1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
|
@c DO NOT EDIT! Generated automatically by munge-texi.pl.
@c Copyright (C) 1996-2019 John W. Eaton
@c
@c This file is part of Octave.
@c
@c Octave is free software: you can redistribute it and/or modify it
@c under the terms of the GNU General Public License as published by
@c the Free Software Foundation, either version 3 of the License, or
@c (at your option) any later version.
@c
@c Octave is distributed in the hope that it will be useful, but
@c WITHOUT ANY WARRANTY; without even the implied warranty of
@c MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
@c GNU General Public License for more details.
@c
@c You should have received a copy of the GNU General Public License
@c along with Octave; see the file COPYING. If not, see
@c <https://www.gnu.org/licenses/>.
@node Arithmetic
@chapter Arithmetic
Unless otherwise noted, all of the functions described in this chapter
will work for real and complex scalar, vector, or matrix arguments. Functions
described as @dfn{mapping functions} apply the given operation individually to
each element when given a matrix argument. For example:
@example
@group
sin ([1, 2; 3, 4])
@result{} 0.84147 0.90930
0.14112 -0.75680
@end group
@end example
@menu
* Exponents and Logarithms::
* Complex Arithmetic::
* Trigonometry::
* Sums and Products::
* Utility Functions::
* Special Functions::
* Rational Approximations::
* Coordinate Transformations::
* Mathematical Constants::
@end menu
@node Exponents and Logarithms
@section Exponents and Logarithms
@c exp libinterp/corefcn/mappers.cc
@anchor{XREFexp}
@deftypefn {} {} exp (@var{x})
Compute
@tex
$e^{x}$
@end tex
@ifnottex
@code{e^x}
@end ifnottex
for each element of @var{x}.
To compute the matrix exponential, see @ref{Linear Algebra}.
@xseealso{@ref{XREFlog,,log}}
@end deftypefn
@c expm1 libinterp/corefcn/mappers.cc
@anchor{XREFexpm1}
@deftypefn {} {} expm1 (@var{x})
Compute
@tex
$ e^{x} - 1 $
@end tex
@ifnottex
@code{exp (@var{x}) - 1}
@end ifnottex
accurately in the neighborhood of zero.
@xseealso{@ref{XREFexp,,exp}}
@end deftypefn
@c log libinterp/corefcn/mappers.cc
@anchor{XREFlog}
@deftypefn {} {} log (@var{x})
Compute the natural logarithm,
@tex
$\ln{(x)},$
@end tex
@ifnottex
@code{ln (@var{x})},
@end ifnottex
for each element of @var{x}.
To compute the matrix logarithm, see @ref{Linear Algebra}.
@xseealso{@ref{XREFexp,,exp}, @ref{XREFlog1p,,log1p}, @ref{XREFlog2,,log2}, @ref{XREFlog10,,log10}, @ref{XREFlogspace,,logspace}}
@end deftypefn
@c reallog scripts/specfun/reallog.m
@anchor{XREFreallog}
@deftypefn {} {} reallog (@var{x})
Return the real-valued natural logarithm of each element of @var{x}.
If any element results in a complex return value @code{reallog} aborts and
issues an error.
@xseealso{@ref{XREFlog,,log}, @ref{XREFrealpow,,realpow}, @ref{XREFrealsqrt,,realsqrt}}
@end deftypefn
@c log1p libinterp/corefcn/mappers.cc
@anchor{XREFlog1p}
@deftypefn {} {} log1p (@var{x})
Compute
@tex
$\ln{(1 + x)}$
@end tex
@ifnottex
@code{log (1 + @var{x})}
@end ifnottex
accurately in the neighborhood of zero.
@xseealso{@ref{XREFlog,,log}, @ref{XREFexp,,exp}, @ref{XREFexpm1,,expm1}}
@end deftypefn
@c log10 libinterp/corefcn/mappers.cc
@anchor{XREFlog10}
@deftypefn {} {} log10 (@var{x})
Compute the base-10 logarithm of each element of @var{x}.
@xseealso{@ref{XREFlog,,log}, @ref{XREFlog2,,log2}, @ref{XREFlogspace,,logspace}, @ref{XREFexp,,exp}}
@end deftypefn
@c log2 libinterp/corefcn/data.cc
@anchor{XREFlog2}
@deftypefn {} {} log2 (@var{x})
@deftypefnx {} {[@var{f}, @var{e}] =} log2 (@var{x})
Compute the base-2 logarithm of each element of @var{x}.
If called with two output arguments, split @var{x} into
binary mantissa and exponent so that
@tex
${1 \over 2} \le \left| f \right| < 1$
@end tex
@ifnottex
@w{@code{1/2 <= abs(f) < 1}}
@end ifnottex
and @var{e} is an integer. If
@tex
$x = 0$, $f = e = 0$.
@end tex
@ifnottex
@w{@code{x = 0}}, @w{@code{f = e = 0}}.
@end ifnottex
@xseealso{@ref{XREFpow2,,pow2}, @ref{XREFlog,,log}, @ref{XREFlog10,,log10}, @ref{XREFexp,,exp}}
@end deftypefn
@c pow2 scripts/specfun/pow2.m
@anchor{XREFpow2}
@deftypefn {} {} pow2 (@var{x})
@deftypefnx {} {} pow2 (@var{f}, @var{e})
With one input argument, compute
@tex
$2^x$
@end tex
@ifnottex
2 .^ x
@end ifnottex
for each element of @var{x}.
With two input arguments, return
@tex
$f \cdot 2^e$.
@end tex
@ifnottex
f .* (2 .^ e).
@end ifnottex
@xseealso{@ref{XREFlog2,,log2}, @ref{XREFnextpow2,,nextpow2}, @ref{XREFpower,,power}}
@end deftypefn
@c nextpow2 scripts/general/nextpow2.m
@anchor{XREFnextpow2}
@deftypefn {} {@var{n} =} nextpow2 (@var{x})
Compute the exponent for the smallest power of two larger than the input.
For each element in the input array @var{x}, return the first integer
@var{n} such that
@tex
$2^n \ge |x|$.
@end tex
@ifnottex
2^n @geq{} abs (x).
@end ifnottex
@xseealso{@ref{XREFpow2,,pow2}, @ref{XREFlog2,,log2}}
@end deftypefn
@c realpow scripts/specfun/realpow.m
@anchor{XREFrealpow}
@deftypefn {} {} realpow (@var{x}, @var{y})
Compute the real-valued, element-by-element power operator.
This is equivalent to @w{@code{@var{x} .^ @var{y}}}, except that
@code{realpow} reports an error if any return value is complex.
@xseealso{@ref{XREFpower,,power}, @ref{XREFreallog,,reallog}, @ref{XREFrealsqrt,,realsqrt}}
@end deftypefn
@c sqrt libinterp/corefcn/mappers.cc
@anchor{XREFsqrt}
@deftypefn {} {} sqrt (@var{x})
Compute the square root of each element of @var{x}.
If @var{x} is negative, a complex result is returned.
To compute the matrix square root, see @ref{Linear Algebra}.
@xseealso{@ref{XREFrealsqrt,,realsqrt}, @ref{XREFnthroot,,nthroot}}
@end deftypefn
@c realsqrt scripts/specfun/realsqrt.m
@anchor{XREFrealsqrt}
@deftypefn {} {} realsqrt (@var{x})
Return the real-valued square root of each element of @var{x}.
If any element results in a complex return value @code{realsqrt} aborts and
issues an error.
@xseealso{@ref{XREFsqrt,,sqrt}, @ref{XREFrealpow,,realpow}, @ref{XREFreallog,,reallog}}
@end deftypefn
@c cbrt libinterp/corefcn/mappers.cc
@anchor{XREFcbrt}
@deftypefn {} {} cbrt (@var{x})
Compute the real cube root of each element of @var{x}.
Unlike @code{@var{x}^(1/3)}, the result will be negative if @var{x} is
negative.
@xseealso{@ref{XREFnthroot,,nthroot}}
@end deftypefn
@c nthroot scripts/specfun/nthroot.m
@anchor{XREFnthroot}
@deftypefn {} {} nthroot (@var{x}, @var{n})
Compute the real (non-complex) @var{n}-th root of @var{x}.
@var{x} must have all real entries and @var{n} must be a scalar.
If @var{n} is an even integer and @var{x} has negative entries then
@code{nthroot} aborts and issues an error.
Example:
@example
@group
nthroot (-1, 3)
@result{} -1
(-1) ^ (1 / 3)
@result{} 0.50000 - 0.86603i
@end group
@end example
@xseealso{@ref{XREFrealsqrt,,realsqrt}, @ref{XREFsqrt,,sqrt}, @ref{XREFcbrt,,cbrt}}
@end deftypefn
@node Complex Arithmetic
@section Complex Arithmetic
In the descriptions of the following functions,
@tex
$z$ is the complex number $x + iy$, where $i$ is defined as
$\sqrt{-1}$.
@end tex
@ifnottex
@var{z} is the complex number @var{x} + @var{i}@var{y}, where @var{i} is
defined as @code{sqrt (-1)}.
@end ifnottex
@c abs libinterp/corefcn/mappers.cc
@anchor{XREFabs}
@deftypefn {} {} abs (@var{z})
Compute the magnitude of @var{z}.
The magnitude is defined as
@tex
$|z| = \sqrt{x^2 + y^2}$.
@end tex
@ifnottex
|@var{z}| = @code{sqrt (x^2 + y^2)}.
@end ifnottex
For example:
@example
@group
abs (3 + 4i)
@result{} 5
@end group
@end example
@xseealso{@ref{XREFarg,,arg}}
@end deftypefn
@c arg libinterp/corefcn/mappers.cc
@anchor{XREFarg}
@deftypefn {} {} arg (@var{z})
@deftypefnx {} {} angle (@var{z})
Compute the argument, i.e., angle of @var{z}.
This is defined as,
@tex
$\theta = atan2 (y, x),$
@end tex
@ifnottex
@var{theta} = @code{atan2 (@var{y}, @var{x})},
@end ifnottex
in radians.
For example:
@example
@group
arg (3 + 4i)
@result{} 0.92730
@end group
@end example
@xseealso{@ref{XREFabs,,abs}}
@end deftypefn
@c conj libinterp/corefcn/mappers.cc
@anchor{XREFconj}
@deftypefn {} {} conj (@var{z})
Return the complex conjugate of @var{z}.
The complex conjugate is defined as
@tex
$\bar{z} = x - iy$.
@end tex
@ifnottex
@code{conj (@var{z})} = @var{x} - @var{i}@var{y}.
