid$         &\cr
& $\backslash$equiv     && $\equiv$
&& $\backslash$sim      && $\sim$
&& $\backslash$approx   && $\approx$      &\cr
& $\backslash$cong      && $\cong$
&& $\backslash$propto   && $\propto$
&& $\backslash$perp     && $\perp$        &\cr}
\vskip12pt
\symtable{Arrows} {#}
{& \hbox to \cola{$\backslash$leftarrow}      && $\leftarrow$
&& \hbox to \colb{$\backslash$Leftarrow}      && $\Leftarrow$
&& \hbox to \colc{$\backslash$rightarrow}     && $\rightarrow$      &\cr
& $\backslash$Rightarrow      && $\Rightarrow$
&& $\backslash$leftrightarrow && $\leftrightarrow$
&& $\backslash$uparrow        && $\uparrow$         &\cr
& $\backslash$downarrow       && $\downarrow$
&&   &&
&&   &&       &\cr}
\vskip12pt
\symtable{Openings and Closings} {#}
{& \hbox to \cola{$\backslash$lfloor   }    && $\lfloor$
&& \hbox to \colb{$\backslash$langle   }    && $\langle$
&& \hbox to \colc{$\backslash$lceil    }    && $\lceil$      &\cr
& $\backslash$rfloor    && $\rfloor$
&& $\backslash$rangle   && $\rangle$
&& $\backslash$rceil    && $\rceil$      &\cr}
\vskip12pt
\symtable{Alternate Names} {#}
{& \hbox to \cola{$\backslash$neq}   && $\neq$
&& \hbox to \colb{}   &&
&& \hbox to \colc{}   &&   &\cr}
\vskip12pt
\symtable{Other (not in Appendix F Tables)} {#}
{& \hbox to \cola{$\backslash$ldots}     && $\ldots$
&& \hbox to \colb{$\backslash$0}         && $\oslash$
&& \hbox to \colc{$\backslash$copyright} && $\copyright$      &\cr
& $\backslash$deg        && $^\circ$
&&    &&
&&    &&       &\cr}
\vskip12pt
\hskip36pt Table 15.1: Available special characters in \TeX\ mode (cont.)
@end tex
@end float

@subsubsection Degree Symbol
@cindex Degree Symbol

Conformance to both @TeX{} and @sc{matlab} with respect to the @code{\circ}
symbol is impossible.  While @TeX{} translates this symbol to @w{Unicode 2218}
(U+2218), @sc{matlab} maps this to @w{Unicode 00B0} (U+00B0) instead.  Octave
has chosen to follow the @TeX{} specification, but has added the additional
symbol @code{\deg} which maps to the degree symbol (U+00B0).

@node Printing and Saving Plots
@subsection Printing and Saving Plots
@cindex plotting, saving and printing plots
@cindex printing plots
@cindex saving plots

The @code{print} command allows you to send plots to you printer and
to save plots in a variety of formats.  For example,

@example
print -dpsc
@end example

@noindent
prints the current figure to a color PostScript printer.  And,

@example
print -deps foo.eps
@end example

@noindent
saves the current figure to an encapsulated PostScript file called
@file{foo.eps}.

The current graphic toolkits produce very similar graphic displays, but differ
in their capability to display unusual text and in their ability to print
such text.  In general, the @qcode{"tex"} interpreter (default) is the best
all-around performer for both on-screen display and printing.  However, for the
reproduction of complicated text formulas the @qcode{"latex"} interpreter is
preferred.  The @qcode{"latex"} interpreter will not display symbols on-screen,
but the printed output will be correct.  When printing, use one of the
@code{standalone} options which provide full access to @LaTeX{} commands.

A complete example showing the capabilities of text printing using the
@option{-dpdflatexstandalone} option is:

@example
@group
x = 0:0.01:3;
hf = figure ();
plot (x, erf (x));
hold on;
plot (x, x, "r");
axis ([0, 3, 0, 1]);
text (0.65, 0.6175, ['$\displaystyle\leftarrow x = @{2 \over \sqrt@{\pi@}@}'...
                     '\int_@{0@}^@{x@} e^@{-t^2@} dt = 0.6175$'],
      "interpreter", "latex");
xlabel ("x");
ylabel ("erf (x)");
title ("erf (x) with text annotation");
print (hf, "plot15_7.pdf", "-dpdflatexstandalone");
system ("pdflatex plot15_7");
open plot15_7.pdf
@end group
@end example

@ifnotinfo
@noindent
The result of this example can be seen in @ref{fig:extendedtext}

@float Figure,fig:extendedtext
@center @image{extended,4in}
@caption{Example of inclusion of text with use of @option{-dpdflatexstandalone}}
@end float
@end ifnotinfo

@c print scripts/plot/util/print.m
@anchor{XREFprint}
@deftypefn  {} {} print ()
@deftypefnx {} {} print (@var{options})
@deftypefnx {} {} print (@var{filename}, @var{options})
@deftypefnx {} {} print (@var{h}, @var{filename}, @var{options})
Print a plot, or save it to a file.

Both output formatted for printing (PDF and PostScript), and many bitmapped
and vector image formats are supported.

@var{filename} defines the name of the output file.  If the filename has
no suffix, one is inferred from the specified device and appended to the
filename.  If no filename is specified, the output is sent to the
printer.

@var{h} specifies the handle of the figure to print.  If no handle is
specified the current figure is used.

For output to a printer, PostScript file, or PDF file, the paper size is
specified by the figure's @code{papersize} property.  The location and
size of the image on the page are specified by the figure's
@code{paperposition} property.  The orientation of the page is specified
by the figure's @code{paperorientation} property.

The width and height of images are specified by the figure's
@code{paperposition(3:4)} property values.

The @code{print} command supports many @var{options}:

@table @code
@item -f@var{h}
  Specify the handle, @var{h}, of the figure to be printed.  The default
is the current figure.

@item -P@var{printer}
  Set the @var{printer} name to which the plot is sent if no
@var{filename} is specified.

@item -G@var{ghostscript_command}
  Specify the command for calling Ghostscript.  For Unix and Windows the
defaults are @qcode{"gs"} and @qcode{"gswin32c"}, respectively.

@item  -color
@itemx -mono
  Color or monochrome output.

@item  -solid
@itemx -dashed
  Force all lines to be solid or dashed, respectively.

@item  -portrait
@itemx -landscape
  Specify the orientation of the plot for printed output.
For non-printed output the aspect ratio of the output corresponds to the
plot area defined by the @qcode{"paperposition"} property in the
orientation specified.  This option is equivalent to changing the figure's
@qcode{"paperorientation"} property.

@item  -TextAlphaBits=@var{n}
@itemx -GraphicsAlphaBits=@var{n}
  Octave is able to produce output for various printers, bitmaps, and
vector formats by using Ghostscript.  For bitmap and printer output
anti-aliasing is applied using Ghostscript's TextAlphaBits and
GraphicsAlphaBits options.  The default number of bits are 4 and 1
respectively.  Allowed values for @var{N} are 1, 2, or 4.

@item -d@var{device}
  The available output format is specified by the option @var{device}, and
is one of:

@table @code
@item  ps
@itemx ps2
@itemx psc
@itemx psc2
    PostScript (level 1 and 2, mono and color).  The OpenGL-based toolkits
always generate PostScript level 3.0.

@item  eps
@itemx eps2
@itemx epsc
@itemx epsc2
    Encapsulated PostScript (level 1 and 2, mono and color).  The
OpenGL-based toolkits always generate PostScript level 3.0.

@item  pslatex
@itemx epslatex
@itemx pdflatex
@itemx pslatexstandalone
@itemx epslatexstandalone
@itemx pdflatexstandalone
    Generate a @LaTeX{} file @file{@var{filename}.tex} for the text
portions of a plot and a file @file{@var{filename}.(ps|eps|pdf)} for the
remaining graphics.  The graphics file suffix .ps|eps|pdf is determined
by the specified device type.  The @LaTeX{} file produced by the
@samp{standalone} option can be processed directly by @LaTeX{}.  The file
generated without the @samp{standalone} option is intended to be included
from another @LaTeX{} document.  In either case, the @LaTeX{} file
contains an @code{\includegraphics} command so that the generated graphics
file is automatically included when the @LaTeX{} file is processed.  The
text that is written to the @LaTeX{} file contains the strings
@strong{exactly} as they were specified in the plot.  If any special
characters of the @TeX{} mode interpreter were used, the file must be
edited before @LaTeX{} processing.  Specifically, the special characters
must be enclosed with dollar signs (@code{$ @dots{} $}), and other
characters that are recognized by @LaTeX{} may also need editing (.e.g.,
braces).  The @samp{pdflatex} device, and any of the @samp{standalone}
formats, are not available with the Gnuplot toolkit.

@item  epscairo
@itemx pdfcairo
@itemx epscairolatex
@itemx pdfcairolatex
@itemx epscairolatexstandalone
@itemx pdfcairolatexstandalone
    Generate Cairo based output when using the Gnuplot graphics toolkit.
The @samp{epscairo} and @samp{pdfcairo} devices are synonymous with
the @samp{epsc} device.  The @LaTeX{} variants generate a @LaTeX{} file,
@file{@var{filename}.tex}, for the text portions of a plot, and an image
file, @file{@var{filename}.(eps|pdf)}, for the graph portion of the plot.
The @samp{standalone} variants behave as described for
@samp{epslatexstandalone} above.

@item  ill
@itemx @nospell{aifm}
    Adobe Illustrator (Obsolete for Gnuplot versions > 4.2)

@item canvas
    Javascript-based drawing on HTML5 canvas viewable in a web browser
(only available for the Gnuplot graphics toolkit).

@item  cdr
@itemx @nospell{corel}
@nospell{CorelDraw}

@item cgm
    Computer Graphics Metafile, Version 1, ANSI X3.122-1986
(only available for the Gnuplot graphics toolkit).

@item dxf
    AutoCAD

@item  emf
@itemx meta
    Microsoft Enhanced Metafile

@item fig
    XFig.  For the Gnuplot graphics toolkit, the additional options
@option{-textspecial} or @option{-textnormal} can be used to control
whether the special flag should be set for the text in the figure.
(default is @option{-textnormal})

@item gif
    GIF image
(only available for the Gnuplot graphics toolkit).

@item hpgl
    HP plotter language

@item  jpg
@itemx jpeg
    JPEG image

@item latex
@itemx eepic
@LaTeX{} picture environment and extended picture environment
(only available for the Gnuplot graphics toolkit).

@item mf
    Metafont

@item png
    Portable network graphics

@item pbm
    PBMplus

@item pdf
    Portable document format

@item svg
    Scalable vector graphics

@item  tikz
@itemx tikzstandalone
    Generate a @LaTeX{} file using PGF/TikZ format.  The OpenGL-based
toolkits create a PGF file while Gnuplot creates a TikZ file.  The
@samp{tikzstandalone} device produces a @LaTeX{} document which includes the
TikZ file (@samp{tikzstandalone} and is only available for the Gnuplot
graphics toolkit).
@end table

  If the device is omitted, it is inferred from the file extension,
or if there is no filename it is sent to the printer as PostScript.

@item -d@var{ghostscript_device}
  Additional devices are supported by Ghostscript.
Some examples are;

@table @code
@item pdfwrite
    Produces pdf output from eps

@item ljet2p
    HP LaserJet @nospell{IIP}

@item pcx24b
    24-bit color PCX file format

@item ppm
    Portable Pixel Map file format
@end table

  For a complete list, type @code{system ("gs -h")} to see what formats
and devices are available.

  When Ghostscript output is sent to a printer the size is determined by
the figure's @qcode{"papersize"} property.  When the output is sent to a
file the size is determined by the plot box defined by the figure's
@qcode{"paperposition"} property.

@item -append
  Append PostScript or PDF output to a pre-existing file of the same type.

@item -r@var{NUM}
  Resolution of bitmaps in pixels per inch.  For both metafiles and SVG
the default is the screen resolution; for other formats it is 150 dpi.  To
specify screen resolution, use @qcode{"-r0"}.

@item  -loose
@itemx -tight
  Force a tight or loose bounding box for eps files.  The default is loose.

@item -@var{preview}
  Add a preview to eps files.  Supported formats are:

@table @code
@item -interchange
    Provide an interchange preview.

@item -metafile
    Provide a metafile preview.

@item -pict
    Provide pict preview.

@item -tiff
    Provide a tiff preview.
@end table

@item -S@var{xsize},@var{ysize}
  Plot size in pixels for EMF, GIF, JPEG, PBM, PNG, and SVG@.
For PS, EPS, PDF, and other vector formats the plot size is in points.
This option is equivalent to changing the size of the plot box associated
with the @qcode{"paperposition"} property.  When using the command form of
the print function you must quote the @var{xsize},@var{ysize} option.  For
example, by writing @w{"-S640,480"}.

@item  -F@var{fontname}
@itemx -F@var{fontname}:@var{size}
@itemx -F:@var{size}
  Use @var{fontname} and/or @var{fontsize} for all text.
@var{fontname} is ignored for some devices: dxf, fig, hpgl, etc.
@end table

The filename and options can be given in any order.

Example: Print to a file using the pdf device.

@example
@group
figure (1);
clf ();
surf (peaks);
print figure1.pdf
@end group
@end example

Example: Print to a file using jpg device.

@example
@group
clf ();
surf (peaks);
print -djpg figure2.jpg
@end group
@end example

Example: Print to printer named PS_printer using ps format.

@example
@group
clf ();
surf (peaks);
print -dpswrite -PPS_printer
@end group
@end example

@seealso{@ref{XREFsaveas,,saveas}, @ref{XREFhgsave,,hgsave}, @ref{XREForient,,orient}, @ref{XREFfigure,,figure}}
@end deftypefn


@c saveas scripts/plot/util/saveas.m
@anchor{XREFsaveas}
@deftypefn  {} {} saveas (@var{h}, @var{filename})
@deftypefnx {} {} saveas (@var{h}, @var{filename}, @var{fmt})
Save graphic object @var{h} to the file @var{filename} in graphic format
@var{fmt}.

