1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 1996-2018 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <https://www.gnu.org/licenses/>.
@node Sets
@chapter Sets
Octave has a number of functions for managing sets of data. A set is defined
as a collection of unique elements and is typically represented by a vector of
numbers sorted in ascending order. Any vector or matrix can be converted to a
set by removing duplicates through the use of the @code{unique} function.
However, it isn't necessary to explicitly create a set as all of the functions
which operate on sets will convert their input to a set before proceeding.
@c unique scripts/set/unique.m
@anchor{XREFunique}
@deftypefn {} {} unique (@var{x})
@deftypefnx {} {} unique (@var{x}, "rows")
@deftypefnx {} {[@var{y}, @var{i}, @var{j}] =} unique (@dots{})
@deftypefnx {} {[@var{y}, @var{i}, @var{j}] =} unique (@dots{}, "first")
@deftypefnx {} {[@var{y}, @var{i}, @var{j}] =} unique (@dots{}, "last")
Return the unique elements of @var{x} sorted in ascending order.
If the input @var{x} is a column vector then return a column vector;
Otherwise, return a row vector. @var{x} may also be a cell array of
strings.
If the optional argument @qcode{"rows"} is given then return the unique
rows of @var{x} sorted in ascending order. The input must be a 2-D matrix
to use this option.
If requested, return index vectors @var{i} and @var{j} such that
@code{@var{y} = @var{x}(@var{i})} and @code{@var{x} = @var{y}(@var{j})}.
Additionally, if @var{i} is a requested output then one of
@qcode{"first"} or @qcode{"last"} may be given as an input. If
@qcode{"last"} is specified, return the highest possible indices in
@var{i}, otherwise, if @qcode{"first"} is specified, return the lowest.
The default is @qcode{"last"}.
@seealso{@ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn
@menu
* Set Operations::
@end menu
@node Set Operations
@section Set Operations
Octave supports several basic set operations. Octave can compute the union,
intersection, and difference of two sets. Octave also supports the
@emph{Exclusive Or} set operation.
The functions for set operations all work in the same way by accepting two
input sets and returning a third set. As an example, assume that @code{a} and
@code{b} contains two sets, then
@example
union (a, b)
@end example
@noindent
computes the union of the two sets.
Finally, determining whether elements belong to a set can be done with the
@code{ismember} function. Because sets are ordered this operation is very
efficient and is of order O(log2(n)) which is preferable to the @code{find}
function which is of order O(n).
@c intersect scripts/set/intersect.m
@anchor{XREFintersect}
@deftypefn {} {@var{c} =} intersect (@var{a}, @var{b})
@deftypefnx {} {@var{c} =} intersect (@var{a}, @var{b}, "rows")
@deftypefnx {} {[@var{c}, @var{ia}, @var{ib}] =} intersect (@dots{})
Return the unique elements common to both @var{a} and @var{b} sorted in
ascending order.
If @var{a} and @var{b} are both row vectors then return a row vector;
Otherwise, return a column vector. The inputs may also be cell arrays of
strings.
If the optional input @qcode{"rows"} is given then return the common rows of
@var{a} and @var{b}. The inputs must be 2-D matrices to use this option.
If requested, return index vectors @var{ia} and @var{ib} such that
@code{@var{c} = @var{a}(@var{ia})} and @code{@var{c} = @var{b}(@var{ib})}.
@seealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn
@c union scripts/set/union.m
@anchor{XREFunion}
@deftypefn {} {@var{c} =} union (@var{a}, @var{b})
@deftypefnx {} {@var{c} =} union (@var{a}, @var{b}, "rows")
@deftypefnx {} {[@var{c}, @var{ia}, @var{ib}] =} union (@dots{})
Return the unique elements that are in either @var{a} or @var{b} sorted in
ascending order.
If @var{a} and @var{b} are both row vectors then return a row vector;
Otherwise, return a column vector. The inputs may also be cell arrays of
strings.
If the optional input @qcode{"rows"} is given then return rows that are in
either @var{a} or @var{b}. The inputs must be 2-D matrices to use this
option.
The optional outputs @var{ia} and @var{ib} are index vectors such that
@code{@var{a}(@var{ia})} and @code{@var{b}(@var{ib})} are disjoint sets
whose union is @var{c}.