@end ifnottex
@xseealso{@ref{XREFreal,,real}, @ref{XREFimag,,imag}}
@end deftypefn
@c cplxpair scripts/general/cplxpair.m
@anchor{XREFcplxpair}
@deftypefn {} {} cplxpair (@var{z})
@deftypefnx {} {} cplxpair (@var{z}, @var{tol})
@deftypefnx {} {} cplxpair (@var{z}, @var{tol}, @var{dim})
Sort the numbers @var{z} into complex conjugate pairs ordered by increasing
real part.
The negative imaginary complex numbers are placed first within each pair.
All real numbers (those with
@code{abs (imag (@var{z})) / abs (@var{z}) < @var{tol}}) are placed after
the complex pairs.
@var{tol} is a weighting factor in the range [0, 1) which determines the
tolerance of the matching. The default value is @code{100 * eps} and the
resulting tolerance for a given complex pair is
@code{@var{tol} * abs (@var{z}(i)))}.
By default the complex pairs are sorted along the first non-singleton
dimension of @var{z}. If @var{dim} is specified, then the complex pairs are
sorted along this dimension.
Signal an error if some complex numbers could not be paired. Signal an
error if all complex numbers are not exact conjugates (to within @var{tol}).
Note that there is no defined order for pairs with identical real parts but
differing imaginary parts.
@c Set example in small font to prevent overfull line
@smallexample
cplxpair (exp (2i*pi*[0:4]'/5)) == exp (2i*pi*[3; 2; 4; 1; 0]/5)
@end smallexample
@end deftypefn
@c imag libinterp/corefcn/mappers.cc
@anchor{XREFimag}
@deftypefn {} {} imag (@var{z})
Return the imaginary part of @var{z} as a real number.
@xseealso{@ref{XREFreal,,real}, @ref{XREFconj,,conj}}
@end deftypefn
@c real libinterp/corefcn/mappers.cc
@anchor{XREFreal}
@deftypefn {} {} real (@var{z})
Return the real part of @var{z}.
@xseealso{@ref{XREFimag,,imag}, @ref{XREFconj,,conj}}
@end deftypefn
@node Trigonometry
@section Trigonometry
Octave provides the following trigonometric functions where angles are
specified in radians. To convert from degrees to radians multiply by
@tex
$\pi/180$
@end tex
@ifnottex
@code{pi/180}
@end ifnottex
or use the @code{deg2rad} function. For example, @code{sin (30 * pi/180)}
returns the sine of 30 degrees. As an alternative, Octave provides a number of
trigonometric functions which work directly on an argument specified in
degrees. These functions are named after the base trigonometric function with
a @samp{d} suffix. As an example, @code{sin} expects an angle in radians while
@code{sind} expects an angle in degrees.
Octave uses the C library trigonometric functions. It is expected that these
functions are defined by the ISO/IEC 9899 Standard. This Standard is available
at: @url{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf}.
Section F.9.1 deals with the trigonometric functions. The behavior of most of
the functions is relatively straightforward. However, there are some
exceptions to the standard behavior. Many of the exceptions involve the
behavior for -0. The most complex case is atan2. Octave exactly implements
the behavior given in the Standard. Including
@tex
$atan2(\pm0, -0)$ returns $\pm \pi$.
@end tex
@ifnottex
@code{atan2(+- 0, 0)} returns @code{+- pi}.
@end ifnottex
It should be noted that @sc{matlab} uses different definitions which apparently
do not distinguish -0.
@c deg2rad scripts/general/deg2rad.m
@anchor{XREFdeg2rad}
@deftypefn {} {@var{rad} =} deg2rad (@var{deg})
Convert degrees to radians.
The input @var{deg} must be a scalar, vector, or N-dimensional array of
double or single floating point values. @var{deg} may be complex in which
case the real and imaginary components are converted separately.
The output @var{rad} is the same size and shape as @var{deg} with degrees
converted to radians using the conversion constant @code{pi/180}.
Example:
@example
@group
deg2rad ([0, 90, 180, 270, 360])
@result{} 0.00000 1.57080 3.14159 4.71239 6.28319
@end group
@end example
@xseealso{@ref{XREFrad2deg,,rad2deg}}
@end deftypefn
@c rad2deg scripts/general/rad2deg.m
@anchor{XREFrad2deg}
@deftypefn {} {@var{deg} =} rad2deg (@var{rad})
Convert radians to degrees.
The input @var{rad} must be a scalar, vector, or N-dimensional array of
double or single floating point values. @var{rad} may be complex in which
case the real and imaginary components are converted separately.
The output @var{deg} is the same size and shape as @var{rad} with radians
converted to degrees using the conversion constant @code{180/pi}.
Example:
@example
@group
rad2deg ([0, pi/2, pi, 3/2*pi, 2*pi])
@result{} 0 90 180 270 360
@end group
@end example
@xseealso{@ref{XREFdeg2rad,,deg2rad}}
@end deftypefn
@c sin libinterp/corefcn/mappers.cc
@anchor{XREFsin}
@deftypefn {} {} sin (@var{x})
Compute the sine for each element of @var{x} in radians.
@xseealso{@ref{XREFasin,,asin}, @ref{XREFsind,,sind}, @ref{XREFsinh,,sinh}}
@end deftypefn
@c cos libinterp/corefcn/mappers.cc
@anchor{XREFcos}
@deftypefn {} {} cos (@var{x})
Compute the cosine for each element of @var{x} in radians.
@xseealso{@ref{XREFacos,,acos}, @ref{XREFcosd,,cosd}, @ref{XREFcosh,,cosh}}
@end deftypefn
@c tan libinterp/corefcn/mappers.cc
@anchor{XREFtan}
@deftypefn {} {} tan (@var{z})
Compute the tangent for each element of @var{x} in radians.
@xseealso{@ref{XREFatan,,atan}, @ref{XREFtand,,tand}, @ref{XREFtanh,,tanh}}
@end deftypefn
@c sec scripts/elfun/sec.m
@anchor{XREFsec}
@deftypefn {} {} sec (@var{x})
Compute the secant for each element of @var{x} in radians.
@xseealso{@ref{XREFasec,,asec}, @ref{XREFsecd,,secd}, @ref{XREFsech,,sech}}
@end deftypefn
@c csc scripts/elfun/csc.m
@anchor{XREFcsc}
@deftypefn {} {} csc (@var{x})
Compute the cosecant for each element of @var{x} in radians.
@xseealso{@ref{XREFacsc,,acsc}, @ref{XREFcscd,,cscd}, @ref{XREFcsch,,csch}}
@end deftypefn
@c cot scripts/elfun/cot.m
@anchor{XREFcot}
@deftypefn {} {} cot (@var{x})
Compute the cotangent for each element of @var{x} in radians.
@xseealso{@ref{XREFacot,,acot}, @ref{XREFcotd,,cotd}, @ref{XREFcoth,,coth}}
@end deftypefn
@c asin libinterp/corefcn/mappers.cc
@anchor{XREFasin}
@deftypefn {} {} asin (@var{x})
Compute the inverse sine in radians for each element of @var{x}.
@xseealso{@ref{XREFsin,,sin}, @ref{XREFasind,,asind}}
@end deftypefn
@c acos libinterp/corefcn/mappers.cc
@anchor{XREFacos}
@deftypefn {} {} acos (@var{x})
Compute the inverse cosine in radians for each element of @var{x}.
@xseealso{@ref{XREFcos,,cos}, @ref{XREFacosd,,acosd}}
@end deftypefn
@c atan libinterp/corefcn/mappers.cc
@anchor{XREFatan}
@deftypefn {} {} atan (@var{x})
Compute the inverse tangent in radians for each element of @var{x}.
@xseealso{@ref{XREFtan,,tan}, @ref{XREFatand,,atand}}
@end deftypefn
@c asec scripts/elfun/asec.m
@anchor{XREFasec}
@deftypefn {} {} asec (@var{x})
Compute the inverse secant in radians for each element of @var{x}.
@xseealso{@ref{XREFsec,,sec}, @ref{XREFasecd,,asecd}}
@end deftypefn
@c acsc scripts/elfun/acsc.m
@anchor{XREFacsc}
@deftypefn {} {} acsc (@var{x})
Compute the inverse cosecant in radians for each element of @var{x}.
@xseealso{@ref{XREFcsc,,csc}, @ref{XREFacscd,,acscd}}
@end deftypefn
@c acot scripts/elfun/acot.m
@anchor{XREFacot}
@deftypefn {} {} acot (@var{x})
Compute the inverse cotangent in radians for each element of @var{x}.
@xseealso{@ref{XREFcot,,cot}, @ref{XREFacotd,,acotd}}
@end deftypefn
@c sinh libinterp/corefcn/mappers.cc
@anchor{XREFsinh}
@deftypefn {} {} sinh (@var{x})
Compute the hyperbolic sine for each element of @var{x}.
@xseealso{@ref{XREFasinh,,asinh}, @ref{XREFcosh,,cosh}, @ref{XREFtanh,,tanh}}
@end deftypefn
@c cosh libinterp/corefcn/mappers.cc
@anchor{XREFcosh}
@deftypefn {} {} cosh (@var{x})
Compute the hyperbolic cosine for each element of @var{x}.
@xseealso{@ref{XREFacosh,,acosh}, @ref{XREFsinh,,sinh}, @ref{XREFtanh,,tanh}}
@end deftypefn
@c tanh libinterp/corefcn/mappers.cc
@anchor{XREFtanh}
@deftypefn {} {} tanh (@var{x})
Compute hyperbolic tangent for each element of @var{x}.
@xseealso{@ref{XREFatanh,,atanh}, @ref{XREFsinh,,sinh}, @ref{XREFcosh,,cosh}}
@end deftypefn
@c sech scripts/elfun/sech.m
@anchor{XREFsech}
@deftypefn {} {} sech (@var{x})
Compute the hyperbolic secant of each element of @var{x}.
@xseealso{@ref{XREFasech,,asech}}
@end deftypefn
@c csch scripts/elfun/csch.m
@anchor{XREFcsch}
@deftypefn {} {} csch (@var{x})
Compute the hyperbolic cosecant of each element of @var{x}.
@xseealso{@ref{XREFacsch,,acsch}}
@end deftypefn
@c coth scripts/elfun/coth.m
@anchor{XREFcoth}
@deftypefn {} {} coth (@var{x})
Compute the hyperbolic cotangent of each element of @var{x}.
@xseealso{@ref{XREFacoth,,acoth}}
@end deftypefn
@c asinh libinterp/corefcn/mappers.cc
@anchor{XREFasinh}
@deftypefn {} {} asinh (@var{x})
Compute the inverse hyperbolic sine for each element of @var{x}.
@xseealso{@ref{XREFsinh,,sinh}}
@end deftypefn
@c acosh libinterp/corefcn/mappers.cc
@anchor{XREFacosh}
@deftypefn {} {} acosh (@var{x})
Compute the inverse hyperbolic cosine for each element of @var{x}.