All device formats accepted by @code{print} may be used.  Common formats
are:

@table @code
@item ps
    PostScript

@item eps
    Encapsulated PostScript

@item pdf
    Portable Document Format

@item jpg
    JPEG Image

@item png
    PNG Image

@item emf
    Enhanced Meta File

@end table

If @var{fmt} is omitted it is extracted from the extension of
@var{filename}.  The default format when there is no extension is
@qcode{"pdf"}.

@example
@group
clf ();
surf (peaks);
saveas (1, "figure1.png");
@end group
@end example

@seealso{@ref{XREFprint,,print}, @ref{XREFhgsave,,hgsave}, @ref{XREForient,,orient}}
@end deftypefn


@c orient scripts/plot/appearance/orient.m
@anchor{XREForient}
@deftypefn  {} {} orient (@var{orientation})
@deftypefnx {} {} orient (@var{hfig}, @var{orientation})
@deftypefnx {} {@var{orientation} =} orient ()
@deftypefnx {} {@var{orientation} =} orient (@var{hfig})
Query or set the print orientation for figure @var{hfig}.

Valid values for @var{orientation} are @qcode{"portrait"},
@qcode{"landscape"}, and @qcode{"tall"}.

The @qcode{"landscape"} option changes the orientation so the plot width
is larger than the plot height.  The @qcode{"paperposition"} is also
modified so that the plot fills the page, while leaving a 0.25 inch border.

The @qcode{"tall"} option sets the orientation to @qcode{"portrait"} and
fills the page with the plot, while leaving a 0.25 inch border.

The @qcode{"portrait"} option (default) changes the orientation so the plot
height is larger than the plot width.  It also restores the default
@qcode{"paperposition"} property.

When called with no arguments, return the current print orientation.

If the argument @var{hfig} is omitted, then operate on the current figure
returned by @code{gcf}.
@seealso{@ref{XREFprint,,print}, @ref{XREFsaveas,,saveas}}
@end deftypefn


@code{print} and @code{saveas} are used when work on a plot has finished
and the output must be in a publication-ready format.  During intermediate
stages it is often better to save the graphics object and all of its
associated information so that changes---to colors, axis limits, marker styles,
etc.---can be made easily from within Octave.  The @code{hgsave}/@code{hgload}
commands can be used to save and re-create a graphics object.

@c hgsave scripts/plot/util/hgsave.m
@anchor{XREFhgsave}
@deftypefn  {} {} hgsave (@var{filename})
@deftypefnx {} {} hgsave (@var{h}, @var{filename})
@deftypefnx {} {} hgsave (@var{h}, @var{filename}, @var{fmt})
Save the graphics handle @var{h} to the file @var{filename} in the format
@var{fmt}.

If unspecified, @var{h} is the current figure as returned by @code{gcf}.

When @var{filename} does not have an extension the default filename
extension @file{.ofig} will be appended.

If present, @var{fmt} should be one of the following:

@itemize @bullet
@item @option{-binary}, @option{-float-binary}

@item @option{-hdf5}, @option{-float-hdf5}

@item @option{-V7}, @option{-v7}, @option{-7}, @option{-mat7-binary}

@item @option{-V6}, @option{-v6}, @option{-6}, @option{-mat6-binary}

@item @option{-text}

@item @option{-zip}, @option{-z}
@end itemize

When producing graphics for final publication use @code{print} or
@code{saveas}.  When it is important to be able to continue to edit a
figure as an Octave object, use @code{hgsave}/@code{hgload}.
@seealso{@ref{XREFhgload,,hgload}, @ref{XREFhdl2struct,,hdl2struct}, @ref{XREFsaveas,,saveas}, @ref{XREFprint,,print}}
@end deftypefn


@c hgload scripts/plot/util/hgload.m
@anchor{XREFhgload}
@deftypefn {} {@var{h} =} hgload (@var{filename})
Load the graphics object in @var{filename} into the graphics handle @var{h}.

If @var{filename} has no extension, Octave will try to find the file with
and without the standard extension of @file{.ofig}.
@seealso{@ref{XREFhgsave,,hgsave}, @ref{XREFstruct2hdl,,struct2hdl}}
@end deftypefn


@node Interacting with Plots
@subsection Interacting with Plots

The user can select points on a plot with the @code{ginput} function or
select the position at which to place text on the plot with the
@code{gtext} function using the mouse.

@c ginput scripts/plot/util/ginput.m
@anchor{XREFginput}
@deftypefn  {} {[@var{x}, @var{y}, @var{buttons}] =} ginput (@var{n})
@deftypefnx {} {[@var{x}, @var{y}, @var{buttons}] =} ginput ()
Return the position and type of mouse button clicks and/or key strokes
in the current figure window.

If @var{n} is defined, then capture @var{n} events before returning.
When @var{n} is not defined @code{ginput} will loop until the return key
@key{RET} is pressed.

The return values @var{x}, @var{y} are the coordinates where the mouse
was clicked in the units of the current axes.  The return value @var{button}
is 1, 2, or 3 for the left, middle, or right button.  If a key is pressed
the ASCII value is returned in @var{button}.

Implementation Note: @code{ginput} is intenteded for 2-D plots.  For 3-D
plots see the @var{currentpoint} property of the current axes which can be
transformed with knowledge of the current @code{view} into data units.
@seealso{@ref{XREFgtext,,gtext}, @ref{XREFwaitforbuttonpress,,waitforbuttonpress}}
@end deftypefn


@c waitforbuttonpress scripts/gui/waitforbuttonpress.m
@anchor{XREFwaitforbuttonpress}
@deftypefn  {} {} waitforbuttonpress ()
@deftypefnx {} {@var{b} =} waitforbuttonpress ()
Wait for mouse click or key press over the current figure window.

The return value of @var{b} is 0 if a mouse button was pressed or 1 if a
key was pressed.
@seealso{@ref{XREFwaitfor,,waitfor}, @ref{XREFginput,,ginput}, @ref{XREFkbhit,,kbhit}}
@end deftypefn


@c gtext scripts/plot/appearance/gtext.m
@anchor{XREFgtext}
@deftypefn  {} {} gtext (@var{s})
@deftypefnx {} {} gtext (@{@var{s1}, @var{s2}, @dots{}@})
@deftypefnx {} {} gtext (@{@var{s1}; @var{s2}; @dots{}@})
@deftypefnx {} {} gtext (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {@var{h} =} gtext (@dots{})
Place text on the current figure using the mouse.

The text is defined by the string @var{s}.  If @var{s} is a cell string
organized as a row vector then each string of the cell array is written to a
separate line.  If @var{s} is organized as a column vector then one string
element of the cell array is placed for every mouse click.

Optional property/value pairs are passed directly to the underlying text
objects.

The optional return value @var{h} is a graphics handle to the created
text object(s).
@seealso{@ref{XREFginput,,ginput}, @ref{XREFtext,,text}}
@end deftypefn


More sophisticated user interaction mechanisms can be obtained using the
@nospell{ui*} family of functions, @pxref{UI Elements}.

@node Test Plotting Functions
@subsection Test Plotting Functions

The functions @code{sombrero} and @code{peaks} provide a way to check
that plotting is working.  Typing either @code{sombrero} or @code{peaks}
at the Octave prompt should display a three-dimensional plot.

@c sombrero scripts/plot/draw/sombrero.m
@anchor{XREFsombrero}
@deftypefn  {} {} sombrero ()
@deftypefnx {} {} sombrero (@var{n})
@deftypefnx {} {@var{z} =} sombrero (@dots{})
@deftypefnx {} {[@var{x}, @var{y}, @var{z}] =} sombrero (@dots{})
Plot the familiar 3-D sombrero function.

The function plotted is
@tex
$$z = { \rm{sin} (\sqrt {(x^2 + y^2)}) \over \sqrt {(x^2 + y^2)} }$$
@end tex
@ifnottex

@example
z = sin (sqrt (x^2 + y^2)) / (sqrt (x^2 + y^2))
@end example

@end ifnottex
Called without a return argument, @code{sombrero} plots the surface of the
above function over the meshgrid [-8,8] using @code{surf}.

If @var{n} is a scalar the plot is made with @var{n} grid lines.
The default value for @var{n} is 41.

When called with output arguments, return the data for the function
evaluated over the meshgrid.  This can subsequently be plotted with
@code{surf (@var{x}, @var{y}, @var{z})}.

@seealso{@ref{XREFpeaks,,peaks}, @ref{XREFmeshgrid,,meshgrid}, @ref{XREFmesh,,mesh}, @ref{XREFsurf,,surf}}
@end deftypefn


@c peaks scripts/plot/draw/peaks.m
@anchor{XREFpeaks}
@deftypefn  {} {} peaks ()
@deftypefnx {} {} peaks (@var{n})
@deftypefnx {} {} peaks (@var{x}, @var{y})
@deftypefnx {} {@var{z} =} peaks (@dots{})
@deftypefnx {} {[@var{x}, @var{y}, @var{z}] =} peaks (@dots{})
Plot a function with lots of local maxima and minima.

The function has the form

@tex
$$f(x,y) = 3 (1 - x) ^ 2 e ^ {\left(-x^2 - (y+1)^2\right)} - 10 \left({x \over 5} - x^3 - y^5\right) - {1 \over 3} e^{\left(-(x+1)^2 - y^2\right)}$$
@end tex
@ifnottex
@verbatim
f(x,y) = 3*(1-x)^2*exp(-x^2 - (y+1)^2) ...
         - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) ...
         - 1/3*exp(-(x+1)^2 - y^2)
@end verbatim
@end ifnottex

Called without a return argument, @code{peaks} plots the surface of the
above function using @code{surf}.

If @var{n} is a scalar, @code{peaks} plots the value of the above
function on an @var{n}-by-@var{n} mesh over the range [-3,3].  The
default value for @var{n} is 49.

If @var{n} is a vector, then it represents the grid values over which
to calculate the function.  If @var{x} and @var{y} are specified then
the function value is calculated over the specified grid of vertices.

When called with output arguments, return the data for the function
evaluated over the meshgrid.  This can subsequently be plotted with
@code{surf (@var{x}, @var{y}, @var{z})}.

@seealso{@ref{XREFsombrero,,sombrero}, @ref{XREFmeshgrid,,meshgrid}, @ref{XREFmesh,,mesh}, @ref{XREFsurf,,surf}}
@end deftypefn

@node Graphics Data Structures
@section Graphics Data Structures
@cindex graphics data structures

@menu
* Introduction to Graphics Structures::
* Graphics Objects::
* Graphics Object Properties::
* Searching Properties::
* Managing Default Properties::
@end menu

@node Introduction to Graphics Structures
@subsection Introduction to Graphics Structures
@cindex introduction to graphics structures
@anchor{XREFgraphics structures}

The graphics functions use pointers, which are of class graphics_handle, in
order to address the data structures which control visual display.  A
graphics handle may point to any one of a number of different base object
types and these objects are the graphics data structures themselves.  The
primitive graphic object types are: @code{figure}, @code{axes}, @code{line},
@code{text}, @code{patch}, @code{surface}, @code{text}, @code{image}, and
@code{light}.

Each of these objects has a function by the same name, and, each of these
functions returns a graphics handle pointing to an object of the corresponding
type.  In addition there are several functions which operate on properties of
the graphics objects and which also return handles: the functions @code{plot}
and @code{plot3} return a handle pointing to an object of type line, the
function @code{subplot} returns a handle pointing to an object of type axes,
the function @code{fill} returns a handle pointing to an object of type patch,
the functions @code{area}, @code{bar}, @code{barh}, @code{contour},
@code{contourf}, @code{contour3}, @code{surf}, @code{mesh}, @code{surfc},
@code{meshc}, @code{errorbar}, @code{quiver}, @code{quiver3}, @code{scatter},
@code{scatter3}, @code{stair}, @code{stem}, @code{stem3} each return a handle
to a complex data structure as documented in
@ref{XREFdatasources,,Data Sources}.

The graphics objects are arranged in a hierarchy:

1. The root object is returned by @code{groot} (historically, equivalent to
the handle 0).  In other words, @code{get (groot)} returns the properties of
the root object.

2. Below the root are @code{figure} objects.

3. Below the @code{figure} objects are @code{axes} or @code{hggroup} objects.

4. Below the @code{axes} objects are @code{line}, @code{text}, @code{patch},
@code{surface}, @code{image}, and @code{light} objects.

Graphics handles may be distinguished from function handles
(@pxref{Function Handles}) by means of the function @code{ishghandle}.
@code{ishghandle} returns true if its argument is a handle of a graphics
object.  In addition, a figure or axes object may be tested using
@code{isfigure} or @code{isaxes} respectively.  To test for a specific type of
graphics handle, such as a patch or line object, use @code{isgraphics}.  The
more specific test functions return true only if the argument is both a
graphics handle and of the correct type (figure, axes, specified object type).

The @code{whos} function can be used to show the object type of each currently
defined graphics handle.  (Note: this is not true today, but it is, I hope,
considered an error in whos.  It may be better to have whos just show
graphics_handle as the class, and provide a new function which, given a
graphics handle, returns its object type.  This could generalize the ishandle()
functions and, in fact, replace them.)

The @code{get} and @code{set} commands are used to obtain and set the values of
properties of graphics objects.  In addition, the @code{get} command may be
used to obtain property names.

For example, the property @qcode{"type"} of the graphics object pointed to by
the graphics handle h may be displayed by:

@example
get (h, "type")
@end example

The properties and their current values are returned by @code{get (h)}
where h is a handle of a graphics object.  If only the names of the
allowed properties are wanted they may be displayed by:
@code{get (h, "")}.