@seealso{@ref{XREFunique,,unique}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn
@c setdiff scripts/set/setdiff.m
@anchor{XREFsetdiff}
@deftypefn {} {@var{c} =} setdiff (@var{a}, @var{b})
@deftypefnx {} {@var{c} =} setdiff (@var{a}, @var{b}, "rows")
@deftypefnx {} {[@var{c}, @var{ia}] =} setdiff (@dots{})
Return the unique elements in @var{a} that are not in @var{b} sorted in
ascending order.
If @var{a} is a row vector return a row vector; Otherwise, return a
column vector. The inputs may also be cell arrays of strings.
If the optional input @qcode{"rows"} is given then return the rows in
@var{a} that are not in @var{b}. The inputs must be 2-D matrices to use
this option.
If requested, return the index vector @var{ia} such that
@code{@var{c} = @var{a}(@var{ia})}.
@seealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn
@c setxor scripts/set/setxor.m
@anchor{XREFsetxor}
@deftypefn {} {@var{c} =} setxor (@var{a}, @var{b})
@deftypefnx {} {@var{c} =} setxor (@var{a}, @var{b}, "rows")
@deftypefnx {} {[@var{c}, @var{ia}, @var{ib}] =} setxor (@dots{})
Return the unique elements exclusive to sets @var{a} or @var{b} sorted in
ascending order.
If @var{a} and @var{b} are both row vectors then return a row vector;
Otherwise, return a column vector. The inputs may also be cell arrays of
strings.
If the optional input @qcode{"rows"} is given then return the rows exclusive
to sets @var{a} and @var{b}. The inputs must be 2-D matrices to use this
option.
If requested, return index vectors @var{ia} and @var{ib} such that
@code{@var{a}(@var{ia})} and @code{@var{b}(@var{ib})} are disjoint sets
whose union is @var{c}.
@seealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFismember,,ismember}}
@end deftypefn
@c ismember scripts/set/ismember.m
@anchor{XREFismember}
@deftypefn {} {@var{tf} =} ismember (@var{a}, @var{s})
@deftypefnx {} {@var{tf} =} ismember (@var{a}, @var{s}, "rows")
@deftypefnx {} {[@var{tf}, @var{s_idx}] =} ismember (@dots{})
Return a logical matrix @var{tf} with the same shape as @var{a} which is
true (1) if the element in @var{a} is found in @var{s} and false (0) if it
is not.
If a second output argument is requested then the index into @var{s} of each
matching element is also returned.
@example
@group
a = [3, 10, 1];
s = [0:9];
[tf, s_idx] = ismember (a, s)
@result{} tf = [1, 0, 1]
@result{} s_idx = [4, 0, 2]
@end group
@end example
The inputs @var{a} and @var{s} may also be cell arrays.
@example
@group
a = @{"abc"@};
s = @{"abc", "def"@};
[tf, s_idx] = ismember (a, s)
@result{} tf = [1, 0]
@result{} s_idx = [1, 0]
@end group
@end example
If the optional third argument @qcode{"rows"} is given then compare rows
in @var{a} with rows in @var{s}. The inputs must be 2-D matrices with the
same number of columns to use this option.
@example
@group
a = [1:3; 5:7; 4:6];
s = [0:2; 1:3; 2:4; 3:5; 4:6];
[tf, s_idx] = ismember (a, s, "rows")
@result{} tf = logical ([1; 0; 1])
@result{} s_idx = [2; 0; 5];
@end group
@end example
@seealso{@ref{XREFlookup,,lookup}, @ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}}
@end deftypefn
@c powerset scripts/set/powerset.m
@anchor{XREFpowerset}
@deftypefn {} {} powerset (@var{a})
@deftypefnx {} {} powerset (@var{a}, "rows")
Compute the powerset (all subsets) of the set @var{a}.
The set @var{a} must be a numerical matrix or a cell array of strings. The
output will always be a cell array of either vectors or strings.
With the optional argument @qcode{"rows"}, each row of the set @var{a} is
considered one element of the set. The input must be a 2-D numeric matrix
to use this argument.
@seealso{@ref{XREFunique,,unique}, @ref{XREFunion,,union}, @ref{XREFintersect,,intersect}, @ref{XREFsetdiff,,setdiff}, @ref{XREFsetxor,,setxor}, @ref{XREFismember,,ismember}}
@end deftypefn
|