@xseealso{@ref{XREFcosh,,cosh}}
@end deftypefn
@c atanh libinterp/corefcn/mappers.cc
@anchor{XREFatanh}
@deftypefn {} {} atanh (@var{x})
Compute the inverse hyperbolic tangent for each element of @var{x}.
@xseealso{@ref{XREFtanh,,tanh}}
@end deftypefn
@c asech scripts/elfun/asech.m
@anchor{XREFasech}
@deftypefn {} {} asech (@var{x})
Compute the inverse hyperbolic secant of each element of @var{x}.
@xseealso{@ref{XREFsech,,sech}}
@end deftypefn
@c acsch scripts/elfun/acsch.m
@anchor{XREFacsch}
@deftypefn {} {} acsch (@var{x})
Compute the inverse hyperbolic cosecant of each element of @var{x}.
@xseealso{@ref{XREFcsch,,csch}}
@end deftypefn
@c acoth scripts/elfun/acoth.m
@anchor{XREFacoth}
@deftypefn {} {} acoth (@var{x})
Compute the inverse hyperbolic cotangent of each element of @var{x}.
@xseealso{@ref{XREFcoth,,coth}}
@end deftypefn
@c atan2 libinterp/corefcn/data.cc
@anchor{XREFatan2}
@deftypefn {} {} atan2 (@var{y}, @var{x})
Compute atan (@var{y} / @var{x}) for corresponding elements of @var{y}
and @var{x}.
@var{y} and @var{x} must match in size and orientation. The signs of
elements of @var{y} and @var{x} are used to determine the quadrants of each
resulting value.
This function is equivalent to @code{arg (complex (@var{x}, @var{y}))}.
@xseealso{@ref{XREFtan,,tan}, @ref{XREFtand,,tand}, @ref{XREFtanh,,tanh}, @ref{XREFatanh,,atanh}}
@end deftypefn
Octave provides the following trigonometric functions where angles are
specified in degrees. These functions produce true zeros at the appropriate
intervals rather than the small round-off error that occurs when using
radians. For example:
@example
@group
cosd (90)
@result{} 0
cos (pi/2)
@result{} 6.1230e-17
@end group
@end example
@c sind scripts/elfun/sind.m
@anchor{XREFsind}
@deftypefn {} {} sind (@var{x})
Compute the sine for each element of @var{x} in degrees.
Returns zero for elements where @code{@var{x}/180} is an integer.
@xseealso{@ref{XREFasind,,asind}, @ref{XREFsin,,sin}}
@end deftypefn
@c cosd scripts/elfun/cosd.m
@anchor{XREFcosd}
@deftypefn {} {} cosd (@var{x})
Compute the cosine for each element of @var{x} in degrees.
Returns zero for elements where @code{(@var{x}-90)/180} is an integer.
@xseealso{@ref{XREFacosd,,acosd}, @ref{XREFcos,,cos}}
@end deftypefn
@c tand scripts/elfun/tand.m
@anchor{XREFtand}
@deftypefn {} {} tand (@var{x})
Compute the tangent for each element of @var{x} in degrees.
Returns zero for elements where @code{@var{x}/180} is an integer and
@code{Inf} for elements where @code{(@var{x}-90)/180} is an integer.
@xseealso{@ref{XREFatand,,atand}, @ref{XREFtan,,tan}}
@end deftypefn
@c secd scripts/elfun/secd.m
@anchor{XREFsecd}
@deftypefn {} {} secd (@var{x})
Compute the secant for each element of @var{x} in degrees.
@xseealso{@ref{XREFasecd,,asecd}, @ref{XREFsec,,sec}}
@end deftypefn
@c cscd scripts/elfun/cscd.m
@anchor{XREFcscd}
@deftypefn {} {} cscd (@var{x})
Compute the cosecant for each element of @var{x} in degrees.
@xseealso{@ref{XREFacscd,,acscd}, @ref{XREFcsc,,csc}}
@end deftypefn
@c cotd scripts/elfun/cotd.m
@anchor{XREFcotd}
@deftypefn {} {} cotd (@var{x})
Compute the cotangent for each element of @var{x} in degrees.
@xseealso{@ref{XREFacotd,,acotd}, @ref{XREFcot,,cot}}
@end deftypefn
@c asind scripts/elfun/asind.m
@anchor{XREFasind}
@deftypefn {} {} asind (@var{x})
Compute the inverse sine in degrees for each element of @var{x}.
@xseealso{@ref{XREFsind,,sind}, @ref{XREFasin,,asin}}
@end deftypefn
@c acosd scripts/elfun/acosd.m
@anchor{XREFacosd}
@deftypefn {} {} acosd (@var{x})
Compute the inverse cosine in degrees for each element of @var{x}.
@xseealso{@ref{XREFcosd,,cosd}, @ref{XREFacos,,acos}}
@end deftypefn
@c atand scripts/elfun/atand.m
@anchor{XREFatand}
@deftypefn {} {} atand (@var{x})
Compute the inverse tangent in degrees for each element of @var{x}.
@xseealso{@ref{XREFtand,,tand}, @ref{XREFatan,,atan}}
@end deftypefn
@c atan2d scripts/elfun/atan2d.m
@anchor{XREFatan2d}
@deftypefn {} {} atan2d (@var{y}, @var{x})
Compute atan (@var{y} / @var{x}) in degrees for corresponding elements
from @var{y} and @var{x}.
@xseealso{@ref{XREFtand,,tand}, @ref{XREFatan2,,atan2}}
@end deftypefn
@c asecd scripts/elfun/asecd.m
@anchor{XREFasecd}
@deftypefn {} {} asecd (@var{x})
Compute the inverse secant in degrees for each element of @var{x}.
@xseealso{@ref{XREFsecd,,secd}, @ref{XREFasec,,asec}}
@end deftypefn
@c acscd scripts/elfun/acscd.m
@anchor{XREFacscd}
@deftypefn {} {} acscd (@var{x})
Compute the inverse cosecant in degrees for each element of @var{x}.
@xseealso{@ref{XREFcscd,,cscd}, @ref{XREFacsc,,acsc}}
@end deftypefn
@c acotd scripts/elfun/acotd.m
@anchor{XREFacotd}
@deftypefn {} {} acotd (@var{x})
Compute the inverse cotangent in degrees for each element of @var{x}.
@xseealso{@ref{XREFcotd,,cotd}, @ref{XREFacot,,acot}}
@end deftypefn
@node Sums and Products
@section Sums and Products
@c sum libinterp/corefcn/data.cc
@anchor{XREFsum}
@deftypefn {} {} sum (@var{x})
@deftypefnx {} {} sum (@var{x}, @var{dim})
@deftypefnx {} {} sum (@dots{}, "native")
@deftypefnx {} {} sum (@dots{}, "double")
@deftypefnx {} {} sum (@dots{}, "extra")
Sum of elements along dimension @var{dim}.
If @var{dim} is omitted, it defaults to the first non-singleton dimension.
The optional @qcode{"type"} input determines the class of the variable
used for calculations. By default, operations on floating point inputs (double
or single) are performed in their native data type, while operations on
integer, logical, and character data types are performed using doubles. If the
argument @qcode{"native"} is given, then the operation is performed in the same
type as the original argument.
For example:
@example
@group
sum ([true, true])
@result{} 2
sum ([true, true], "native")
@result{} true
@end group
@end example
If @qcode{"double"} is given the sum is performed in double precision even for
single precision inputs.
For double precision inputs, the @qcode{"extra"} option will use a more
accurate algorithm than straightforward summation. For single precision
inputs, @qcode{"extra"} is the same as @qcode{"double"}. For all other data
type @qcode{"extra"} has no effect.
@xseealso{@ref{XREFcumsum,,cumsum}, @ref{XREFsumsq,,sumsq}, @ref{XREFprod,,prod}}
@end deftypefn
@c prod libinterp/corefcn/data.cc
@anchor{XREFprod}
@deftypefn {} {} prod (@var{x})
@deftypefnx {} {} prod (@var{x}, @var{dim})
@deftypefnx {} {} prod (@dots{}, "native")
@deftypefnx {} {} prod (@dots{}, "double")
Product of elements along dimension @var{dim}.
If @var{dim} is omitted, it defaults to the first non-singleton dimension.
The optional @qcode{"type"} input determines the class of the variable
used for calculations. If the argument @qcode{"native"} is given, then
the operation is performed in the same type as the original argument, rather
than the default double type.
For example:
@example
@group
prod ([true, true])
@result{} 1
prod ([true, true], "native")
@result{} true
@end group
@end example
On the contrary, if @qcode{"double"} is given, the operation is performed
in double precision even for single precision inputs.
@xseealso{@ref{XREFcumprod,,cumprod}, @ref{XREFsum,,sum}}
@end deftypefn
@c cumsum libinterp/corefcn/data.cc
@anchor{XREFcumsum}
@deftypefn {} {} cumsum (@var{x})
@deftypefnx {} {} cumsum (@var{x}, @var{dim})
@deftypefnx {} {} cumsum (@dots{}, "native")
@deftypefnx {} {} cumsum (@dots{}, "double")
Cumulative sum of elements along dimension @var{dim}.
If @var{dim} is omitted, it defaults to the first non-singleton dimension.
For example:
@example
@group
cumsum ([1, 2; 3, 4; 5, 6])
@result{} 1 2
4 6
9 12
@end group
@end example
See @code{sum} for an explanation of the optional parameters @qcode{"native"}
and @qcode{"double"}.
@xseealso{@ref{XREFsum,,sum}, @ref{XREFcumprod,,cumprod}}
@end deftypefn
@c cumprod libinterp/corefcn/data.cc
@anchor{XREFcumprod}
@deftypefn {} {} cumprod (@var{x})
@deftypefnx {} {} cumprod (@var{x}, @var{dim})
Cumulative product of elements along dimension @var{dim}.
If @var{dim} is omitted, it defaults to the first non-singleton dimension.
For example:
@example
@group
cumprod ([1, 2; 3, 4; 5, 6])
@result{} 1 2
3 8
15 48
@end group
@end example
@xseealso{@ref{XREFprod,,prod}, @ref{XREFcumsum,,cumsum}}
@end deftypefn
@c sumsq libinterp/corefcn/data.cc
@anchor{XREFsumsq}
@deftypefn {} {} sumsq (@var{x})
@deftypefnx {} {} sumsq (@var{x}, @var{dim})
Sum of squares of elements along dimension @var{dim}.
If @var{dim} is omitted, it defaults to the first non-singleton dimension.
This function is conceptually equivalent to computing
@example
sum (x .* conj (x), dim)
@end example
@noindent
but it uses less memory and avoids calling @code{conj} if @var{x} is real.