Thus, for example:

@smallexample
h = figure ();
get (h, "type")
ans = figure
get (h, "");
error: get: ambiguous figure property name ; possible matches:

__gl_extensions__      dockcontrols           renderer
__gl_renderer__        doublebuffer           renderermode
__gl_vendor__          filename               resize
__gl_version__         graphicssmoothing      resizefcn
__graphics_toolkit__   handlevisibility       selected
__guidata__            hittest                selectionhighlight
__modified__           integerhandle          selectiontype
__mouse_mode__         interruptible          sizechangedfcn
__myhandle__           inverthardcopy         tag
__pan_mode__           keypressfcn            toolbar
__plot_stream__        keyreleasefcn          type
__rotate_mode__        menubar                uicontextmenu
__zoom_mode__          mincolormap            units
alphamap               name                   userdata
beingdeleted           nextplot               visible
busyaction             numbertitle            windowbuttondownfcn
buttondownfcn          outerposition          windowbuttonmotionfcn
children               paperorientation       windowbuttonupfcn
clipping               paperposition          windowkeypressfcn
closerequestfcn        paperpositionmode      windowkeyreleasefcn
color                  papersize              windowscrollwheelfcn
colormap               papertype              windowstyle
createfcn              paperunits             wvisual
currentaxes            parent                 wvisualmode
currentcharacter       pointer                xdisplay
currentobject          pointershapecdata      xvisual
currentpoint           pointershapehotspot    xvisualmode
deletefcn              position
@end smallexample

The properties of the root figure may be displayed by:
@code{get (groot, "")}.

The uses of @code{get} and @code{set} are further explained in
@ref{XREFget,,get}, @ref{XREFset,,set}.

@c isprop scripts/plot/util/isprop.m
@anchor{XREFisprop}
@deftypefn {} {@var{res} =} isprop (@var{obj}, "@var{prop}")
Return true if @var{prop} is a property of the object @var{obj}.

@var{obj} may also be an array of objects in which case @var{res} will be a
logical array indicating whether each handle has the property @var{prop}.

For plotting, @var{obj} is a handle to a graphics object.  Otherwise,
@var{obj} should be an instance of a class.
@seealso{@ref{XREFget,,get}, @ref{XREFset,,set}, @ref{XREFismethod,,ismethod}, @ref{XREFisobject,,isobject}}
@end deftypefn


@node Graphics Objects
@subsection Graphics Objects
@cindex graphics objects

The hierarchy of graphics objects was explained above.
@xref{Introduction to Graphics Structures}.  Here the
specific objects are described, and the properties contained in
these objects are discussed.  Keep in mind that
graphics objects are always referenced by @dfn{handle}.

@table @asis
@c @group

@item root figure
@cindex root figure graphics object
@cindex graphics object, root figure
The top level of the hierarchy and the parent of all figure objects.
Use @code{groot} to obtain the handle of the root graphics object.

@item figure
@cindex figure graphics object
@cindex graphics object, figure
A figure window.

@item axes
@cindex axes graphics object
@cindex graphics object, axes
A set of axes.  This object is a child of a figure object and may be a
parent of line, text, image, patch, surface, or light objects.

@item line
@cindex line graphics object
@cindex graphics object, line
A line in two or three dimensions.

@item text
@cindex text graphics object
@cindex graphics object, text
Text annotations.

@item image
@cindex image graphics object
@cindex graphics object, image
A bitmap image.

@item patch
@cindex patch graphics object
@cindex graphics object, patch
A filled polygon, currently limited to two dimensions.

@item surface
@cindex surface graphics object
@cindex graphics object, surface
A three-dimensional surface.

@item light
@cindex light graphics object
@cindex graphics object, light
A light object used for lighting effects on patches and surfaces.
@c @end group
@end table

@subsubsection Creating Graphics Objects
@cindex creating graphics objects

You can create any graphics object primitive by calling the function of the
same name as the object; In other words, @code{figure}, @code{axes},
@code{line}, @code{text}, @code{image}, @code{patch}, @code{surface}, and
@code{light} functions.  These fundamental graphic objects automatically become
children of the current axes object as if @code{hold on} was in place.
Separately, axes will automatically become children of the current figure
object and figures will become children of the root object.

If this auto-joining feature is not desired then it is important to call
@code{newplot} first to prepare a new figure and axes for plotting.
Alternatively, the easier way is to call a high-level graphics routine which
will both create the plot and then populate it with low-level graphics objects.
Instead of calling @code{line}, use @code{plot}.  Or use @code{surf} instead of
@code{surface}.  Or use @code{fill} instead of @code{patch}.

@c axes scripts/plot/util/axes.m
@anchor{XREFaxes}
@deftypefn  {} {} axes ()
@deftypefnx {} {} axes (@var{property}, @var{value}, @dots{})
@deftypefnx {} {} axes (@var{hax})
@deftypefnx {} {@var{h} =} axes (@dots{})
Create a Cartesian axes object and return a handle to it, or set the current
axes to @var{hax}.

Called without any arguments, or with @var{property}/@var{value} pairs,
construct a new axes.

Called with a single axes handle argument @var{hax}, the function makes
@var{hax} the current axes (as returned by @code{gca}).  It also makes
the figure which contains @var{hax} the current figure (as returned by
@code{gcf}).  Finally, it restacks the parent object's @code{children}
property so that the axes @var{hax} appears before all other axes handles
in the list.  This causes @var{hax} to be displayed on top of any other axes
objects (Z-order stacking).  In addition it restacks any legend or colorbar
objects associated with @var{hax} so that they are also visible.

Programming Note: The full list of properties is documented at
@ref{Axes Properties,,Axes Properties}.
@seealso{@ref{XREFgca,,gca}, @ref{XREFset,,set}, @ref{XREFget,,get}}
@end deftypefn


@c line scripts/plot/draw/line.m
@anchor{XREFline}
@deftypefn  {} {} line ()
@deftypefnx {} {} line (@var{x}, @var{y})
@deftypefnx {} {} line (@var{x}, @var{y}, @var{property}, @var{value}, @dots{})
@deftypefnx {} {} line (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} line (@var{x}, @var{y}, @var{z}, @var{property}, @var{value}, @dots{})
@deftypefnx {} {} line (@var{property}, @var{value}, @dots{})
@deftypefnx {} {} line (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} line (@dots{})
Create line object from @var{x} and @var{y} (and possibly @var{z}) and
insert in the current axes.

Multiple property-value pairs may be specified for the line object, but they
must appear in pairs.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle (or vector of
handles) to the line objects created.

Programming Note: The full list of properties is documented at
@ref{Line Properties,,Line Properties}.
@seealso{@ref{XREFimage,,image}, @ref{XREFpatch,,patch}, @ref{XREFrectangle,,rectangle}, @ref{XREFsurface,,surface}, @ref{XREFtext,,text}}
@end deftypefn


@c patch scripts/plot/draw/patch.m
@anchor{XREFpatch}
@deftypefn  {} {} patch ()
@deftypefnx {} {} patch (@var{x}, @var{y}, @var{c})
@deftypefnx {} {} patch (@var{x}, @var{y}, @var{z}, @var{c})
@deftypefnx {} {} patch ("Faces", @var{faces}, "Vertices", @var{verts}, @dots{})
@deftypefnx {} {} patch (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} patch (@dots{}, @var{propstruct}, @dots{})
@deftypefnx {} {} patch (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} patch (@dots{})
Create patch object in the current axes with vertices at locations
(@var{x}, @var{y}) and of color @var{c}.

If the vertices are matrices of size @nospell{MxN} then each polygon patch
has M vertices and a total of N polygons will be created.  If some polygons
do not have M vertices use NaN to represent "no vertex".  If the @var{z}
input is present then 3-D patches will be created.

The color argument @var{c} can take many forms.  To create polygons
which all share a single color use a string value (e.g., @qcode{"r"} for
red), a scalar value which is scaled by @code{caxis} and indexed into the
current colormap, or a 3-element RGB vector with the precise TrueColor.

If @var{c} is a vector of length N then the ith polygon will have a color
determined by scaling entry @var{c}(i) according to @code{caxis} and then
indexing into the current colormap.  More complicated coloring situations
require directly manipulating patch property/value pairs.

Instead of specifying polygons by matrices @var{x} and @var{y}, it is
possible to present a unique list of vertices and then a list of polygon
faces created from those vertices.  In this case the
@qcode{"Vertices"} matrix will be an @nospell{Nx2} (2-D patch) or
@nospell{Nx3} (3-D patch).  The @nospell{MxN} @qcode{"Faces"} matrix
describes M polygons having N vertices---each row describes a
single polygon and each column entry is an index into the
@qcode{"Vertices"} matrix to identify a vertex.  The patch object
can be created by directly passing the property/value pairs
@qcode{"Vertices"}/@var{verts}, @qcode{"Faces"}/@var{faces} as
inputs.

Instead of using property/value pairs, any property can be set by passing a
structure @var{propstruct} with the respective field names.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created patch
object.

Programming Note: The full list of properties is documented at
@ref{Patch Properties,,Patch Properties}.  Useful patch properties include:
@qcode{"cdata"}, @qcode{"edgecolor"}, @qcode{"facecolor"}, @qcode{"faces"},
and @qcode{"facevertexcdata"}.
@seealso{@ref{XREFfill,,fill}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn


@c surface scripts/plot/draw/surface.m
@anchor{XREFsurface}
@deftypefn  {} {} surface (@var{x}, @var{y}, @var{z}, @var{c})
@deftypefnx {} {} surface (@var{x}, @var{y}, @var{z})
@deftypefnx {} {} surface (@var{z}, @var{c})
@deftypefnx {} {} surface (@var{z})
@deftypefnx {} {} surface (@dots{}, @var{prop}, @var{val}, @dots{})
@deftypefnx {} {} surface (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} surface (@dots{})
Create a surface graphic object given matrices @var{x} and @var{y} from
@code{meshgrid} and a matrix of values @var{z} corresponding to the
@var{x} and @var{y} coordinates of the surface.

If @var{x} and @var{y} are vectors, then a typical vertex is
(@var{x}(j), @var{y}(i), @var{z}(i,j)).  Thus, columns of @var{z} correspond
to different @var{x} values and rows of @var{z} correspond to different
@var{y} values.  If only a single input @var{z} is given then @var{x} is
taken to be @code{1:columns (@var{z})} and @var{y} is
@code{1:rows (@var{z})}.

Any property/value input pairs are assigned to the surface object.

If the first argument @var{hax} is an axes handle, then plot into this axes,
rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created
surface object.

Programming Note: The full list of properties is documented at
@ref{Surface Properties,,Surface Properties}.
@seealso{@ref{XREFsurf,,surf}, @ref{XREFmesh,,mesh}, @ref{XREFpatch,,patch}, @ref{XREFline,,line}}
@end deftypefn


@c light scripts/plot/draw/light.m
@anchor{XREFlight}
@deftypefn  {} {} light ()
@deftypefnx {} {} light (@dots{}, "@var{prop}", @var{val}, @dots{})
@deftypefnx {} {} light (@var{hax}, @dots{})
@deftypefnx {} {@var{h} =} light (@dots{})
Create a light object in the current axes or for axes @var{hax}.

When a light object is present in an axes object, and the properties
@qcode{"EdgeLighting"} or @qcode{"FaceLighting"} of a @code{patch} or
@code{surface} object are set to a value other than @qcode{"none"}, these
objects are drawn with light and shadow effects.  Supported values for
Lighting properties are @qcode{"none"} (no lighting effects), @qcode{"flat"}
(faceted look of the objects), and @qcode{"gouraud"} (linear interpolation
of the lighting effects between the vertices).  For @code{patch} objects,
the normals must be set manually (property @qcode{"VertexNormals"}).

Up to eight light objects are supported per axes.

Lighting is only supported for OpenGL graphic toolkits (i.e., @qcode{"fltk"}
and @qcode{"qt"}).

A light object has the following properties which alter the appearance of
the plot.

@table @asis
@item @qcode{"Color":} The color of the light can be passed as an
RGB-vector (e.g., @code{[1 0 0]} for red) or as a string (e.g., @qcode{"r"}
for red).  The default color is white (@code{[1 1 1]}).

@item @qcode{"Position":} The direction from which the light emanates as a
1x3-vector.  The default direction is @code{[1 0 1]}.

@item @qcode{"Style":} This string defines whether the light emanates from a
light source at infinite distance (@qcode{"infinite"}) or from a local point
source (@qcode{"local"}).  The default is @qcode{"infinite"}.
@end table

If the first argument @var{hax} is an axes handle, then add the light object
to this axes, rather than the current axes returned by @code{gca}.

The optional return value @var{h} is a graphics handle to the created light
object.

Programming Note: The full list of properties is documented at
@ref{Light Properties,,Light Properties}.
@seealso{@ref{XREFlighting,,lighting}, @ref{XREFmaterial,,material}, @ref{XREFpatch,,patch}, @ref{XREFsurface,,surface}}
@end deftypefn


@subsubsection Handle Functions
@cindex handle functions

To determine whether a variable is a graphics object index, or an index
to an axes or figure, use the functions @code{ishghandle}, @code{isgraphics},
@code{isaxes}, and @code{isfigure}.

@c ishghandle libinterp/corefcn/graphics.cc
@anchor{XREFishghandle}
@deftypefn {} {} ishghandle (@var{h})
Return true if @var{h} is a graphics handle and false otherwise.

@var{h} may also be a matrix of handles in which case a logical array is
returned that is true where the elements of @var{h} are graphics handles and
false where they are not.
@seealso{@ref{XREFisgraphics,,isgraphics}, @ref{XREFisaxes,,isaxes}, @ref{XREFisfigure,,isfigure}, @ref{XREFishandle,,ishandle}}
@end deftypefn


@c isgraphics scripts/plot/util/isgraphics.m
@anchor{XREFisgraphics}
@deftypefn  {} {} isgraphics (@var{h})
@deftypefnx {} {} isgraphics (@var{h}, @var{type})
Return true if @var{h} is a graphics handle (of type @var{type}) and false
otherwise.

When no @var{type} is specified the function is equivalent to
@code{ishghandle}.
@seealso{@ref{XREFishghandle,,ishghandle}, @ref{XREFishandle,,ishandle}, @ref{XREFisaxes,,isaxes}, @ref{XREFisfigure,,isfigure}}
@end deftypefn


@c ishandle scripts/plot/util/ishandle.m
@anchor{XREFishandle}
@deftypefn {} {} ishandle (@var{h})
Return true if @var{h} is a handle to a graphics or Java object and false
otherwise.

@var{h} may also be a matrix of handles in which case a logical array is
returned that is true where the elements of @var{h} are handles to graphics
or Java objects and false where they are not.

Programming Note: It is often more useful to test for a specific object
type.  To determine if a handle belongs to a graphics object use
@code{ishghandle} or @code{isgraphics}.  To determine if a handle belongs
to a Java object use @code{isjava}.
@seealso{@ref{XREFishghandle,,ishghandle}, @ref{XREFisgraphics,,isgraphics}, @ref{XREFisjava,,isjava}}
@end deftypefn


@c isaxes scripts/plot/util/isaxes.m
@anchor{XREFisaxes}
@deftypefn {} {} isaxes (@var{h})
Return true if @var{h} is an axes graphics handle and false otherwise.

If @var{h} is a matrix then return a logical array which is true where the
elements of @var{h} are axes graphics handles and false where they are not.
@seealso{@ref{XREFisfigure,,isfigure}, @ref{XREFishghandle,,ishghandle}, @ref{XREFisgraphics,,isgraphics}}
@end deftypefn


@c isfigure scripts/plot/util/isfigure.m
@anchor{XREFisfigure}
@deftypefn {} {} isfigure (@var{h})
Return true if @var{h} is a figure graphics handle and false otherwise.

If @var{h} is a matrix then return a logical array which is true where the
elements of @var{h} are figure graphics handles and false where they are
not.
@seealso{@ref{XREFisaxes,,isaxes}, @ref{XREFishghandle,,ishghandle}, @ref{XREFisgraphics,,isgraphics}}
@end deftypefn


The function @code{gcf} returns an index to the current figure object,
or creates one if none exists.  Similarly, @code{gca} returns the
current axes object, or creates one (and its parent figure object) if
none exists.

@c groot scripts/plot/util/groot.m
@anchor{XREFgroot}
@deftypefn {} {@var{h} =} groot ()
Return a handle to the root graphics object.

The root graphics object is the ultimate parent of all graphics objects.

In addition, the root object contains information about the graphics
system as a whole such as the @code{ScreenSize}.  Use @w{@code{get (groot)}}
to find out what information is available.

Defaults for the graphic system as a whole are specified by setting
properties of the root graphics object that begin with @qcode{"Default"}.
For example, to set the default font for all text objects to FreeSans use

@example
set (groot, "DefaultTextFontName", "FreeSans")
@end example

Default properties can be deleted by using @code{set} with the special
property value of @qcode{"remove"}.  To undo the default font assignment
above use

@example
set (groot, "DefaultTextFontName", "remove")
@end example

Programming Note: The root graphics object is identified by the special
handle value of 0.  At some point this unique value may change, but code can
be made resistant to future changes by using @code{groot} which is
guaranteed to always return the root graphics object.
@seealso{@ref{XREFgcf,,gcf}, @ref{XREFgca,,gca}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn


@c gcf scripts/plot/util/gcf.m
@anchor{XREFgcf}
@deftypefn {} {@var{h} =} gcf ()
Return a handle to the current figure.

The current figure is the default target for graphics output.  If multiple
figures exist, @code{gcf} returns the last created figure or the last figure
that was clicked on with the mouse.

If a current figure does not exist, create one and return its handle.  The
handle may then be used to examine or set properties of the figure.  For
example,

@example
@group
fplot (@@sin, [-10, 10]);
fig = gcf ();
set (fig, "numbertitle", "off", "name", "sin plot")
@end group
@end example

@noindent
plots a sine wave, finds the handle of the current figure, and then
renames the figure window to describe the contents.

Note: To find the current figure without creating a new one if it does not
exist, query the @qcode{"CurrentFigure"} property of the root graphics
object.

@example
get (groot, "currentfigure");
@end example

@seealso{@ref{XREFgca,,gca}, @ref{XREFgco,,gco}, @ref{XREFgcbf,,gcbf}, @ref{XREFgcbo,,gcbo}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn


@c gca scripts/plot/util/gca.m
@anchor{XREFgca}
@deftypefn {} {@var{h} =} gca ()
Return a handle to the current axes object.

The current axes is the default target for graphics output.  In the case
of a figure with multiple axes, @code{gca} returns the last created axes
or the last axes that was clicked on with the mouse.

If no current axes object exists, create one and return its handle.  The
handle may then be used to examine or set properties of the axes.  For
example,

@example
@group
ax = gca ();
set (ax, "position", [0.5, 0.5, 0.5, 0.5]);
@end group
@end example

@noindent
creates an empty axes object and then changes its location and size in the
figure window.

Note: To find the current axes without creating a new axes object if it
does not exist, query the @qcode{"CurrentAxes"} property of a figure.

@example
get (gcf, "currentaxes");
@end example
@seealso{@ref{XREFgcf,,gcf}, @ref{XREFgco,,gco}, @ref{XREFgcbf,,gcbf}, @ref{XREFgcbo,,gcbo}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn


@c gco scripts/plot/util/gco.m
@anchor{XREFgco}
@deftypefn  {} {@var{h} =} gco ()
@deftypefnx {} {@var{h} =} gco (@var{fig})
Return a handle to the current object of the current figure, or a handle
to the current object of the figure with handle @var{fig}.

The current object of a figure is the object that was last clicked on.  It
is stored in the @qcode{"CurrentObject"} property of the target figure.

If the last mouse click did not occur on any child object of the figure,
then the current object is the figure itself.

If no mouse click occurred in the target figure, this function returns an
empty matrix.

Programming Note: The value returned by this function is not necessarily the
same as the one returned by @code{gcbo} during callback execution.  An
executing callback can be interrupted by another callback and the current
object may be changed.

@seealso{@ref{XREFgcbo,,gcbo}, @ref{XREFgca,,gca}, @ref{XREFgcf,,gcf}, @ref{XREFgcbf,,gcbf}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn


The @code{get} and @code{set} functions may be used to examine and set
properties for graphics objects.  For example,

@example
@group
get (groot)
    @result{} ans =
       @{
         type = root
         currentfigure = [](0x0)
         children = [](0x0)
         visible = on
         @dots{}
       @}
@end group
@end example

@noindent
returns a structure containing all the properties of the root figure.
As with all functions in Octave, the structure is returned by value, so
modifying it will not modify the internal root figure plot object.  To
do that, you must use the @code{set} function.  Also, note that in this
case, the @code{currentfigure} property is empty, which indicates that
there is no current figure window.

The @code{get} function may also be used to find the value of a single
property.  For example,

@example
@group
get (gca (), "xlim")
    @result{} [ 0 1 ]
@end group
@end example

@noindent
returns the range of the x-axis for the current axes object in the
current figure.

To set graphics object properties, use the set function.  For example,

@example
set (gca (), "xlim", [-10, 10]);
@end example

@noindent
sets the range of the x-axis for the current axes object in the current
figure to @samp{[-10, 10]}.

Default property values can also be queried if the @code{set} function is
called without a value argument.  When only one argument is given (a graphic
handle) then a structure with defaults for all properties of the given object
type is returned.  For example,

@example
set (gca ())
@end example

@noindent
returns a structure containing the default property values for axes objects.
If @code{set} is called with two arguments (a graphic handle and a property
name) then only the defaults for the requested property are returned.

@c get libinterp/corefcn/graphics.cc
@anchor{XREFget}
@deftypefn  {} {@var{val} =} get (@var{h})
@deftypefnx {} {@var{val} =} get (@var{h}, @var{p})
Return the value of the named property @var{p} from the graphics handle
@var{h}.

If @var{p} is omitted, return the complete property list for @var{h}.

If @var{h} is a vector, return a cell array including the property values or
lists respectively.
@seealso{@ref{XREFset,,set}}
@end deftypefn


@c set libinterp/corefcn/graphics.cc
@anchor{XREFset}
@deftypefn  {} {} set (@var{h}, @var{property}, @var{value}, @dots{})
@deftypefnx {} {} set (@var{h}, @var{properties}, @var{values})
@deftypefnx {} {} set (@var{h}, @var{pv})
@deftypefnx {} {@var{value_list} =} set (@var{h}, @var{property})
@deftypefnx {} {@var{all_value_list} =} set (@var{h})
Set named property values for the graphics handle (or vector of graphics
handles) @var{h}.

There are three ways to give the property names and values:

@itemize
@item as a comma separated list of @var{property}, @var{value} pairs

Here, each @var{property} is a string containing the property name, each
@var{value} is a value of the appropriate type for the property.

@item as a cell array of strings @var{properties} containing property names
and a cell array @var{values} containing property values.

In this case, the number of columns of @var{values} must match the number of
elements in @var{properties}.  The first column of @var{values} contains
values for the first entry in @var{properties}, etc.  The number of rows of
@var{values} must be 1 or match the number of elements of @var{h}.  In the
first case, each handle in @var{h} will be assigned the same values.  In the
latter case, the first handle in @var{h} will be assigned the values from
the first row of @var{values} and so on.

@item as a structure array @var{pv}

Here, the field names of @var{pv} represent the property names, and the
field values give the property values.  In contrast to the previous case,
all elements of @var{pv} will be set in all handles in @var{h} independent
of the dimensions of @var{pv}.
@end itemize

@code{set} is also used to query the list of values a named property will
take.  @code{@var{clist} = set (@var{h}, "property")} will return the list
of possible values for @qcode{"property"} in the cell list @var{clist}.
If no output variable is used then the list is formatted and printed to the
screen.

If no property is specified (@code{@var{slist} = set (@var{h})}) then a
structure @var{slist} is returned where the fieldnames are the properties of
the object @var{h} and the fields are the list of possible values for each
property.  If no output variable is used then the list is formatted and
printed to the screen.

For example,

@example
@group
hf = figure ();
set (hf, "paperorientation")
@result{}  paperorientation:  [ landscape | @{portrait@} | rotated ]
@end group
@end example

@noindent
shows the paperorientation property can take three values with the default
being @qcode{"portrait"}.
@seealso{@ref{XREFget,,get}}
@end deftypefn


@c ancestor scripts/plot/util/ancestor.m
@anchor{XREFancestor}
@deftypefn  {} {@var{parent} =} ancestor (@var{h}, @var{type})
@deftypefnx {} {@var{parent} =} ancestor (@var{h}, @var{type}, "toplevel")
Return the first ancestor of handle object @var{h} whose type matches
@var{type}, where @var{type} is a character string.

If @var{type} is a cell array of strings, return the first parent whose
type matches any of the given type strings.

If the handle object @var{h} itself is of type @var{type}, return @var{h}.

If @qcode{"toplevel"} is given as a third argument, return the highest
parent in the object hierarchy that matches the condition, instead
of the first (nearest) one.
@seealso{@ref{XREFfindobj,,findobj}, @ref{XREFfindall,,findall}, @ref{XREFallchild,,allchild}}
@end deftypefn


@c allchild scripts/plot/util/allchild.m
@anchor{XREFallchild}
@deftypefn {} {@var{h} =} allchild (@var{handles})
Find all children, including hidden children, of a graphics object.

This function is similar to @code{get (h, "children")}, but also returns
hidden objects (HandleVisibility = @qcode{"off"}).

If @var{handles} is a scalar, @var{h} will be a vector.  Otherwise,
@var{h} will be a cell matrix of the same size as @var{handles} and each
cell will contain a vector of handles.
@seealso{@ref{XREFfindall,,findall}, @ref{XREFfindobj,,findobj}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn


@c findfigs scripts/plot/util/findfigs.m
@anchor{XREFfindfigs}
@deftypefn {} {} findfigs ()
Find all visible figures that are currently off the screen and move them
onto the screen.
@seealso{@ref{XREFallchild,,allchild}, @ref{XREFfigure,,figure}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn


@cindex saving graphics objects
@cindex graphics objects, saving

Figures can be printed or saved in many graphics formats with @code{print} and
@code{saveas}.  Occasionally, however, it may be useful to save the original
Octave handle graphic directly so that further modifications can be made such
as modifying a title or legend.

This can be accomplished with the following functions by

@example
@group
fig_struct = hdl2struct (gcf);
save myplot.fig -struct fig_struct;
@dots{}
fig_struct = load ("myplot.fig");
struct2hdl (fig_struct);
@end group
@end example

@c hdl2struct scripts/plot/util/hdl2struct.m
@anchor{XREFhdl2struct}
@deftypefn {} {@var{s} =} hdl2struct (@var{h})
Return a structure, @var{s}, whose fields describe the properties
of the object, and its children, associated with the handle, @var{h}.