@xseealso{@ref{XREFsum,,sum}, @ref{XREFprod,,prod}}
@end deftypefn
@node Utility Functions
@section Utility Functions
@c ceil libinterp/corefcn/mappers.cc
@anchor{XREFceil}
@deftypefn {} {} ceil (@var{x})
Return the smallest integer not less than @var{x}.
This is equivalent to rounding towards positive infinity.
If @var{x} is complex, return
@code{ceil (real (@var{x})) + ceil (imag (@var{x})) * I}.
@example
@group
ceil ([-2.7, 2.7])
@result{} -2 3
@end group
@end example
@xseealso{@ref{XREFfloor,,floor}, @ref{XREFround,,round}, @ref{XREFfix,,fix}}
@end deftypefn
@c fix libinterp/corefcn/mappers.cc
@anchor{XREFfix}
@deftypefn {} {} fix (@var{x})
Truncate fractional portion of @var{x} and return the integer portion.
This is equivalent to rounding towards zero. If @var{x} is complex, return
@code{fix (real (@var{x})) + fix (imag (@var{x})) * I}.
@example
@group
fix ([-2.7, 2.7])
@result{} -2 2
@end group
@end example
@xseealso{@ref{XREFceil,,ceil}, @ref{XREFfloor,,floor}, @ref{XREFround,,round}}
@end deftypefn
@c floor libinterp/corefcn/mappers.cc
@anchor{XREFfloor}
@deftypefn {} {} floor (@var{x})
Return the largest integer not greater than @var{x}.
This is equivalent to rounding towards negative infinity. If @var{x} is
complex, return @code{floor (real (@var{x})) + floor (imag (@var{x})) * I}.
@example
@group
floor ([-2.7, 2.7])
@result{} -3 2
@end group
@end example
@xseealso{@ref{XREFceil,,ceil}, @ref{XREFround,,round}, @ref{XREFfix,,fix}}
@end deftypefn
@c round libinterp/corefcn/mappers.cc
@anchor{XREFround}
@deftypefn {} {} round (@var{x})
Return the integer nearest to @var{x}.
If @var{x} is complex, return
@code{round (real (@var{x})) + round (imag (@var{x})) * I}. If there
are two nearest integers, return the one further away from zero.
@example
@group
round ([-2.7, 2.7])
@result{} -3 3
@end group
@end example
@xseealso{@ref{XREFceil,,ceil}, @ref{XREFfloor,,floor}, @ref{XREFfix,,fix}, @ref{XREFroundb,,roundb}}
@end deftypefn
@c roundb libinterp/corefcn/mappers.cc
@anchor{XREFroundb}
@deftypefn {} {} roundb (@var{x})
Return the integer nearest to @var{x}. If there are two nearest
integers, return the even one (banker's rounding).
If @var{x} is complex,
return @code{roundb (real (@var{x})) + roundb (imag (@var{x})) * I}.
@xseealso{@ref{XREFround,,round}}
@end deftypefn
@c max libinterp/corefcn/max.cc
@anchor{XREFmax}
@deftypefn {} {} max (@var{x})
@deftypefnx {} {} max (@var{x}, [], @var{dim})
@deftypefnx {} {[@var{w}, @var{iw}] =} max (@var{x})
@deftypefnx {} {} max (@var{x}, @var{y})
Find maximum values in the array @var{x}.
For a vector argument, return the maximum value. For a matrix argument,
return a row vector with the maximum value of each column. For a
multi-dimensional array, @code{max} operates along the first non-singleton
dimension.
If the optional third argument @var{dim} is present then operate along
this dimension. In this case the second argument is ignored and should be
set to the empty matrix.
For two inputs (@var{x} and @var{y}), return the pairwise maximum according to
the rules for @ref{Broadcasting}.
Thus,
@example
max (max (@var{x}))
@end example
@noindent
returns the largest element of the 2-D matrix @var{x}, and
@example
@group
max (2:5, pi)
@result{} 3.1416 3.1416 4.0000 5.0000
@end group
@end example
@noindent
compares each element of the range @code{2:5} with @code{pi}, and returns a
row vector of the maximum values.
For complex arguments, the magnitude of the elements are used for
comparison. If the magnitudes are identical, then the results are ordered
by phase angle in the range (-pi, pi]. Hence,
@example
@group
max ([-1 i 1 -i])
@result{} -1
@end group
@end example
@noindent
because all entries have magnitude 1, but -1 has the largest phase angle
with value pi.
If called with one input and two output arguments, @code{max} also returns
the first index of the maximum value(s). Thus,
@example
@group
[x, ix] = max ([1, 3, 5, 2, 5])
@result{} x = 5
ix = 3
@end group
@end example
@xseealso{@ref{XREFmin,,min}, @ref{XREFcummax,,cummax}, @ref{XREFcummin,,cummin}}
@end deftypefn
@c min libinterp/corefcn/max.cc
@anchor{XREFmin}
@deftypefn {} {} min (@var{x})
@deftypefnx {} {} min (@var{x}, [], @var{dim})
@deftypefnx {} {[@var{w}, @var{iw}] =} min (@var{x})
@deftypefnx {} {} min (@var{x}, @var{y})
Find minimum values in the array @var{x}.
For a vector argument, return the minimum value. For a matrix argument,
return a row vector with the minimum value of each column. For a
multi-dimensional array, @code{min} operates along the first non-singleton
dimension.
If the optional third argument @var{dim} is present then operate along
this dimension. In this case the second argument is ignored and should be
set to the empty matrix.
For two inputs (@var{x} and @var{y}), return the pairwise minimum according to
the rules for @ref{Broadcasting}.
Thus,
@example
min (min (@var{x}))
@end example
@noindent
returns the smallest element of the 2-D matrix @var{x}, and
@example
@group
min (2:5, pi)
@result{} 2.0000 3.0000 3.1416 3.1416
@end group
@end example
@noindent
compares each element of the range @code{2:5} with @code{pi}, and returns a
row vector of the minimum values.
For complex arguments, the magnitude of the elements are used for
comparison. If the magnitudes are identical, then the results are ordered
by phase angle in the range (-pi, pi]. Hence,
@example
@group
min ([-1 i 1 -i])
@result{} -i
@end group
@end example
@noindent
because all entries have magnitude 1, but -i has the smallest phase angle
with value -pi/2.
If called with one input and two output arguments, @code{min} also returns
the first index of the minimum value(s). Thus,
@example
@group
[x, ix] = min ([1, 3, 0, 2, 0])
@result{} x = 0
ix = 3
@end group
@end example
@xseealso{@ref{XREFmax,,max}, @ref{XREFcummin,,cummin}, @ref{XREFcummax,,cummax}}
@end deftypefn
@c cummax libinterp/corefcn/max.cc
@anchor{XREFcummax}
@deftypefn {} {} cummax (@var{x})
@deftypefnx {} {} cummax (@var{x}, @var{dim})
@deftypefnx {} {[@var{w}, @var{iw}] =} cummax (@dots{})
Return the cumulative maximum values along dimension @var{dim}.
If @var{dim} is unspecified it defaults to column-wise operation. For
example:
@example
@group
cummax ([1 3 2 6 4 5])
@result{} 1 3 3 6 6 6
@end group
@end example
If called with two output arguments the index of the maximum value is also
returned.
@example
@group
[w, iw] = cummax ([1 3 2 6 4 5])
@result{}
w = 1 3 3 6 6 6
iw = 1 2 2 4 4 4
@end group
@end example
@xseealso{@ref{XREFcummin,,cummin}, @ref{XREFmax,,max}, @ref{XREFmin,,min}}
@end deftypefn
@c cummin libinterp/corefcn/max.cc
@anchor{XREFcummin}
@deftypefn {} {} cummin (@var{x})
@deftypefnx {} {} cummin (@var{x}, @var{dim})
@deftypefnx {} {[@var{w}, @var{iw}] =} cummin (@var{x})
Return the cumulative minimum values along dimension @var{dim}.
If @var{dim} is unspecified it defaults to column-wise operation. For
example:
@example
@group
cummin ([5 4 6 2 3 1])
@result{} 5 4 4 2 2 1
@end group
@end example
If called with two output arguments the index of the minimum value is also
returned.
@example
@group
[w, iw] = cummin ([5 4 6 2 3 1])
@result{}
w = 5 4 4 2 2 1
iw = 1 2 2 4 4 6
@end group
@end example
@xseealso{@ref{XREFcummax,,cummax}, @ref{XREFmin,,min}, @ref{XREFmax,,max}}
@end deftypefn
@c hypot libinterp/corefcn/data.cc
@anchor{XREFhypot}
@deftypefn {} {} hypot (@var{x}, @var{y})
@deftypefnx {} {} hypot (@var{x}, @var{y}, @var{z}, @dots{})
Compute the element-by-element square root of the sum of the squares of
@var{x} and @var{y}.
This is equivalent to
@code{sqrt (@var{x}.^2 + @var{y}.^2)}, but is calculated in a manner that
avoids overflows for large values of @var{x} or @var{y}.
@code{hypot} can also be called with more than 2 arguments; in this case,
the arguments are accumulated from left to right:
@example
@group
hypot (hypot (@var{x}, @var{y}), @var{z})
hypot (hypot (hypot (@var{x}, @var{y}), @var{z}), @var{w}), etc.
@end group
@end example
@end deftypefn
@c gradient scripts/general/gradient.m
@anchor{XREFgradient}
@deftypefn {} {@var{dx} =} gradient (@var{m})
@deftypefnx {} {[@var{dx}, @var{dy}, @var{dz}, @dots{}] =} gradient (@var{m})
@deftypefnx {} {[@dots{}] =} gradient (@var{m}, @var{s})
@deftypefnx {} {[@dots{}] =} gradient (@var{m}, @var{x}, @var{y}, @var{z}, @dots{})
@deftypefnx {} {[@dots{}] =} gradient (@var{f}, @var{x0})
@deftypefnx {} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{s})
@deftypefnx {} {[@dots{}] =} gradient (@var{f}, @var{x0}, @var{x}, @var{y}, @dots{})
Calculate the gradient of sampled data or a function.
If @var{m} is a vector, calculate the one-dimensional gradient of @var{m}.
If @var{m} is a matrix the gradient is calculated for each dimension.
@code{[@var{dx}, @var{dy}] = gradient (@var{m})} calculates the
one-dimensional gradient for @var{x} and @var{y} direction if @var{m} is a
matrix. Additional return arguments can be use for multi-dimensional
matrices.
A constant spacing between two points can be provided by the @var{s}
parameter. If @var{s} is a scalar, it is assumed to be the spacing for all
dimensions. Otherwise, separate values of the spacing can be supplied by
the @var{x}, @dots{} arguments. Scalar values specify an equidistant
spacing. Vector values for the @var{x}, @dots{} arguments specify the
coordinate for that dimension. The length must match their respective
dimension of @var{m}.