The fields of the structure @var{s} are @qcode{"type"}, @qcode{"handle"},
@qcode{"properties"}, @qcode{"children"}, and @qcode{"special"}.
@seealso{@ref{XREFstruct2hdl,,struct2hdl}, @ref{XREFhgsave,,hgsave}, @ref{XREFfindobj,,findobj}}
@end deftypefn


@c struct2hdl scripts/plot/util/struct2hdl.m
@anchor{XREFstruct2hdl}
@deftypefn  {} {@var{h} =} struct2hdl (@var{s})
@deftypefnx {} {@var{h} =} struct2hdl (@var{s}, @var{p})
@deftypefnx {} {@var{h} =} struct2hdl (@var{s}, @var{p}, @var{hilev})
Construct a graphics handle object @var{h} from the structure @var{s}.

The structure must contain the fields @qcode{"handle"}, @qcode{"type"},
@qcode{"children"}, @qcode{"properties"}, and @qcode{"special"}.

If the handle of an existing figure or axes is specified, @var{p}, the new
object will be created as a child of that object.  If no parent handle is
provided then a new figure and the necessary children will be constructed
using the default values from the root figure.

A third boolean argument @var{hilev} can be passed to specify whether the
function should preserve listeners/callbacks, e.g., for legends or
hggroups.  The default is false.
@seealso{@ref{XREFhdl2struct,,hdl2struct}, @ref{XREFhgload,,hgload}, @ref{XREFfindobj,,findobj}}
@end deftypefn


@c copyobj scripts/plot/util/copyobj.m
@anchor{XREFcopyobj}
@deftypefn  {} {@var{hnew} =} copyobj (@var{horig})
@deftypefnx {} {@var{hnew} =} copyobj (@var{horig}, @var{hparent})
Construct a copy of the graphic objects associated with the handles
@var{horig} and return new handles @var{hnew} to the new objects.

If a parent handle @var{hparent} (root, figure, axes, or hggroup) is
specified, the copied object will be created as a child of @var{hparent}.

If @var{horig} is a vector of handles, and @var{hparent} is a scalar,
then each handle in the vector @var{hnew} has its @qcode{"Parent"} property
set to @var{hparent}.  Conversely, if @var{horig} is a scalar and
@var{hparent} a vector, then each parent object will receive a copy of
@var{horig}.  If @var{horig} and @var{hparent} are both vectors with the
same number of elements then @code{@var{hnew}(i)} will have parent
@code{@var{hparent}(i)}.
@seealso{@ref{XREFstruct2hdl,,struct2hdl}, @ref{XREFhdl2struct,,hdl2struct}, @ref{XREFfindobj,,findobj}}
@end deftypefn


@node Graphics Object Properties
@subsection Graphics Object Properties
@cindex graphics object properties

@menu
* Root Figure Properties::
* Figure Properties::
* Axes Properties::
* Line Properties::
* Text Properties::
* Image Properties::
* Patch Properties::
* Surface Properties::
* Light Properties::
* Uimenu Properties::
* Uibuttongroup Properties::
* Uicontextmenu Properties::
* Uipanel Properties::
* Uicontrol Properties::
* Uitoolbar Properties::
* Uipushtool Properties::
* Uitoggletool Properties::
@end menu

In this Section the graphics object properties are discussed in detail,
starting with the root figure properties and continuing through the objects
hierarchy.  The documentation about a specific graphics object can be
displayed using @code{doc} function, e.g., @code{doc ("axes properties")} will
show
@ref{Axes Properties}.

The allowed values for radio (string) properties can be retrieved
programmatically or displayed using the one or
two arguments call to @code{set} function.  @xref{XREFset, , set}.

In the following documentation, default values are enclosed in @{ @}.

@node Root Figure Properties
@subsubsection Root Figure Properties
@prindex @sortas{@ Root Figure Properties} Root Figure Properties

The @code{root figure} properties are:

@include plot-rootproperties.texi


@node Figure Properties
@subsubsection Figure Properties
@prindex @sortas{@ Figure Properties} Figure Properties

The @code{figure} properties are:

@include plot-figureproperties.texi


@node Axes Properties
@subsubsection Axes Properties
@prindex @sortas{@ Axes Properties} Axes Properties

The @code{axes} properties are:

@include plot-axesproperties.texi


@node Line Properties
@subsubsection Line Properties
@prindex @sortas{@ Line Properties} Line Properties

The @code{line} properties are:

@include plot-lineproperties.texi


@node Text Properties
@subsubsection Text Properties
@prindex @sortas{@ Text Properties} Text Properties

The @code{text} properties are:

@include plot-textproperties.texi


@node Image Properties
@subsubsection Image Properties
@prindex @sortas{@ Image Properties} Image Properties

The @code{image} properties are:

@include plot-imageproperties.texi


@node Patch Properties
@subsubsection Patch Properties
@prindex @sortas{@ Patch Properties} Patch Properties

The @code{patch} properties are:

@include plot-patchproperties.texi


@node Surface Properties
@subsubsection Surface Properties
@prindex @sortas{@ Surface Properties} Surface Properties

The @code{surface} properties are:

@include plot-surfaceproperties.texi


@node Light Properties
@subsubsection Light Properties
@prindex @sortas{@ Light Properties} Light Properties

The @code{light} properties are:

@include plot-lightproperties.texi

@node Uimenu Properties
@subsubsection Uimenu Properties
@prindex @sortas{@ Uimenu Properties} Uimenu Properties

The @code{uimenu} properties are:

@include plot-uimenuproperties.texi

@node Uibuttongroup Properties
@subsubsection Uibuttongroup Properties
@prindex @sortas{@ Uibuttongroup Properties} Uibuttongroup Properties

The @code{uibuttongroup} properties are:

@include plot-uibuttongroupproperties.texi

@node Uicontextmenu Properties
@subsubsection Uicontextmenu Properties
@prindex @sortas{@ Uicontextmenu Properties} Uicontextmenu Properties

The @code{uicontextmenu} properties are:

@include plot-uicontextmenuproperties.texi

@node Uipanel Properties
@subsubsection Uipanel Properties
@prindex @sortas{@ Uipanel Properties} Uipanel Properties

The @code{uipanel} properties are:

@include plot-uipanelproperties.texi

@node Uicontrol Properties
@subsubsection Uicontrol Properties
@prindex @sortas{@ Uicontrol Properties} Uicontrol Properties

The @code{uicontrol} properties are:

@include plot-uicontrolproperties.texi

@node Uitoolbar Properties
@subsubsection Uitoolbar Properties
@prindex @sortas{@ Uitoolbar Properties} Uitoolbar Properties

The @code{uitoolbar} properties are:

@include plot-uitoolbarproperties.texi

@node Uipushtool Properties
@subsubsection Uipushtool Properties
@prindex @sortas{@ Uipushtool Properties} Uipushtool Properties

The @code{uipushtool} properties are:

@include plot-uipushtoolproperties.texi

@node Uitoggletool Properties
@subsubsection Uitoggletool Properties
@prindex @sortas{@ Uitoggletool Properties} Uitoggletool Properties

The @code{uitoggletool} properties are:

@include plot-uitoggletoolproperties.texi

@node Searching Properties
@subsection Searching Properties

@c findobj scripts/plot/util/findobj.m
@anchor{XREFfindobj}
@deftypefn  {} {@var{h} =} findobj ()
@deftypefnx {} {@var{h} =} findobj (@var{prop_name}, @var{prop_value}, @dots{})
@deftypefnx {} {@var{h} =} findobj (@var{prop_name}, @var{prop_value}, "-@var{logical_op}", @var{prop_name}, @var{prop_value})
@deftypefnx {} {@var{h} =} findobj ("-property", @var{prop_name})
@deftypefnx {} {@var{h} =} findobj ("-regexp", @var{prop_name}, @var{pattern})
@deftypefnx {} {@var{h} =} findobj (@var{hlist}, @dots{})
@deftypefnx {} {@var{h} =} findobj (@var{hlist}, "flat", @dots{})
@deftypefnx {} {@var{h} =} findobj (@var{hlist}, "-depth", @var{d}, @dots{})
Find graphics objects with specified properties.

When called without arguments, return all graphic objects beginning with the
root object (0) and including all of its descendants.

The simplest form for narrowing the results is

@example
findobj (@var{prop_name}, @var{prop_value})
@end example

@noindent
which returns the handles of all objects which have a property named
@var{prop_name} that has the value @var{prop_value}.  If multiple
property/value pairs are specified then only objects meeting all of the
conditions (equivalent to @code{-and}) are returned.

The search can be limited to a particular set of objects and their
descendants, by passing a handle or set of handles @var{hlist} as the first
argument.

The depth of the object hierarchy to search can be limited with the
@qcode{"-depth"} argument.  An example of searching through only three
generations of children is:

@example
findobj (@var{hlist}, "-depth", 3, @var{prop_name}, @var{prop_value})
@end example

Specifying a depth @var{d} of 0 limits the search to the set of objects
passed in @var{hlist}.  A depth of 0 is also equivalent to the
@qcode{"flat"} argument.  The default depth value is @code{Inf} which
includes all descendants.

A specified logical operator may be used between @var{prop_name},
@var{prop_value} pairs.  The supported logical operators are:
@qcode{"-and"}, @qcode{"-or"}, @qcode{"-xor"}, @qcode{"-not"}.  Example code
to locate all figure and axes objects is

@example
findobj ("type", "figure", "-or", "type", "axes")
@end example

Objects may also be matched by comparing a regular expression to the
property values, where property values that match
@code{regexp (@var{prop_value}, @var{pattern})} are returned.

Finally, objects which have a property name can be found with the
@qcode{"-property"} option.  For example, code to locate objects with a
@qcode{"meshstyle"} property is

@example
findobj ("-property", "meshstyle")
@end example

Implementation Note: The search only includes objects with visible
handles (@w{HandleVisibility} = @qcode{"on"}).  @xref{XREFfindall,,findall},
to search for all objects including hidden ones.
@seealso{@ref{XREFfindall,,findall}, @ref{XREFallchild,,allchild}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn


@c findall scripts/plot/util/findall.m
@anchor{XREFfindall}
@deftypefn  {} {@var{h} =} findall ()
@deftypefnx {} {@var{h} =} findall (@var{prop_name}, @var{prop_value}, @dots{})
@deftypefnx {} {@var{h} =} findall (@var{prop_name}, @var{prop_value}, "-@var{logical_op}", @var{prop_name}, @var{prop_value})
@deftypefnx {} {@var{h} =} findall ("-property", @var{prop_name})
@deftypefnx {} {@var{h} =} findall ("-regexp", @var{prop_name}, @var{pattern})
@deftypefnx {} {@var{h} =} findall (@var{hlist}, @dots{})
@deftypefnx {} {@var{h} =} findall (@var{hlist}, "flat", @dots{})
@deftypefnx {} {@var{h} =} findall (@var{hlist}, "-depth", @var{d}, @dots{})
Find graphics object, including hidden ones, with specified properties.

The return value @var{h} is a list of handles to the found graphic objects.

@code{findall} performs the same search as @code{findobj}, but it
includes hidden objects (HandleVisibility = @qcode{"off"}).  For full
documentation, @pxref{XREFfindobj,,findobj}.
@seealso{@ref{XREFfindobj,,findobj}, @ref{XREFallchild,,allchild}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn

@node Managing Default Properties
@subsection Managing Default Properties
@cindex default graphics properties
@cindex graphics properties, default

Object properties have two classes of default values, @dfn{factory
defaults} (the initial values) and @dfn{user-defined defaults}, which
may override the factory defaults.

Although default values may be set for any object, they are set in
parent objects and apply to child objects, of the specified object type.
For example, setting the default @code{color} property of @code{line}
objects to @qcode{"green"}, for the @code{root} object, will result in all
@code{line} objects inheriting the @code{color} @qcode{"green"} as the default
value.

@example
set (groot, "defaultlinecolor", "green");
@end example

@noindent
sets the default line color for all objects.  The rule for constructing
the property name to set a default value is

@example
default + @var{object-type} + @var{property-name}
@end example

This rule can lead to some strange looking names, for example
@code{defaultlinelinewidth"} specifies the default @code{linewidth}
property for @code{line} objects.

The example above used the root figure object so the default
property value will apply to all line objects.  However, default values
are hierarchical, so defaults set in a figure objects override those
set in the root figure object.  Likewise, defaults set in axes objects
override those set in figure or root figure objects.  For example,

@example
@group
subplot (2, 1, 1);
set (groot, "defaultlinecolor", "red");
set (1, "defaultlinecolor", "green");
set (gca (), "defaultlinecolor", "blue");
line (1:10, rand (1, 10));
subplot (2, 1, 2);
line (1:10, rand (1, 10));
figure (2)
line (1:10, rand (1, 10));
@end group
@end example

@noindent
produces two figures.  The line in first subplot window of the first
figure is blue because it inherits its color from its parent axes
object.  The line in the second subplot window of the first figure is
green because it inherits its color from its parent figure object.  The
line in the second figure window is red because it inherits its color
from the global root figure parent object.

To remove a user-defined default setting, set the default property to
the value @qcode{"remove"}.  For example,

@example
set (gca (), "defaultlinecolor", "remove");
@end example

@noindent
removes the user-defined default line color setting from the current axes
object.  To quickly remove all user-defined defaults use the @code{reset}
function.

@c reset libinterp/corefcn/graphics.cc
@anchor{XREFreset}
@deftypefn {} {} reset (@var{h})
Reset the properties of the graphic object @var{h} to their default values.

For figures, the properties @qcode{"position"}, @qcode{"units"},
@qcode{"windowstyle"}, and @qcode{"paperunits"} are not affected.
For axes, the properties @qcode{"position"} and @qcode{"units"} are
not affected.

The input @var{h} may also be a vector of graphic handles in which case
each individual object will be reset.
@seealso{@ref{XREFcla,,cla}, @ref{XREFclf,,clf}, @ref{XREFnewplot,,newplot}}
@end deftypefn


Getting the @qcode{"default"} property of an object returns a list of
user-defined defaults set for the object.  For example,

@example
get (gca (), "default");
@end example

@noindent
returns a list of user-defined default values for the current axes
object.

Factory default values are stored in the root figure object.  The
command

@example
get (groot, "factory");
@end example

@noindent
returns a list of factory defaults.

@node Advanced Plotting
@section Advanced Plotting


@menu
* Colors::
* Line Styles::
* Marker Styles::
* Callbacks::
* Application-defined Data::
* Object Groups::
* Transform Groups::
* Graphics Toolkits::
@end menu


@node Colors
@subsection Colors
@cindex graphics colors
@cindex colors, graphics

Colors may be specified as RGB triplets with values ranging from zero to
one, or by name.  Recognized color names include @qcode{"blue"},
@qcode{"black"}, @qcode{"cyan"}, @qcode{"green"}, @qcode{"magenta"},
@qcode{"red"}, @qcode{"white"}, and @qcode{"yellow"}.

@node Line Styles
@subsection Line Styles
@cindex line styles, graphics
@cindex graphics line styles

Line styles are specified by the following properties:

@table @code
@item linestyle
May be one of

@table @asis
@item @qcode{"-"}
Solid line.  [default]

@c Special handling required to avoid '--' becoming single en-dash in Info
@ifnottex

@item @verb{|"--"|}
@end ifnottex
@iftex

@item @code{"--"}
@end iftex
Dashed line.

@item @qcode{":"}
Dotted line.

@item @qcode{"-."}
A dash-dot line.

@item @qcode{"none"}
No line.  Points will still be marked using the current Marker Style.
@end table

@item linewidth
A number specifying the width of the line.  The default is 1.  A value
of 2 is twice as wide as the default, etc.
@end table

@node Marker Styles
@subsection Marker Styles
@cindex graphics marker styles
@cindex marker styles, graphics

Marker styles are specified by the following properties:

@table @code
@item marker
A character indicating a plot marker to be place at each data point, or
@qcode{"none"}, meaning no markers should be displayed.

@item markeredgecolor
The color of the edge around the marker, or @qcode{"auto"}, meaning that
the edge color is the same as the face color.  @xref{Colors}.

@item markerfacecolor
The color of the marker, or @qcode{"none"} to indicate that the marker
should not be filled.  @xref{Colors}.

@item markersize
A number specifying the size of the marker.  The default is 1.  A value
of 2 is twice as large as the default, etc.
@end table

The @code{colstyle} function will parse a @code{plot}-style specification
and will return the color, line, and marker values that would result.

@c colstyle scripts/plot/util/colstyle.m
@anchor{XREFcolstyle}
@deftypefn {} {[@var{style}, @var{color}, @var{marker}, @var{msg}] =} colstyle (@var{style})
Parse the line specification @var{style} and return the line style, color,
and markers given.

In the case of an error, the string @var{msg} will return the text of the
error.
@end deftypefn


@node Callbacks
@subsection Callbacks
@cindex callbacks

Callback functions can be associated with graphics objects and triggered
after certain events occur.  The basic structure of all callback function
is

@example
@group
function mycallback (hsrc, evt)
  @dots{}
endfunction
@end group
@end example

@noindent
where @code{hsrc} is a handle to the source of the callback, and @code{evt}
gives some event specific data.

The function can be provided as a function handle to a plain Octave function,
as an anonymous function, or as a string representing an Octave command.  The
latter syntax is not recommended since syntax errors will only occur when the
string is evaluated.
@xref{Function Handles Anonymous Functions Inline Functions, , Function Handles section}.

This can then be associated with an object either at the object's creation, or
later with the @code{set} function.  For example,

@example
plot (x, "DeleteFcn", @@(h, e) disp ("Window Deleted"))
@end example

@noindent
where at the moment that the plot is deleted, the message
@qcode{"Window Deleted"} will be displayed.

Additional user arguments can be passed to callback functions, and will be
passed after the two default arguments.  For example:

@example
@group
plot (x, "DeleteFcn", @{@@mycallback, "1"@})
@dots{}
function mycallback (h, evt, arg1)
  fprintf ("Closing plot %d\n", arg1);
endfunction
@end group
@end example

@strong{Caution:} The second argument in callback functions---@code{evt}---is
only partially implemented in the Qt graphics toolkit:

@itemize @bullet
@item Mouse click events:
@code{evt} is a class @code{double} value: 1 for left, 2 for middle, and 3 for
right click.

@item Key press events:
@code{evt} is a structure with fields @code{Key} (string), @code{Character}
(string), and @code{Modifier} (cell array of strings).

@item Other events:
@code{evt} is a class @code{double} empty matrix.
@end itemize

The basic callback functions that are available for all graphics objects are

@itemize @bullet
@item CreateFcn:
called at the moment of the objects creation.  It is not called if the
object is altered in any way, and so it only makes sense to define this
callback in the function call that defines the object.  Callbacks that
are added to @code{CreateFcn} later with the @code{set} function will
never be executed.

@item DeleteFcn:
called at the moment an object is deleted.

@item ButtonDownFcn:
called if a mouse button is pressed while the pointer is over this
object.  Note, that the gnuplot interface does not implement this
callback.
@end itemize

By default callback functions are queued (they are executed one after the other
in the event queue) unless the @code{drawnow}, @code{figure}, @code{waitfor},
@code{getframe}, or @code{pause} functions are used.  If an executing callback
invokes one of those functions, it causes Octave to flush the event queue,
which results in the executing callback being interrupted.

It is possible to specify that an object's callbacks should not be interrupted
by setting the object's @code{interruptible} property to @qcode{"off"}.  In
this case, Octave decides what to do based on the @code{busyaction} property of
the @strong{interrupting} callback object:

@table @asis
@item @code{queue} (the default)
The interrupting callback is executed after the executing callback has
returned.

@item @code{cancel}
The interrupting callback is discarded.
@end table

The @code{interruptible} property has no effect when the interrupting callback
is a @code{deletefcn}, or a figure @code{resizefcn} or @code{closerequestfcn}.
Those callbacks always interrupt the executing callback.

The handle to the object that holds the callback being executed can be
obtained with the @code{gcbo} function.  The handle to the ancestor figure
of this object may be obtained using the @code{gcbf} function.

@c gcbo scripts/plot/util/gcbo.m
@anchor{XREFgcbo}
@deftypefn  {} {@var{h} =} gcbo ()
@deftypefnx {} {[@var{h}, @var{fig}] =} gcbo ()
Return a handle to the object whose callback is currently executing.

If no callback is executing, this function returns the empty matrix.  This
handle is obtained from the root object property @qcode{"CallbackObject"}.

When called with a second output argument, return the handle of the figure
containing the object whose callback is currently executing.  If no callback
is executing the second output is also set to the empty matrix.

@seealso{@ref{XREFgcbf,,gcbf}, @ref{XREFgco,,gco}, @ref{XREFgca,,gca}, @ref{XREFgcf,,gcf}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn


@c gcbf scripts/plot/util/gcbf.m
@anchor{XREFgcbf}
@deftypefn {} {@var{fig} =} gcbf ()
Return a handle to the figure containing the object whose callback is
currently executing.

If no callback is executing, this function returns the empty matrix.  The
handle returned by this function is the same as the second output argument
of @code{gcbo}.

@seealso{@ref{XREFgcbo,,gcbo}, @ref{XREFgcf,,gcf}, @ref{XREFgco,,gco}, @ref{XREFgca,,gca}, @ref{XREFget,,get}, @ref{XREFset,,set}}
@end deftypefn


Callbacks can equally be added to properties with the @code{addlistener}
function described below.

@node Application-defined Data
@subsection Application-defined Data
@cindex application-defined data

Octave has a provision for attaching application-defined data to a graphics
handle.  The data can be anything which is meaningful to the application, and
will be completely ignored by Octave.

@c setappdata scripts/gui/setappdata.m
@anchor{XREFsetappdata}
@deftypefn  {} {} setappdata (@var{h}, @var{name}, @var{value})
@deftypefnx {} {} setappdata (@var{h}, @var{name1}, @var{value1}, @var{name2}, @var{value3}, @dots{})
@deftypefnx {} {} setappdata (@var{h}, @{@var{name1}, @var{name2}, @dots{}@}, @{@var{value1}, @var{value2}, @dots{}@})
Set the application data @var{name} to @var{value} for the graphics object
with handle @var{h}.

@var{h} may also be a vector of graphics handles.  If the application data
with the specified @var{name} does not exist, it is created.

Multiple @var{name}/@var{value} pairs can be specified.  Alternatively, a
cell array of @var{names} and a corresponding cell array of @var{values} can
be specified.

@seealso{@ref{XREFgetappdata,,getappdata}, @ref{XREFisappdata,,isappdata}, @ref{XREFrmappdata,,rmappdata}, @ref{XREFguidata,,guidata}, @ref{XREFget,,get}, @ref{XREFset,,set}, @ref{XREFgetpref,,getpref}, @ref{XREFsetpref,,setpref}}
@end deftypefn


@c getappdata scripts/gui/getappdata.m
@anchor{XREFgetappdata}
@deftypefn  {} {@var{value} =} getappdata (@var{h}, @var{name})
@deftypefnx {} {@var{appdata} =} getappdata (@var{h})
Return the @var{value} of the application data @var{name} for the graphics
object with handle @var{h}.

@var{h} may also be a vector of graphics handles.  If no second argument
@var{name} is given then @code{getappdata} returns a structure,
@var{appdata}, whose fields correspond to the appdata properties.

@seealso{@ref{XREFsetappdata,,setappdata}, @ref{XREFisappdata,,isappdata}, @ref{XREFrmappdata,,rmappdata}, @ref{XREFguidata,,guidata}, @ref{XREFget,,get}, @ref{XREFset,,set}, @ref{XREFgetpref,,getpref}, @ref{XREFsetpref,,setpref}}
@end deftypefn


@c rmappdata scripts/gui/rmappdata.m
@anchor{XREFrmappdata}
@deftypefn  {} {} rmappdata (@var{h}, @var{name})
@deftypefnx {} {} rmappdata (@var{h}, @var{name1}, @var{name2}, @dots{})
Delete the application data @var{name} from the graphics object with handle
@var{h}.

@var{h} may also be a vector of graphics handles.  Multiple application data
names may be supplied to delete several properties at once.

@seealso{@ref{XREFsetappdata,,setappdata}, @ref{XREFgetappdata,,getappdata}, @ref{XREFisappdata,,isappdata}}
@end deftypefn


@c isappdata scripts/gui/isappdata.m
@anchor{XREFisappdata}
@deftypefn {} {@var{valid} =} isappdata (@var{h}, @var{name})
Return true if the named application data, @var{name}, exists for the
graphics object with handle @var{h}.

@var{h} may also be a vector of graphics handles.
@seealso{@ref{XREFgetappdata,,getappdata}, @ref{XREFsetappdata,,setappdata}, @ref{XREFrmappdata,,rmappdata}, @ref{XREFguidata,,guidata}, @ref{XREFget,,get}, @ref{XREFset,,set}, @ref{XREFgetpref,,getpref}, @ref{XREFsetpref,,setpref}}
@end deftypefn


@node Object Groups
@subsection Object Groups
@cindex object groups

A number of Octave high level plot functions return groups of other
graphics objects or they return graphics objects that have their
properties linked in such a way that changes to one of the properties
results in changes in the others.  A graphic object that groups other
objects is an @code{hggroup}

@c hggroup scripts/plot/util/hggroup.m
@anchor{XREFhggroup}
@deftypefn  {} {} hggroup ()
@deftypefnx {} {} hggroup (@var{hax})
@deftypefnx {} {} hggroup (@dots{}, @var{property}, @var{value}, @dots{})
@deftypefnx {} {@var{h} =} hggroup (@dots{})
Create handle graphics group object with axes parent @var{hax}.

If no parent is specified, the group is created in the current axes.

Multiple property/value pairs may be specified for the hggroup, but they
must appear in pairs.

The optional return value @var{h} is a graphics handle to the created
hggroup object.

Programming Note: An hggroup is a way to group base graphics objects such
as line objects or patch objects into a single unit which can react
appropriately.  For example, the individual lines of a contour plot are
collected into a single hggroup so that they can be made visible/invisible
with a single command, @code{set (hg_handle, "visible", "off")}.

@seealso{@ref{XREFaddproperty,,addproperty}, @ref{XREFaddlistener,,addlistener}}
@end deftypefn


For example a simple use of a @code{hggroup} might be

@example
@group
x = 0:0.1:10;
hg = hggroup ();
plot (x, sin (x), "color", [1, 0, 0], "parent", hg);
hold on
plot (x, cos (x), "color", [0, 1, 0], "parent", hg);
set (hg, "visible", "off");
@end group
@end example

@noindent
which groups the two plots into a single object and controls their
visibility directly.  The default properties of an @code{hggroup} are
the same as the set of common properties for the other graphics
objects.  Additional properties can be added with the @code{addproperty}
function.

@c addproperty libinterp/corefcn/graphics.cc
@anchor{XREFaddproperty}
@deftypefn  {} {} addproperty (@var{name}, @var{h}, @var{type})
@deftypefnx {} {} addproperty (@var{name}, @var{h}, @var{type}, @var{arg}, @dots{})
Create a new property named @var{name} in graphics object @var{h}.

@var{type} determines the type of the property to create.  @var{args}
usually contains the default value of the property, but additional
arguments might be given, depending on the type of the property.

The supported property types are:

@table @code
@item string
A string property.  @var{arg} contains the default string value.

@item any
An @nospell{un-typed} property.  This kind of property can hold any octave
value.  @var{args} contains the default value.

@item radio
A string property with a limited set of accepted values.  The first
argument must be a string with all accepted values separated by
a vertical bar ('|').  The default value can be marked by enclosing
it with a '@{' '@}' pair.  The default value may also be given as
an optional second string argument.