At boundary points a linear extrapolation is applied. Interior points
are calculated with the first approximation of the numerical gradient
@example
y'(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).
@end example
If the first argument @var{f} is a function handle, the gradient of the
function at the points in @var{x0} is approximated using central difference.
For example, @code{gradient (@@cos, 0)} approximates the gradient of the
cosine function in the point @math{x0 = 0}. As with sampled data, the
spacing values between the points from which the gradient is estimated can
be set via the @var{s} or @var{dx}, @var{dy}, @dots{} arguments. By default
a spacing of 1 is used.
@xseealso{@ref{XREFdiff,,diff}, @ref{XREFdel2,,del2}}
@end deftypefn
@c dot libinterp/corefcn/dot.cc
@anchor{XREFdot}
@deftypefn {} {} dot (@var{x}, @var{y}, @var{dim})
Compute the dot product of two vectors.
If @var{x} and @var{y} are matrices, calculate the dot products along the
first non-singleton dimension.
If the optional argument @var{dim} is given, calculate the dot products
along this dimension.
Implementation Note: This is equivalent to
@code{sum (conj (@var{X}) .* @var{Y}, @var{dim})}, but avoids forming a
temporary array and is faster. When @var{X} and @var{Y} are column vectors,
the result is equivalent to @code{@var{X}' * @var{Y}}. Although, @code{dot}
is defined for integer arrays, the output may differ from the expected result
due to the limited range of integer objects.
@xseealso{@ref{XREFcross,,cross}, @ref{XREFdivergence,,divergence}}
@end deftypefn
@c cross scripts/linear-algebra/cross.m
@anchor{XREFcross}
@deftypefn {} {} cross (@var{x}, @var{y})
@deftypefnx {} {} cross (@var{x}, @var{y}, @var{dim})
Compute the vector cross product of two 3-dimensional vectors @var{x} and
@var{y}.
If @var{x} and @var{y} are matrices, the cross product is applied along the
first dimension with three elements.
The optional argument @var{dim} forces the cross product to be calculated
along the specified dimension.
Example Code:
@example
@group
cross ([1, 1, 0], [0, 1, 1])
@result{}
1 -1 1
@end group
@end example
@xseealso{@ref{XREFdot,,dot}, @ref{XREFcurl,,curl}, @ref{XREFdivergence,,divergence}}
@end deftypefn
@c divergence scripts/general/divergence.m
@anchor{XREFdivergence}
@deftypefn {} {@var{div} =} divergence (@var{x}, @var{y}, @var{z}, @var{fx}, @var{fy}, @var{fz})
@deftypefnx {} {@var{div} =} divergence (@var{fx}, @var{fy}, @var{fz})
@deftypefnx {} {@var{div} =} divergence (@var{x}, @var{y}, @var{fx}, @var{fy})
@deftypefnx {} {@var{div} =} divergence (@var{fx}, @var{fy})
Calculate divergence of a vector field given by the arrays @var{fx},
@var{fy}, and @var{fz} or @var{fx}, @var{fy} respectively.
@tex
$$
div F(x,y,z) = \partial_x{F} + \partial_y{F} + \partial_z{F}
$$
@end tex
@ifnottex
@example
@group
d d d
div F(x,y,z) = -- F(x,y,z) + -- F(x,y,z) + -- F(x,y,z)
dx dy dz
@end group
@end example
@end ifnottex
The coordinates of the vector field can be given by the arguments @var{x},
@var{y}, @var{z} or @var{x}, @var{y} respectively.
@xseealso{@ref{XREFcurl,,curl}, @ref{XREFgradient,,gradient}, @ref{XREFdel2,,del2}, @ref{XREFdot,,dot}}
@end deftypefn
@c curl scripts/general/curl.m
@anchor{XREFcurl}
@deftypefn {} {[@var{cx}, @var{cy}, @var{cz}, @var{v}] =} curl (@var{x}, @var{y}, @var{z}, @var{fx}, @var{fy}, @var{fz})
@deftypefnx {} {[@var{cz}, @var{v}] =} curl (@var{x}, @var{y}, @var{fx}, @var{fy})
@deftypefnx {} {[@dots{}] =} curl (@var{fx}, @var{fy}, @var{fz})
@deftypefnx {} {[@dots{}] =} curl (@var{fx}, @var{fy})
@deftypefnx {} {@var{v} =} curl (@dots{})
Calculate curl of vector field given by the arrays @var{fx}, @var{fy}, and
@var{fz} or @var{fx}, @var{fy} respectively.
@tex
$$ curl F(x,y,z) = \left( {\partial{d} \over \partial{y}} F_z - {\partial{d} \over \partial{z}} F_y, {\partial{d} \over \partial{z}} F_x - {\partial{d} \over \partial{x}} F_z, {\partial{d} \over \partial{x}} F_y - {\partial{d} \over \partial{y}} F_x \right)$$
@end tex
@ifnottex
@example
@group
/ d d d d d d \
curl F(x,y,z) = | -- Fz - -- Fy, -- Fx - -- Fz, -- Fy - -- Fx |
\ dy dz dz dx dx dy /
@end group
@end example
@end ifnottex
The coordinates of the vector field can be given by the arguments @var{x},
@var{y}, @var{z} or @var{x}, @var{y} respectively. @var{v} calculates the
scalar component of the angular velocity vector in direction of the z-axis
for two-dimensional input. For three-dimensional input the scalar
rotation is calculated at each grid point in direction of the vector field
at that point.
@xseealso{@ref{XREFdivergence,,divergence}, @ref{XREFgradient,,gradient}, @ref{XREFdel2,,del2}, @ref{XREFcross,,cross}}
@end deftypefn
@c del2 scripts/general/del2.m
@anchor{XREFdel2}
@deftypefn {} {@var{L} =} del2 (@var{M})
@deftypefnx {} {@var{L} =} del2 (@var{M}, @var{h})
@deftypefnx {} {@var{L} =} del2 (@var{M}, @var{dx}, @var{dy}, @dots{})
Calculate the discrete Laplace
@tex
operator $( \nabla^2 )$.
@end tex
@ifnottex
operator.
@end ifnottex
For a 2-dimensional matrix @var{M} this is defined as
@tex
$$L = {1 \over 4} \left( {d^2 \over dx^2} M(x,y) + {d^2 \over dy^2} M(x,y) \right)$$
@end tex
@ifnottex
@example
@group
1 / d^2 d^2 \
L = --- * | --- M(x,y) + --- M(x,y) |
4 \ dx^2 dy^2 /
@end group
@end example
@end ifnottex
For N-dimensional arrays the sum in parentheses is expanded to include
second derivatives over the additional higher dimensions.
The spacing between evaluation points may be defined by @var{h}, which is a
scalar defining the equidistant spacing in all dimensions. Alternatively,
the spacing in each dimension may be defined separately by @var{dx},
@var{dy}, etc. A scalar spacing argument defines equidistant spacing,
whereas a vector argument can be used to specify variable spacing. The
length of the spacing vectors must match the respective dimension of
@var{M}. The default spacing value is 1.
Dimensions with fewer than 3 data points are skipped. Boundary points are
calculated from the linear extrapolation of interior points.
Example: Second derivative of 2*x^3
@example
@group
f = @@(x) 2*x.^3;
dd = @@(x) 12*x;
x = 1:6;
L = 4*del2 (f(x));
assert (L, dd (x));
@end group
@end example
@xseealso{@ref{XREFgradient,,gradient}, @ref{XREFdiff,,diff}}
@end deftypefn
@c factorial scripts/specfun/factorial.m
@anchor{XREFfactorial}
@deftypefn {} {} factorial (@var{n})
Return the factorial of @var{n} where @var{n} is a real non-negative
integer.
If @var{n} is a scalar, this is equivalent to @code{prod (1:@var{n})}. For
vector or matrix arguments, return the factorial of each element in the
array.
For non-integers see the generalized factorial function @code{gamma}.
Note that the factorial function grows large quite quickly, and even
with double precision values overflow will occur if @var{n} > 171. For
such cases consider @code{gammaln}.
@xseealso{@ref{XREFprod,,prod}, @ref{XREFgamma,,gamma}, @ref{XREFgammaln,,gammaln}}
@end deftypefn
@c factor scripts/specfun/factor.m
@anchor{XREFfactor}
@deftypefn {} {@var{pf} =} factor (@var{q})
@deftypefnx {} {[@var{pf}, @var{n}] =} factor (@var{q})
Return the prime factorization of @var{q}.
The prime factorization is defined as @code{prod (@var{pf}) == @var{q}}
where every element of @var{pf} is a prime number. If @code{@var{q} == 1},
return 1. The output @var{pf} is of the same numeric class as the input.
With two output arguments, return the unique prime factors @var{pf} and
their multiplicities. That is,
@code{prod (@var{pf} .^ @var{n}) == @var{q}}.
Implementation Note: The input @var{q} must be less than @code{flintmax}
(9.0072e+15) in order to factor correctly.
@xseealso{@ref{XREFgcd,,gcd}, @ref{XREFlcm,,lcm}, @ref{XREFisprime,,isprime}, @ref{XREFprimes,,primes}}
@end deftypefn
@c gcd libinterp/corefcn/gcd.cc
@anchor{XREFgcd}
@deftypefn {} {@var{g} =} gcd (@var{a1}, @var{a2}, @dots{})
@deftypefnx {} {[@var{g}, @var{v1}, @dots{}] =} gcd (@var{a1}, @var{a2}, @dots{})
Compute the greatest common divisor of @var{a1}, @var{a2}, @dots{}.
All arguments must be the same size or scalar. For arrays, the greatest common
divisor is calculated for each element individually. All elements must be
ordinary or Gaussian (complex) integers. Note that for Gaussian integers, the
gcd is only unique up to a phase factor (multiplication by 1, -1, i, or -i), so
an arbitrary greatest common divisor among the four possible is returned.
Optional return arguments @var{v1}, @dots{}, contain integer vectors such
that,
@tex
$g = v_1 a_1 + v_2 a_2 + \cdots$
@end tex
@ifnottex
@example
@var{g} = @var{v1} .* @var{a1} + @var{v2} .* @var{a2} + @dots{}
@end example
@end ifnottex
Example code:
@example
@group
gcd ([15, 9], [20, 18])
@result{} 5 9
@end group
@end example
@xseealso{@ref{XREFlcm,,lcm}, @ref{XREFfactor,,factor}, @ref{XREFisprime,,isprime}}
@end deftypefn
@c lcm scripts/specfun/lcm.m
@anchor{XREFlcm}
@deftypefn {} {} lcm (@var{x}, @var{y})
@deftypefnx {} {} lcm (@var{x}, @var{y}, @dots{})
Compute the least common multiple of @var{x} and @var{y}, or of the list of
all arguments.
All elements must be numeric and of the same size or scalar.