@item boolean
A boolean property.  This property type is equivalent to a radio
property with "on|off" as accepted values.  @var{arg} contains
the default property value.

@item double
A scalar double property.  @var{arg} contains the default value.

@item handle
A handle property.  This kind of property holds the handle of a
graphics object.  @var{arg} contains the default handle value.
When no default value is given, the property is initialized to
the empty matrix.

@item data
A data (matrix) property.  @var{arg} contains the default data
value.  When no default value is given, the data is initialized to
the empty matrix.

@item color
A color property.  @var{arg} contains the default color value.
When no default color is given, the property is set to black.
An optional second string argument may be given to specify an
additional set of accepted string values (like a radio property).
@end table

@var{type} may also be the concatenation of a core object type and
a valid property name for that object type.  The property created
then has the same characteristics as the referenced property (type,
possible values, hidden state@dots{}).  This allows one to clone an
existing property into the graphics object @var{h}.

Examples:

@example
@group
addproperty ("my_property", gcf, "string", "a string value");
addproperty ("my_radio", gcf, "radio", "val_1|val_2|@{val_3@}");
addproperty ("my_style", gcf, "linelinestyle", "--");
@end group
@end example

@seealso{@ref{XREFaddlistener,,addlistener}, @ref{XREFhggroup,,hggroup}}
@end deftypefn


Once a property in added to an @code{hggroup}, it is not linked to any
other property of either the children of the group, or any other
graphics object.  Add so to control the way in which this newly added
property is used, the @code{addlistener} function is used to define a
callback function that is executed when the property is altered.

@c addlistener libinterp/corefcn/graphics.cc
@anchor{XREFaddlistener}
@deftypefn {} {} addlistener (@var{h}, @var{prop}, @var{fcn})
Register @var{fcn} as listener for the property @var{prop} of the graphics
object @var{h}.

Property listeners are executed (in order of registration) when the property
is set.  The new value is already available when the listeners are executed.

@var{prop} must be a string naming a valid property in @var{h}.

@var{fcn} can be a function handle, a string or a cell array whose first
element is a function handle.  If @var{fcn} is a function handle, the
corresponding function should accept at least 2 arguments, that will be
set to the object handle and the empty matrix respectively.  If @var{fcn}
is a string, it must be any valid octave expression.  If @var{fcn} is a cell
array, the first element must be a function handle with the same signature
as described above.  The next elements of the cell array are passed
as additional arguments to the function.

Example:

@example
@group
function my_listener (h, dummy, p1)
  fprintf ("my_listener called with p1=%s\n", p1);
endfunction

addlistener (gcf, "position", @{@@my_listener, "my string"@})
@end group
@end example

@seealso{@ref{XREFdellistener,,dellistener}, @ref{XREFaddproperty,,addproperty}, @ref{XREFhggroup,,hggroup}}
@end deftypefn


@c dellistener libinterp/corefcn/graphics.cc
@anchor{XREFdellistener}
@deftypefn {} {} dellistener (@var{h}, @var{prop}, @var{fcn})
Remove the registration of @var{fcn} as a listener for the property
@var{prop} of the graphics object @var{h}.

The function @var{fcn} must be the same variable (not just the same value),
as was passed to the original call to @code{addlistener}.

If @var{fcn} is not defined then all listener functions of @var{prop}
are removed.

Example:

@example
@group
function my_listener (h, dummy, p1)
  fprintf ("my_listener called with p1=%s\n", p1);
endfunction

c = @{@@my_listener, "my string"@};
addlistener (gcf, "position", c);
dellistener (gcf, "position", c);
@end group
@end example

@seealso{@ref{XREFaddlistener,,addlistener}}
@end deftypefn


An example of the use of these two functions might be

@example
@group
x = 0:0.1:10;
hg = hggroup ();
h = plot (x, sin (x), "color", [1, 0, 0], "parent", hg);
addproperty ("linestyle", hg, "linelinestyle", get (h, "linestyle"));
addlistener (hg, "linestyle", @@update_props);
hold on
plot (x, cos (x), "color", [0, 1, 0], "parent", hg);

function update_props (h, d)
  set (get (h, "children"), "linestyle", get (h, "linestyle"));
endfunction
@end group
@end example

@noindent
that adds a @code{linestyle} property to the @code{hggroup} and
propagating any changes its value to the children of the group.  The
@code{linkprop} function can be used to simplify the above to be

@example
@group
x = 0:0.1:10;
hg = hggroup ();
h1 = plot (x, sin (x), "color", [1, 0, 0], "parent", hg);
addproperty ("linestyle", hg, "linelinestyle", get (h, "linestyle"));
hold on
h2 = plot (x, cos (x), "color", [0, 1, 0], "parent", hg);
hlink = linkprop ([hg, h1, h2], "color");
@end group
@end example

@c linkprop scripts/plot/util/linkprop.m
@anchor{XREFlinkprop}
@deftypefn  {} {@var{hlink} =} linkprop (@var{h}, "@var{prop}")
@deftypefnx {} {@var{hlink} =} linkprop (@var{h}, @{"@var{prop1}", "@var{prop2}", @dots{}@})
Link graphic object properties, such that a change in one is propagated to
the others.

The input @var{h} is a vector of graphic handles to link.

@var{prop} may be a string when linking a single property, or a cell array
of strings for multiple properties.  During the linking process all
properties in @var{prop} will initially be set to the values that exist on
the first object in the list @var{h}.

The function returns @var{hlink} which is a special object describing the
link.  As long as the reference @var{hlink} exists, the link between graphic
objects will be active.  This means that @var{hlink} must be preserved in
a workspace variable, a global variable, or otherwise stored using a
function such as @code{setappdata} or @code{guidata}.  To unlink properties,
execute @code{clear @var{hlink}}.

An example of the use of @code{linkprop} is

@example
@group
x = 0:0.1:10;
subplot (1,2,1);
h1 = plot (x, sin (x));
subplot (1,2,2);
h2 = plot (x, cos (x));
hlink = linkprop ([h1, h2], @{"color","linestyle"@});
set (h1, "color", "green");
set (h2, "linestyle", "--");
@end group
@end example

@seealso{@ref{XREFlinkaxes,,linkaxes}, @ref{XREFaddlistener,,addlistener}}
@end deftypefn


@c linkaxes scripts/plot/util/linkaxes.m
@anchor{XREFlinkaxes}
@deftypefn  {} {} linkaxes (@var{hax})
@deftypefnx {} {} linkaxes (@var{hax}, @var{optstr})
Link the axis limits of 2-D plots such that a change in one is propagated
to the others.

The axes handles to be linked are passed as the first argument @var{hax}.

The optional second argument is a string which defines which axis limits
will be linked.  The possible values for @var{optstr} are:

@table @asis
@item @qcode{"x"}
Link x-axes

@item @qcode{"y"}
Link y-axes

@item @qcode{"xy"} (default)
Link both axes

@item @qcode{"off"}
Turn off linking
@end table

If unspecified the default is to link both X and Y axes.

When linking, the limits from the first axes in @var{hax} are applied to the
other axes in the list.  Subsequent changes to any one of the axes will be
propagated to the others.

@seealso{@ref{XREFlinkprop,,linkprop}, @ref{XREFaddproperty,,addproperty}}
@end deftypefn


These capabilities are used in a number of basic graphics objects.
The @code{hggroup} objects created by the functions of Octave contain
one or more graphics object and are used to:

@itemize @bullet
@item group together multiple graphics objects,

@item create linked properties between different graphics objects, and

@item to hide the nominal user data, from the actual data of the objects.
@end itemize

@noindent
For example the @code{stem} function creates a stem series where each
@code{hggroup} of the stem series contains two line objects representing
the body and head of the stem.  The @code{ydata} property of the
@code{hggroup} of the stem series represents the head of the stem,
whereas the body of the stem is between the baseline and this value.  For
example

@example
@group
h = stem (1:4)
get (h, "xdata")
@result{} [  1   2   3   4]'
get (get (h, "children")(1), "xdata")
@result{} [  1   1 NaN   2   2 NaN   3   3 NaN   4   4 NaN]'
@end group
@end example

@noindent
shows the difference between the @code{xdata} of the @code{hggroup}
of a stem series object and the underlying line.

The basic properties of such group objects is that they consist of one
or more linked @code{hggroup}, and that changes in certain properties of
these groups are propagated to other members of the group.  Whereas,
certain properties of the members of the group only apply to the current
member.

In addition the members of the group can also be linked to other
graphics objects through callback functions.  For example the baseline of
the @code{bar} or @code{stem} functions is a line object, whose length
and position are automatically adjusted, based on changes to the
corresponding hggroup elements.

@menu
* Data Sources in Object Groups::
* Area Series::
* Bar Series::
* Contour Groups::
* Error Bar Series::
* Line Series::
* Quiver Group::
* Scatter Group::
* Stair Group::
* Stem Series::
* Surface Group::
@end menu

@node Data Sources in Object Groups
@subsubsection Data Sources in Object Groups
@cindex data sources in object groups
@anchor{XREFdatasources}
All of the group objects contain data source parameters.  There are
string parameters that contain an expression that is evaluated to update
the relevant data property of the group when the @code{refreshdata}
function is called.

@c refreshdata scripts/plot/util/refreshdata.m
@anchor{XREFrefreshdata}
@deftypefn  {} {} refreshdata ()
@deftypefnx {} {} refreshdata (@var{h})
@deftypefnx {} {} refreshdata (@var{h}, @var{workspace})
Evaluate any @samp{datasource} properties of the current figure and update
the plot if the corresponding data has changed.

If the first argument @var{h} is a list of graphic handles, then operate
on these objects rather than the current figure returned by @code{gcf}.

The optional second argument @var{workspace} can take the following values:

@table @asis
@item @qcode{"base"}
Evaluate the datasource properties in the base workspace.  (default).

@item @qcode{"caller"}
Evaluate the datasource properties in the workspace of the function
that called @code{refreshdata}.
@end table

An example of the use of @code{refreshdata} is:

@example
@group
x = 0:0.1:10;
y = sin (x);
plot (x, y, "ydatasource", "y");
for i = 1 : 100
  pause (0.1);
  y = sin (x + 0.1*i);
  refreshdata ();
endfor
@end group
@end example
@end deftypefn


@anchor{XREFlinkdata}
@c add the description of the linkdata function here when it is written
@c remove the explicit anchor when you add the corresponding @DOCSTRING
@c command

@node Area Series
@subsubsection Area Series
@cindex series objects
@cindex area series

Area series objects are created by the @code{area} function.  Each of the
@code{hggroup} elements contains a single patch object.  The properties
of the area series are

@table @code
@item basevalue
The value where the base of the area plot is drawn.

@item  linewidth
@itemx linestyle
The line width and style of the edge of the patch objects making up the
areas.  @xref{Line Styles}.

@item  edgecolor
@itemx facecolor
The line and fill color of the patch objects making up the areas.
@xref{Colors}.

@item  xdata
@itemx ydata
The x and y coordinates of the original columns of the data passed to
@code{area} prior to the cumulative summation used in the @code{area}
function.

@item  xdatasource
@itemx ydatasource
Data source variables.
@end table

@node Bar Series
@subsubsection Bar Series
@cindex series objects
@cindex bar series

Bar series objects are created by the @code{bar} or @code{barh}
functions.  Each @code{hggroup} element contains a single patch object.
The properties of the bar series are

@table @code
@item  showbaseline
@itemx baseline
@itemx basevalue
The property @code{showbaseline} flags whether the baseline of the bar
series is displayed (default is @qcode{"on"}).  The handle of the graphics
object representing the baseline is given by the @code{baseline} property and
the y-value of the baseline by the @code{basevalue} property.

Changes to any of these properties are propagated to the other members of
the bar series and to the baseline itself.  Equally, changes in the
properties of the base line itself are propagated to the members of the
corresponding bar series.

@item  barwidth
@itemx barlayout
@itemx horizontal
The property @code{barwidth} is the width of the bar corresponding to
the @var{width} variable passed to @code{bar} or @var{barh}.  Whether the
bar series is @qcode{"grouped"} or @qcode{"stacked"} is determined by the
@code{barlayout} property and whether the bars are horizontal or
vertical by the @code{horizontal} property.

Changes to any of these property are propagated to the other members of
the bar series.

@item  linewidth
@itemx linestyle
The line width and style of the edge of the patch objects making up the
bars.  @xref{Line Styles}.

@item  edgecolor
@itemx facecolor
The line and fill color of the patch objects making up the bars.
@xref{Colors}.

@item xdata
The nominal x positions of the bars.  Changes in this property and
propagated to the other members of the bar series.

@item ydata
The y value of the bars in the @code{hggroup}.

@item  xdatasource
@itemx ydatasource
Data source variables.
@end table

@node Contour Groups
@subsubsection Contour Groups
@cindex series objects
@cindex contour series

Contour group objects are created by the @code{contour}, @code{contourf}, and
@code{contour3} functions.  They are also one of the handles returned by the
@code{surfc} and @code{meshc} functions.  The properties of the contour group
are

@table @code
@item contourmatrix
A read only property that contains the data return by @code{contourc} used to
create the contours of the plot.

@item fill
A radio property that can have the values @qcode{"on"} or @qcode{"off"} that
flags whether the contours to plot are to be filled.

@item  zlevelmode
@itemx zlevel
The radio property @code{zlevelmode} can have the values @qcode{"none"},
@qcode{"auto"}, or @qcode{"manual"}.  When its value is @qcode{"none"} there is
no z component to the plotted contours.  When its value is @qcode{"auto"} the z
value of the plotted contours is at the same value as the contour itself.  If
the value is @qcode{"manual"}, then the z value at which to plot the contour is
determined by the @code{zlevel} property.