@xseealso{@ref{XREFfactor,,factor}, @ref{XREFgcd,,gcd}, @ref{XREFisprime,,isprime}}
@end deftypefn
@c rem libinterp/corefcn/data.cc
@anchor{XREFrem}
@deftypefn {} {} rem (@var{x}, @var{y})
Return the remainder of the division @code{@var{x} / @var{y}}.
The remainder is computed using the expression
@example
x - y .* fix (x ./ y)
@end example
An error message is printed if the dimensions of the arguments do not agree,
or if either argument is complex.
Programming Notes: When calculating with floating point numbers (double,
single), values within a few eps of an integer will be rounded to that
integer before computation for compatibility with @sc{matlab}. Any floating
point integers greater than @code{flintmax} (2^53 for double) will not compute
correctly. For larger integer values convert the input to @code{uint64} before
calling this function.
By convention,
@example
@group
rem (@var{x}, 0) = NaN if @var{x} is a floating point variable
rem (@var{x}, 0) = 0 if @var{x} is an integer variable
rem (@var{x}, @var{y}) returns a value with the signbit from @var{x}
@end group
@end example
For the opposite conventions see the @code{mod} function. In general,
@code{rem} is best when computing the remainder after division of two
@emph{positive} numbers. For negative numbers, or when the values are
periodic, @code{mod} is a better choice.
@xseealso{@ref{XREFmod,,mod}}
@end deftypefn
@c mod libinterp/corefcn/data.cc
@anchor{XREFmod}
@deftypefn {} {} mod (@var{x}, @var{y})
Compute the modulo of @var{x} and @var{y}.
Conceptually this is given by
@example
x - y .* floor (x ./ y)
@end example
@noindent
and is written such that the correct modulus is returned for integer types.
This function handles negative values correctly. That is,
@w{@code{mod (-1, 3)}} is 2, not -1, as @w{@code{rem (-1, 3)}} returns.
An error results if the dimensions of the arguments do not agree, or if
either of the arguments is complex.
Programming Notes: When calculating with floating point numbers (double,
single), values within a few eps of an integer will be rounded to that
integer before computation for compatibility with @sc{matlab}. Any floating
point integers greater than @code{flintmax} (2^53 for double) will not compute
correctly. For larger integer values convert the input to @code{uint64} before
calling this function.
By convention,
@example
@group
mod (@var{x}, 0) = @var{x}
mod (@var{x}, @var{y}) returns a value with the signbit from @var{y}
@end group
@end example
For the opposite conventions see the @code{rem} function. In general,
@code{mod} is a better choice than @code{rem} when any of the inputs are
negative numbers or when the values are periodic.
@xseealso{@ref{XREFrem,,rem}}
@end deftypefn
@c primes scripts/specfun/primes.m
@anchor{XREFprimes}
@deftypefn {} {@var{p} =} primes (@var{n})
Return all primes up to @var{n}.
The output data class (double, single, uint32, etc.@:) is the same as the
input class of @var{n}. The algorithm used is the Sieve of Eratosthenes.
Note: If you need a specific number of primes you can use the fact that the
distance from one prime to the next is, on average, proportional to the
logarithm of the prime. Integrating, one finds that there are about
@math{k} primes less than
@tex
$k \log (5 k)$.
@end tex
@ifnottex
k*log (5*k).
@end ifnottex
See also @code{list_primes} if you need a specific number @var{n} of primes.
@xseealso{@ref{XREFlist_primes,,list_primes}, @ref{XREFisprime,,isprime}}
@end deftypefn
@c list_primes scripts/miscellaneous/list_primes.m
@anchor{XREFlist_primes}
@deftypefn {} {} list_primes ()
@deftypefnx {} {} list_primes (@var{n})
List the first @var{n} primes.
If @var{n} is unspecified, the first 25 primes are listed.
@xseealso{@ref{XREFprimes,,primes}, @ref{XREFisprime,,isprime}}
@end deftypefn
@c sign libinterp/corefcn/mappers.cc
@anchor{XREFsign}
@deftypefn {} {} sign (@var{x})
Compute the @dfn{signum} function.
This is defined as
@tex
$$
{\rm sign} (@var{x}) = \cases{1,&$x>0$;\cr 0,&$x=0$;\cr -1,&$x<0$.\cr}
$$
@end tex
@ifnottex
@example
@group
-1, x < 0;
sign (x) = 0, x = 0;
1, x > 0.
@end group
@end example
@end ifnottex
For complex arguments, @code{sign} returns @code{x ./ abs (@var{x})}.
Note that @code{sign (-0.0)} is 0. Although IEEE 754 floating point
allows zero to be signed, 0.0 and -0.0 compare equal. If you must test
whether zero is signed, use the @code{signbit} function.
@xseealso{@ref{XREFsignbit,,signbit}}
@end deftypefn
@c signbit libinterp/corefcn/mappers.cc
@anchor{XREFsignbit}
@deftypefn {} {} signbit (@var{x})
Return logical true if the value of @var{x} has its sign bit set and false
otherwise.
This behavior is consistent with the other logical functions.
See @ref{Logical Values}. The behavior differs from the C language function
which returns nonzero if the sign bit is set.
This is not the same as @code{x < 0.0}, because IEEE 754 floating point
allows zero to be signed. The comparison @code{-0.0 < 0.0} is false,
but @code{signbit (-0.0)} will return a nonzero value.
@xseealso{@ref{XREFsign,,sign}}
@end deftypefn
@node Special Functions
@section Special Functions
@c airy libinterp/corefcn/besselj.cc
@anchor{XREFairy}
@deftypefn {} {[@var{a}, @var{ierr}] =} airy (@var{k}, @var{z}, @var{opt})
Compute Airy functions of the first and second kind, and their derivatives.
@example
@group
K Function Scale factor (if "opt" is supplied)
--- -------- ---------------------------------------
0 Ai (Z) exp ((2/3) * Z * sqrt (Z))
1 dAi(Z)/dZ exp ((2/3) * Z * sqrt (Z))
2 Bi (Z) exp (-abs (real ((2/3) * Z * sqrt (Z))))
3 dBi(Z)/dZ exp (-abs (real ((2/3) * Z * sqrt (Z))))
@end group
@end example
The function call @code{airy (@var{z})} is equivalent to
@code{airy (0, @var{z})}.
The result is the same size as @var{z}.
If requested, @var{ierr} contains the following status information and
is the same size as the result.
@enumerate 0
@item
Normal return.
@item
Input error, return @code{NaN}.
@item
Overflow, return @code{Inf}.
@item
Loss of significance by argument reduction results in less than half
of machine accuracy.
@item
Loss of significance by argument reduction, output may be inaccurate.
@item
Error---no computation, algorithm termination condition not met,
return @code{NaN}.
@end enumerate
@end deftypefn
@c besselj libinterp/corefcn/besselj.cc
@anchor{XREFbesselj}
@deftypefn {} {@var{J} =} besselj (@var{alpha}, @var{x})
@deftypefnx {} {@var{J} =} besselj (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {} {[@var{J}, @var{ierr}] =} besselj (@dots{})
Compute Bessel functions of the first kind.
The order of the Bessel function @var{alpha} must be real. The points for
evaluation @var{x} may be complex.
If the optional argument @var{opt} is 1 or true, the result @var{J} is
multiplied by @w{@code{exp (-abs (imag (@var{x})))}}.
If @var{alpha} is a scalar, the result is the same size as @var{x}. If @var{x}
is a scalar, the result is the same size as @var{alpha}. If @var{alpha} is a
row vector and @var{x} is a column vector, the result is a matrix with
@code{length (@var{x})} rows and @code{length (@var{alpha})} columns.
Otherwise, @var{alpha} and @var{x} must conform and the result will be the same
size.
If requested, @var{ierr} contains the following status information and is the
same size as the result.
@enumerate 0
@item
Normal return.
@item
Input error, return @code{NaN}.
@item
Overflow, return @code{Inf}.
@item
Loss of significance by argument reduction results in less than half of machine
accuracy.
@item
Loss of significance by argument reduction, output may be inaccurate.
@item
Error---no computation, algorithm termination condition not met, return
@code{NaN}.
@end enumerate
@xseealso{@ref{XREFbessely,,bessely}, @ref{XREFbesseli,,besseli}, @ref{XREFbesselk,,besselk}, @ref{XREFbesselh,,besselh}}
@end deftypefn
@c bessely libinterp/corefcn/besselj.cc
@anchor{XREFbessely}
@deftypefn {} {@var{Y} =} bessely (@var{alpha}, @var{x})
@deftypefnx {} {@var{Y} =} bessely (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {} {[@var{Y}, @var{ierr}] =} bessely (@dots{})
Compute Bessel functions of the second kind.
The order of the Bessel function @var{alpha} must be real. The points for
evaluation @var{x} may be complex.
If the optional argument @var{opt} is 1 or true, the result @var{Y} is
multiplied by @w{@code{exp (-abs (imag (@var{x})))}}.
If @var{alpha} is a scalar, the result is the same size as @var{x}. If @var{x}
is a scalar, the result is the same size as @var{alpha}. If @var{alpha} is a
row vector and @var{x} is a column vector, the result is a matrix with
@code{length (@var{x})} rows and @code{length (@var{alpha})} columns.
Otherwise, @var{alpha} and @var{x} must conform and the result will be the same
size.
If requested, @var{ierr} contains the following status information and is the
same size as the result.
@enumerate 0
@item
Normal return.
@item
Input error, return @code{NaN}.
@item
Overflow, return @code{Inf}.
@item
Loss of significance by argument reduction results in less than half of machine
accuracy.
@item
Complete loss of significance by argument reduction, return @code{NaN}.
@item
Error---no computation, algorithm termination condition not met, return
@code{NaN}.
@end enumerate
@xseealso{@ref{XREFbesselj,,besselj}, @ref{XREFbesseli,,besseli}, @ref{XREFbesselk,,besselk}, @ref{XREFbesselh,,besselh}}
@end deftypefn
@c besseli libinterp/corefcn/besselj.cc
@anchor{XREFbesseli}
@deftypefn {} {@var{I} =} besseli (@var{alpha}, @var{x})
@deftypefnx {} {@var{I} =} besseli (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {} {[@var{I}, @var{ierr}] =} besseli (@dots{})
Compute modified Bessel functions of the first kind.
The order of the Bessel function @var{alpha} must be real. The points for
evaluation @var{x} may be complex.
If the optional argument @var{opt} is 1 or true, the result @var{I} is
multiplied by @w{@code{exp (-abs (real (@var{x})))}}.
If @var{alpha} is a scalar, the result is the same size as @var{x}. If @var{x}
is a scalar, the result is the same size as @var{alpha}. If @var{alpha} is a
row vector and @var{x} is a column vector, the result is a matrix with
@code{length (@var{x})} rows and @code{length (@var{alpha})} columns.