@item  levellistmode
@itemx levellist
@itemx levelstepmode
@itemx levelstep
If @code{levellistmode} is @qcode{"manual"}, then the levels at which to plot
the contours is determined by @code{levellist}.  If @code{levellistmode} is set
to @qcode{"auto"}, then the distance between contours is determined by
@code{levelstep}.  If both @code{levellistmode} and @code{levelstepmode} are
set to @qcode{"auto"}, then there are assumed to be 10 equal spaced contours.

@item  textlistmode
@itemx textlist
@itemx textstepmode
@itemx textstep
If @code{textlistmode} is @qcode{"manual"}, then the labeled contours
is determined by @code{textlist}.  If @code{textlistmode} is set to
@qcode{"auto"}, then the distance between labeled contours is determined by
@code{textstep}.  If both @code{textlistmode} and @code{textstepmode}
are set to @qcode{"auto"}, then there are assumed to be 10 equal spaced
labeled contours.

@item showtext
Flag whether the contour labels are shown or not.

@item labelspacing
The distance between labels on a single contour in points.

@item linewidth

@item linestyle

@item linecolor
The properties of the contour lines.  The properties @code{linewidth} and
@code{linestyle} are similar to the corresponding properties for lines.  The
property @code{linecolor} is a color property (@pxref{Colors}), that can also
have the values of @qcode{"none"} or @qcode{"auto"}.  If @code{linecolor} is
@qcode{"none"}, then no contour line is drawn.  If @code{linecolor} is
@qcode{"auto"} then the line color is determined by the colormap.

@item  xdata
@itemx ydata
@itemx zdata
The original x, y, and z data of the contour lines.

@item  xdatasource
@itemx ydatasource
@itemx zdatasource
Data source variables.
@end table

@node Error Bar Series
@subsubsection Error Bar Series
@cindex series objects
@cindex error bar series

Error bar series are created by the @code{errorbar} function.  Each
@code{hggroup} element contains two line objects representing the data and
the errorbars separately.  The properties of the error bar series are

@table @code
@item color
The RGB color or color name of the line objects of the error bars.
@xref{Colors}.

@item  linewidth
@itemx linestyle
The line width and style of the line objects of the error bars.  @xref{Line
Styles}.

@item  marker
@itemx markeredgecolor
@itemx markerfacecolor
@itemx markersize
The line and fill color of the markers on the error bars.  @xref{Colors}.

@item  xdata
@itemx ydata
@itemx ldata
@itemx udata
@itemx xldata
@itemx xudata
The original x, y, l, u, @nospell{xl, xu} data of the error bars.

@item  xdatasource
@itemx ydatasource
@itemx ldatasource
@itemx udatasource
@itemx xldatasource
@itemx xudatasource
Data source variables.
@end table

@node Line Series
@subsubsection Line Series
@cindex series objects
@cindex line series

Line series objects are created by the @code{plot}  and @code{plot3}
functions and are of the type @code{line}.  The properties of the
line series with the ability to add data sources.

@table @code
@item color
The RGB color or color name of the line objects.  @xref{Colors}.

@item  linewidth
@itemx linestyle
The line width and style of the line objects.  @xref{Line Styles}.

@item  marker
@itemx markeredgecolor
@itemx markerfacecolor
@itemx markersize
The line and fill color of the markers.  @xref{Colors}.

@item  xdata
@itemx ydata
@itemx zdata
The original x, y and z data.

@item  xdatasource
@itemx ydatasource
@itemx zdatasource
Data source variables.
@end table

@node Quiver Group
@subsubsection Quiver Group
@cindex group objects
@cindex quiver group

Quiver series objects are created by the @code{quiver} or @code{quiver3}
functions.  Each @code{hggroup} element of the series contains three line
objects as children representing the body and head of the arrow,
together with a marker as the point of origin of the arrows.  The
properties of the quiver series are

@table @code
@item  autoscale
@itemx autoscalefactor
Flag whether the length of the arrows is scaled or defined directly from
the @var{u}, @var{v} and @var{w} data.  If the arrow length is flagged
as being scaled by the @code{autoscale} property, then the length of the
autoscaled arrow is controlled by the @code{autoscalefactor}.

@item maxheadsize
This property controls the size of the head of the arrows in the quiver
series.  The default value is 0.2.

@item showarrowhead
Flag whether the arrow heads are displayed in the quiver plot.

@item color
The RGB color or color name of the line objects of the quiver.  @xref{Colors}.

@item  linewidth
@itemx linestyle
The line width and style of the line objects of the quiver.  @xref{Line
Styles}.

@item  marker
@itemx markerfacecolor
@itemx markersize
The line and fill color of the marker objects at the original of the
arrows.  @xref{Colors}.

@item  xdata
@itemx ydata
@itemx zdata
The origins of the values of the vector field.

@item  udata
@itemx vdata
@itemx wdata
The values of the vector field to plot.

@item  xdatasource
@itemx ydatasource
@itemx zdatasource
@itemx udatasource
@itemx vdatasource
@itemx wdatasource
Data source variables.
@end table

@node Scatter Group
@subsubsection Scatter Group
@cindex group objects
@cindex scatter group

Scatter series objects are created by the @code{scatter} or @code{scatter3}
functions.  A single hggroup element contains as many children as there are
points in the scatter plot, with each child representing one of the points.
The properties of the stem series are

@table @code
@item linewidth
The line width of the line objects of the points.  @xref{Line Styles}.

@item  marker
@itemx markeredgecolor
@itemx markerfacecolor
The line and fill color of the markers of the points.  @xref{Colors}.

@item  xdata
@itemx ydata
@itemx zdata
The original x, y and z data of the stems.

@item cdata
The color data for the points of the plot.  Each point can have a separate
color, or a unique color can be specified.

@item sizedata
The size data for the points of the plot.  Each point can its own size or a
unique size can be specified.

@item  xdatasource
@itemx ydatasource
@itemx zdatasource
@itemx cdatasource
@itemx sizedatasource
Data source variables.
@end table

@node Stair Group
@subsubsection Stair Group
@cindex group objects
@cindex stair group

Stair series objects are created by the @code{stair} function.  Each
@code{hggroup} element of the series contains a single line object as a
child representing the stair.  The properties of the stair series are

@table @code
@item color
The RGB color or color name of the line objects of the stairs.  @xref{Colors}.

@item  linewidth
@itemx linestyle
The line width and style of the line objects of the stairs.  @xref{Line
Styles}.

@item  marker
@itemx markeredgecolor
@itemx markerfacecolor
@itemx markersize
The line and fill color of the markers on the stairs.  @xref{Colors}.

@item  xdata
@itemx ydata
The original x and y data of the stairs.

@item  xdatasource
@itemx ydatasource
Data source variables.
@end table

@node Stem Series
@subsubsection Stem Series
@cindex series objects
@cindex stem series

Stem series objects are created by the @code{stem} or @code{stem3}
functions.  Each @code{hggroup} element contains a single line object
as a child representing the stems.  The properties of the stem series
are

@table @code
@item  showbaseline
@itemx baseline
@itemx basevalue
The property @code{showbaseline} flags whether the baseline of the
stem series is displayed (default is @qcode{"on"}).  The handle of the graphics
object representing the baseline is given by the @code{baseline}
property and the y-value (or z-value for @code{stem3}) of the baseline
by the @code{basevalue} property.

Changes to any of these property are propagated to the other members of
the stem series and to the baseline itself.  Equally changes in the
properties of the base line itself are propagated to the members of the
corresponding stem series.

@item color
The RGB color or color name of the line objects of the stems.  @xref{Colors}.

@item  linewidth
@itemx linestyle
The line width and style of the line objects of the stems.  @xref{Line Styles}.

@item  marker
@itemx markeredgecolor
@itemx markerfacecolor
@itemx markersize
The line and fill color of the markers on the stems.  @xref{Colors}.

@item  xdata
@itemx ydata
@itemx zdata
The original x, y and z data of the stems.

@item  xdatasource
@itemx ydatasource
@itemx zdatasource
Data source variables.
@end table

@node Surface Group
@subsubsection Surface Group
@cindex group objects
@cindex surface group

Surface group objects are created by the @code{surf} or @code{mesh}
functions, but are equally one of the handles returned by the @code{surfc}
or @code{meshc} functions.  The surface group is of the type @code{surface}.

The properties of the surface group are

@table @code
@item edgecolor

@item facecolor
The RGB color or color name of the edges or faces of the surface.
@xref{Colors}.

@item  linewidth
@itemx linestyle
The line width and style of the lines on the surface.  @xref{Line Styles}.

@item  marker
@itemx markeredgecolor
@itemx markerfacecolor
@itemx markersize
The line and fill color of the markers on the surface.  @xref{Colors}.

@item  xdata
@itemx ydata
@itemx zdata
@itemx cdata
The original x, y, z and c data.

@item  xdatasource
@itemx ydatasource
@itemx zdatasource
@itemx cdatasource
Data source variables.
@end table

@node Transform Groups
@subsection Transform Groups
@cindex transform groups

@c FIXME: Need to add documentation on transforms.

@c hgtransform scripts/plot/util/hgtransform.m
@anchor{XREFhgtransform}
@deftypefn  {} {@var{h} =} hgtransform ()
@deftypefnx {} {@var{h} =} hgtransform (@var{property}, @var{value}, @dots{})
@deftypefnx {} {@var{h} =} hgtransform (@var{hax}, @dots{})

Create a graphics transform object.

FIXME: Need to write documentation.
FIXME: Add 'makehgtform' to seealso list when it is implemented.
@seealso{@ref{XREFhggroup,,hggroup}}
@end deftypefn


@c @DOCSTRING(makehgtform)

@node Graphics Toolkits
@subsection Graphics Toolkits
@cindex graphics toolkits
@cindex toolkits, graphics

@c graphics_toolkit scripts/plot/util/graphics_toolkit.m
@anchor{XREFgraphics_toolkit}
@deftypefn  {} {@var{name} =} graphics_toolkit ()
@deftypefnx {} {@var{name} =} graphics_toolkit (@var{hlist})
@deftypefnx {} {} graphics_toolkit (@var{name})
@deftypefnx {} {} graphics_toolkit (@var{hlist}, @var{name})
Query or set the default graphics toolkit which is assigned to new figures.

With no inputs, return the current default graphics toolkit.  If the input
is a list of figure graphic handles, @var{hlist}, then return the name
of the graphics toolkit in use for each figure.

When called with a single input @var{name} set the default graphics toolkit
to @var{name}.  If the toolkit is not already loaded, it is initialized by
calling the function @code{__init_@var{name}__}.  If the first input
is a list of figure handles, @var{hlist}, then the graphics toolkit is set
to @var{name} for these figures only.

@seealso{@ref{XREFavailable_graphics_toolkits,,available_graphics_toolkits}}
@end deftypefn


@c available_graphics_toolkits libinterp/corefcn/graphics.cc
@anchor{XREFavailable_graphics_toolkits}
@deftypefn {} {} available_graphics_toolkits ()
Return a cell array of registered graphics toolkits.
@seealso{@ref{XREFgraphics_toolkit,,graphics_toolkit}, @ref{XREFregister_graphics_toolkit,,register_graphics_toolkit}}
@end deftypefn


@c loaded_graphics_toolkits libinterp/corefcn/graphics.cc
@anchor{XREFloaded_graphics_toolkits}
@deftypefn {} {} loaded_graphics_toolkits ()
Return a cell array of the currently loaded graphics toolkits.
@seealso{@ref{XREFavailable_graphics_toolkits,,available_graphics_toolkits}}
@end deftypefn


@c register_graphics_toolkit libinterp/corefcn/graphics.cc
@anchor{XREFregister_graphics_toolkit}
@deftypefn {} {} register_graphics_toolkit (@var{toolkit})
List @var{toolkit} as an available graphics toolkit.
@seealso{@ref{XREFavailable_graphics_toolkits,,available_graphics_toolkits}}
@end deftypefn


@menu
* Customizing Toolkit Behavior::
* Hardware vs. Software Rendering::
@end menu

@node Customizing Toolkit Behavior
@subsubsection Customizing Toolkit Behavior
@cindex toolkit customization

The specific behavior of the backend toolkit may be modified using the
following utility functions.  Note: Not all functions apply to every
graphics toolkit.

@c gnuplot_binary scripts/plot/util/gnuplot_binary.in.m
@anchor{XREFgnuplot_binary}
@deftypefn  {} {[@var{prog}, @var{args}] =} gnuplot_binary ()
@deftypefnx {} {[@var{old_prog}, @var{old_args}] =} gnuplot_binary (@var{new_prog})
@deftypefnx {} {[@var{old_prog}, @var{old_args}] =} gnuplot_binary (@var{new_prog}, @var{arg1}, @dots{})
Query or set the name of the program invoked by the plot command when the
graphics toolkit is set to @qcode{"gnuplot"}.

Additional arguments to pass to the external plotting program may also be
given.  The default value is @qcode{"gnuplot"} with no additional arguments.
@xref{Installation}.
@seealso{@ref{XREFgraphics_toolkit,,graphics_toolkit}}
@end deftypefn


@node Hardware vs. Software Rendering
@subsubsection Hardware vs. Software Rendering
@cindex opengl rendering slow windows

On Windows platforms, Octave uses software rendering for the OpenGL graphics
toolkits (@qcode{"qt"} and @qcode{"fltk"}) by default.  This is done to avoid
rendering and printing issues due to imperfect OpenGL driver implementations for
diverse graphic cards from different vendors.  As a down-side, software
rendering might be considerably slower than hardware accelerated rendering.  To
permanently switch back to hardware accelerated rendering with your graphic card
drivers, rename the following file while Octave is closed:

@file{@var{octave-home}\bin\opengl32.dll}
@*where @var{octave-home} is the directory in which Octave is installed (the
default is @file{C:\Octave\Octave-@var{version}}).