Otherwise, @var{alpha} and @var{x} must conform and the result will be the same
size.
If requested, @var{ierr} contains the following status information and is the
same size as the result.
@enumerate 0
@item
Normal return.
@item
Input error, return @code{NaN}.
@item
Overflow, return @code{Inf}.
@item
Loss of significance by argument reduction results in less than half of machine
accuracy.
@item
Complete loss of significance by argument reduction, return @code{NaN}.
@item
Error---no computation, algorithm termination condition not met, return
@code{NaN}.
@end enumerate
@xseealso{@ref{XREFbesselk,,besselk}, @ref{XREFbesselj,,besselj}, @ref{XREFbessely,,bessely}, @ref{XREFbesselh,,besselh}}
@end deftypefn
@c besselk libinterp/corefcn/besselj.cc
@anchor{XREFbesselk}
@deftypefn {} {@var{K} =} besselk (@var{alpha}, @var{x})
@deftypefnx {} {@var{K} =} besselk (@var{alpha}, @var{x}, @var{opt})
@deftypefnx {} {[@var{K}, @var{ierr}] =} besselk (@dots{})
Compute modified Bessel functions of the second kind.
The order of the Bessel function @var{alpha} must be real. The points for
evaluation @var{x} may be complex.
If the optional argument @var{opt} is 1 or true, the result @var{K} is
multiplied by @w{@code{exp (@var{x})}}.
If @var{alpha} is a scalar, the result is the same size as @var{x}. If @var{x}
is a scalar, the result is the same size as @var{alpha}. If @var{alpha} is a
row vector and @var{x} is a column vector, the result is a matrix with
@code{length (@var{x})} rows and @code{length (@var{alpha})} columns.
Otherwise, @var{alpha} and @var{x} must conform and the result will be the same
size.
If requested, @var{ierr} contains the following status information and is the
same size as the result.
@enumerate 0
@item
Normal return.
@item
Input error, return @code{NaN}.
@item
Overflow, return @code{Inf}.
@item
Loss of significance by argument reduction results in less than half of machine
accuracy.
@item
Complete loss of significance by argument reduction, return @code{NaN}.
@item
Error---no computation, algorithm termination condition not met, return
@code{NaN}.
@end enumerate
@xseealso{@ref{XREFbesseli,,besseli}, @ref{XREFbesselj,,besselj}, @ref{XREFbessely,,bessely}, @ref{XREFbesselh,,besselh}}
@end deftypefn
@c besselh libinterp/corefcn/besselj.cc
@anchor{XREFbesselh}
@deftypefn {} {@var{H} =} besselh (@var{alpha}, @var{x})
@deftypefnx {} {@var{H} =} besselh (@var{alpha}, @var{k}, @var{x})
@deftypefnx {} {@var{H} =} besselh (@var{alpha}, @var{k}, @var{x}, @var{opt})
@deftypefnx {} {[@var{H}, @var{ierr}] =} besselh (@dots{})
Compute Bessel functions of the third kind (Hankel functions).
The order of the Bessel function @var{alpha} must be real. The kind of Hankel
function is specified by @var{k} and may be either first (@var{k} = 1) or
second (@var{k} = 2). The default is Hankel functions of the first kind. The
points for evaluation @var{x} may be complex.
If the optional argument @var{opt} is 1 or true, the result is multiplied
by @code{exp (-I*@var{x})} for @var{k} = 1 or @code{exp (I*@var{x})} for
@var{k} = 2.
If @var{alpha} is a scalar, the result is the same size as @var{x}. If @var{x}
is a scalar, the result is the same size as @var{alpha}. If @var{alpha} is a
row vector and @var{x} is a column vector, the result is a matrix with
@code{length (@var{x})} rows and @code{length (@var{alpha})} columns.
Otherwise, @var{alpha} and @var{x} must conform and the result will be the same
size.
If requested, @var{ierr} contains the following status information and is the
same size as the result.
@enumerate 0
@item
Normal return.
@item
Input error, return @code{NaN}.
@item
Overflow, return @code{Inf}.
@item
Loss of significance by argument reduction results in less than half of machine
accuracy.
@item
Complete loss of significance by argument reduction, return @code{NaN}.
@item
Error---no computation, algorithm termination condition not met, return
@code{NaN}.
@end enumerate
@xseealso{@ref{XREFbesselj,,besselj}, @ref{XREFbessely,,bessely}, @ref{XREFbesseli,,besseli}, @ref{XREFbesselk,,besselk}}
@end deftypefn
@c beta scripts/specfun/beta.m
@anchor{XREFbeta}
@deftypefn {} {} beta (@var{a}, @var{b})
Compute the Beta function for real inputs @var{a} and @var{b}.
The Beta function definition is
@tex
$$
B (a, b) = {\Gamma (a) \Gamma (b) \over \Gamma (a + b)}.
$$
@end tex
@ifnottex
@example
beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).
@end example
@end ifnottex
The Beta function can grow quite large and it is often more useful to work
with the logarithm of the output rather than the function directly.
@xref{XREFbetaln,,betaln}, for computing the logarithm of the Beta function
in an efficient manner.
@xseealso{@ref{XREFbetaln,,betaln}, @ref{XREFbetainc,,betainc}, @ref{XREFbetaincinv,,betaincinv}}
@end deftypefn
@c betainc scripts/specfun/betainc.m
@anchor{XREFbetainc}
@deftypefn {} {} betainc (@var{x}, @var{a}, @var{b})
@deftypefnx {} {} betainc (@var{x}, @var{a}, @var{b}, @var{tail})
Compute the incomplete beta function.
This is defined as
@tex
$$
I_x (a, b) = {1 \over {B(a,b)}} \displaystyle{\int_0^x t^{a-1} (1-t)^{b-1} dt}
$$
@end tex
@ifnottex
@example
@group
x
/
|
I_x (a, b) = | t^(a-1) (1-t)^(b-1) dt
|
/
0
@end group
@end example
@end ifnottex
with real @var{x} in the range [0,1]. The inputs @var{a} and @var{b} must
be real and strictly positive (> 0). If one of the inputs is not a scalar
then the other inputs must be scalar or of compatible dimensions.
By default, @var{tail} is @qcode{"lower"} and the incomplete beta function
integrated from 0 to @var{x} is computed. If @var{tail} is @qcode{"upper"}
then the complementary function integrated from @var{x} to 1 is calculated.
The two choices are related by
betainc (@var{x}, @var{a}, @var{b}, @qcode{"upper"}) =
1 - betainc (@var{x}, @var{a}, @var{b}, @qcode{"lower"}).
@code{betainc} uses a more sophisticated algorithm than subtraction to
get numerically accurate results when the @qcode{"lower"} value is small.
Reference: @nospell{A. Cuyt, V. Brevik Petersen, B. Verdonk, H. Waadeland,
W.B. Jones}, @cite{Handbook of Continued Fractions for Special Functions},
ch.@: 18.
@xseealso{@ref{XREFbeta,,beta}, @ref{XREFbetaincinv,,betaincinv}, @ref{XREFbetaln,,betaln}}
@end deftypefn
@c betaincinv scripts/specfun/betaincinv.m
@anchor{XREFbetaincinv}
@deftypefn {} {} betaincinv (@var{y}, @var{a}, @var{b})
@deftypefnx {} {} betaincinv (@var{y}, @var{a}, @var{b}, "lower")
@deftypefnx {} {} betaincinv (@var{y}, @var{a}, @var{b}, "upper")
Compute the inverse of the normalized incomplete beta function.
The normalized incomplete beta function is defined as
@tex
$$
I_x (a, b) = {1 \over {B(a,b)}} \displaystyle{\int_0^x t^{a-1} (1-t)^{b-1} dt}
$$
@end tex
@ifnottex
@example
@group
x
/
|
I_x (a, b) = | t^(a-1) (1-t)^(b-1) dt
|
/
0
@end group
@end example
@end ifnottex
If two inputs are scalar, then @code{betaincinv (@var{y}, @var{a}, @var{b})}
is returned for each of the other inputs.
If two or more inputs are not scalar, the sizes of them must agree, and
@code{betaincinv} is applied element-by-element.
The variable @var{y} must be in the interval [0,1], while @var{a} and
@var{b} must be real and strictly positive.
By default, @var{tail} is @qcode{"lower"} and the inverse of the incomplete
beta function integrated from 0 to @var{x} is computed. If @var{tail} is
@qcode{"upper"} then the complementary function integrated from @var{x} to 1
is inverted.
The function is computed by standard Newton's method, by solving
@tex
$$
y - I_x (a, b) = 0
$$
@end tex
@ifnottex
@example
@var{y} - betainc (@var{x}, @var{a}, @var{b}) = 0
@end example
@end ifnottex
@xseealso{@ref{XREFbetainc,,betainc}, @ref{XREFbeta,,beta}, @ref{XREFbetaln,,betaln}}
@end deftypefn
@c betaln scripts/specfun/betaln.m
@anchor{XREFbetaln}
@deftypefn {} {} betaln (@var{a}, @var{b})
Compute the natural logarithm of the Beta function for real inputs @var{a}
and @var{b}.
@code{betaln} is defined as
@tex
$$
{\rm betaln} (a, b) = \ln (B (a,b)) \equiv \ln ({\Gamma (a) \Gamma (b) \over \Gamma (a + b)}).
$$
@end tex
@ifnottex
@example
betaln (a, b) = log (beta (a, b))
@end example
@end ifnottex
and is calculated in a way to reduce the occurrence of underflow.
The Beta function can grow quite large and it is often more useful to work
with the logarithm of the output rather than the function directly.
@xseealso{@ref{XREFbeta,,beta}, @ref{XREFbetainc,,betainc}, @ref{XREFbetaincinv,,betaincinv}, @ref{XREFgammaln,,gammaln}}
@end deftypefn
@c bincoeff scripts/general/bincoeff.m
@anchor{XREFbincoeff}
@deftypefn {} {} bincoeff (@var{n}, @var{k})
Return the binomial coefficient of @var{n} and @var{k}.
The binomial coefficient is defined as
@tex
$$
{n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
$$
@end tex
@ifnottex
@example
@group
/ \
| n | n (n-1) (n-2) @dots{} (n-k+1)
| | = -------------------------
| k | k!
\ /
@end group
@end example
@end ifnottex
For example:
@example
@group
bincoeff (5, 2)
@result{} 10
@end group
@end example
In most cases, the @code{nchoosek} function is faster for small
scalar integer arguments. It also warns about loss of precision for
big arguments.
@xseealso{@ref{XREFnchoosek,,nchoosek}}
@end deftypefn
@c commutation_matrix scripts/linear-algebra/commutation_matrix.m
@anchor{XREFcommutation_matrix}
@deftypefn {} {} commutation_matrix (@var{m}, @var{n})
Return the commutation matrix
@tex
$K_{m,n}$
@end tex
@ifnottex
K(m,n)
@end ifnottex
which is the unique
@tex
$m n \times m n$
@end tex
@ifnottex
@var{m}*@var{n} by @var{m}*@var{n}
@end ifnottex
matrix such that
@tex
$K_{m,n} \cdot {\rm vec} (A) = {\rm vec} (A^T)$
@end tex
@ifnottex
@math{K(m,n) * vec(A) = vec(A')}
@end ifnottex
for all
@tex
$m\times n$
@end tex
@ifnottex
@math{m} by @math{n}
@end ifnottex
matrices
@tex
$A$.
@end tex
@ifnottex
@math{A}.
@end ifnottex
If only one argument @var{m} is given,
@tex
$K_{m,m}$
@end tex
@ifnottex
@math{K(m,m)}
@end ifnottex
is returned.
See @nospell{Magnus and Neudecker} (1988), @cite{Matrix Differential
Calculus with Applications in Statistics and Econometrics}.
@end deftypefn
@c cosint scripts/specfun/cosint.m
@anchor{XREFcosint}
@deftypefn {} {} cosint (@var{x})
Compute the cosine integral function:
@tex
$$
{\rm Ci} (x) = - \int_x^\infty {{\cos (t)} \over t} dt
$$
@end tex
@ifnottex
@example
@group
+oo
/
Ci (x) = - | (cos (t)) / t dt
/
x
@end group
@end example
@end ifnottex
An equivalent definition is
@tex
$$
{\rm Ci} (x) = \gamma + \log (x) + \int_0^x {{\cos (t) - 1} \over t} dt
$$
@end tex
@ifnottex
@example
@group
x
/
| cos (t) - 1
Ci (x) = gamma + log (x) + | ------------- dt
| t
/
0
@end group
@end example
@end ifnottex
Reference:
@nospell{M. Abramowitz and I.A. Stegun},
@cite{Handbook of Mathematical Functions}, 1964.
@xseealso{@ref{XREFsinint,,sinint}, @ref{XREFexpint,,expint}, @ref{XREFcos,,cos}}
@end deftypefn
@c duplication_matrix scripts/linear-algebra/duplication_matrix.m
@anchor{XREFduplication_matrix}
@deftypefn {} {} duplication_matrix (@var{n})
Return the duplication matrix
@tex
$D_n$
@end tex
@ifnottex
@nospell{@math{Dn}}
@end ifnottex
which is the unique
@tex
$n^2 \times n(n+1)/2$
@end tex
@ifnottex
@math{n^2} by @math{n*(n+1)/2}
@end ifnottex
matrix such that
@tex
$D_n * {\rm vech} (A) = {\rm vec} (A)$
@end tex
@ifnottex
@nospell{@math{Dn vech (A) = vec (A)}}
@end ifnottex
for all symmetric
@tex
$n \times n$
@end tex
@ifnottex
@math{n} by @math{n}
@end ifnottex
matrices
@tex
$A$.
@end tex
@ifnottex
@math{A}.
@end ifnottex
See @nospell{Magnus and Neudecker} (1988), @cite{Matrix Differential
Calculus with Applications in Statistics and Econometrics}.
@end deftypefn
@c dawson libinterp/corefcn/mappers.cc
@anchor{XREFdawson}
@deftypefn {} {} dawson (@var{z})
Compute the Dawson (scaled imaginary error) function.
The Dawson function is defined as
@tex
$$
{\sqrt{\pi} \over 2} e^{-z^2} {\rm erfi} (z) \equiv -i {\sqrt{\pi} \over 2} e^{-z^2} {\rm erf} (iz)
$$
@end tex
@ifnottex
@example
(sqrt (pi) / 2) * exp (-z^2) * erfi (z)
@end example
@end ifnottex
@xseealso{@ref{XREFerfc,,erfc}, @ref{XREFerf,,erf}, @ref{XREFerfcx,,erfcx}, @ref{XREFerfi,,erfi}, @ref{XREFerfinv,,erfinv}, @ref{XREFerfcinv,,erfcinv}}
@end deftypefn
@c ellipj libinterp/corefcn/ellipj.cc
@anchor{XREFellipj}
@deftypefn {} {[@var{sn}, @var{cn}, @var{dn}, @var{err}] =} ellipj (@var{u}, @var{m})
@deftypefnx {} {[@var{sn}, @var{cn}, @var{dn}, @var{err}] =} ellipj (@var{u}, @var{m}, @var{tol})
Compute the Jacobi elliptic functions @var{sn}, @var{cn}, and @var{dn}
of complex argument @var{u} and real parameter @var{m}.
If @var{m} is a scalar, the results are the same size as @var{u}.
If @var{u} is a scalar, the results are the same size as @var{m}.
If @var{u} is a column vector and @var{m} is a row vector, the
results are matrices with @code{length (@var{u})} rows and
@code{length (@var{m})} columns. Otherwise, @var{u} and
@var{m} must conform in size and the results will be the same size as the
inputs.
The value of @var{u} may be complex.
The value of @var{m} must be 0 @leq{} @var{m} @leq{} 1.
The optional input @var{tol} is currently ignored (@sc{matlab} uses this to
allow faster, less accurate approximation).
If requested, @var{err} contains the following status information
and is the same size as the result.
@enumerate 0
@item
Normal return.
@item
Error---no computation, algorithm termination condition not met,
return @code{NaN}.
@end enumerate
Reference: Milton @nospell{Abramowitz} and Irene A @nospell{Stegun},
@cite{Handbook of Mathematical Functions}, Chapter 16 (Sections 16.4, 16.13,
and 16.15), Dover, 1965.
@xseealso{@ref{XREFellipke,,ellipke}}
@end deftypefn
@c ellipke scripts/specfun/ellipke.m
@anchor{XREFellipke}
@deftypefn {} {@var{k} =} ellipke (@var{m})
@deftypefnx {} {@var{k} =} ellipke (@var{m}, @var{tol})
@deftypefnx {} {[@var{k}, @var{e}] =} ellipke (@dots{})
Compute complete elliptic integrals of the first K(@var{m}) and second
E(@var{m}) kind.
@var{m} must be a scalar or real array with -Inf @leq{} @var{m} @leq{} 1.
The optional input @var{tol} controls the stopping tolerance of the
algorithm and defaults to @code{eps (class (@var{m}))}. The tolerance can
be increased to compute a faster, less accurate approximation.
When called with one output only elliptic integrals of the first kind are
returned.
Mathematical Note:
Elliptic integrals of the first kind are defined as
@tex
$$
{\rm K} (m) = \int_0^1 {dt \over \sqrt{(1 - t^2) (1 - m t^2)}}
$$
@end tex
@ifnottex
@example
@group
1
/ dt
K (m) = | ------------------------------
/ sqrt ((1 - t^2)*(1 - m*t^2))
0
@end group
@end example
@end ifnottex
Elliptic integrals of the second kind are defined as
@tex
$$
{\rm E} (m) = \int_0^1 {\sqrt{1 - m t^2} \over \sqrt{1 - t^2}} dt
$$
@end tex
@ifnottex
@example
@group
1
/ sqrt (1 - m*t^2)
E (m) = | ------------------ dt
/ sqrt (1 - t^2)
0
@end group
@end example
@end ifnottex
Reference: Milton @nospell{Abramowitz} and Irene A. @nospell{Stegun},
@cite{Handbook of Mathematical Functions}, Chapter 17, Dover, 1965.
@xseealso{@ref{XREFellipj,,ellipj}}
@end deftypefn
@c erf libinterp/corefcn/mappers.cc
@anchor{XREFerf}
@deftypefn {} {} erf (@var{z})
Compute the error function.
The error function is defined as
@tex
$$
{\rm erf} (z) = {2 \over \sqrt{\pi}}\int_0^z e^{-t^2} dt
$$
@end tex
@ifnottex
@example
@group
z
2 /
erf (z) = --------- * | e^(-t^2) dt
sqrt (pi) /
t=0
@end group
@end example
@end ifnottex
@xseealso{@ref{XREFerfc,,erfc}, @ref{XREFerfcx,,erfcx}, @ref{XREFerfi,,erfi}, @ref{XREFdawson,,dawson}, @ref{XREFerfinv,,erfinv}, @ref{XREFerfcinv,,erfcinv}}
@end deftypefn
@c erfc libinterp/corefcn/mappers.cc
@anchor{XREFerfc}
@deftypefn {} {} erfc (@var{z})
Compute the complementary error function.
The complementary error function is defined as
@tex
$1 - {\rm erf} (z)$.
@end tex
@ifnottex
@w{@code{1 - erf (@var{z})}}.
@end ifnottex
@xseealso{@ref{XREFerfcinv,,erfcinv}, @ref{XREFerfcx,,erfcx}, @ref{XREFerfi,,erfi}, @ref{XREFdawson,,dawson}, @ref{XREFerf,,erf}, @ref{XREFerfinv,,erfinv}}
@end deftypefn
@c erfcx libinterp/corefcn/mappers.cc
@anchor{XREFerfcx}
@deftypefn {} {} erfcx (@var{z})
Compute the scaled complementary error function.
The scaled complementary error function is defined as
@tex
$$
e^{z^2} {\rm erfc} (z) \equiv e^{z^2} (1 - {\rm erf} (z))
$$
@end tex
@ifnottex
@example
exp (z^2) * erfc (z)
@end example
@end ifnottex
@xseealso{@ref{XREFerfc,,erfc}, @ref{XREFerf,,erf}, @ref{XREFerfi,,erfi}, @ref{XREFdawson,,dawson}, @ref{XREFerfinv,,erfinv}, @ref{XREFerfcinv,,erfcinv}}
@end deftypefn
@c erfi libinterp/corefcn/mappers.cc
@anchor{XREFerfi}
@deftypefn {} {} erfi (@var{z})
Compute the imaginary error function.
The imaginary error function is defined as
@tex
$$
-i {\rm erf} (iz)
$$
@end tex
@ifnottex
@example
-i * erf (i*z)
@end example
@end ifnottex
@xseealso{@ref{XREFerfc,,erfc}, @ref{XREFerf,,erf}, @ref{XREFerfcx,,erfcx}, @ref{XREFdawson,,dawson}, @ref{XREFerfinv,,erfinv}, @ref{XREFerfcinv,,erfcinv}}
@end deftypefn
@c erfinv libinterp/corefcn/mappers.cc
@anchor{XREFerfinv}
@deftypefn {} {} erfinv (@var{x})
Compute the inverse error function.
The inverse error function is defined such that
@example
erf (@var{y}) == @var{x}
@end example
@xseealso{@ref{XREFerf,,erf}, @ref{XREFerfc,,erfc}, @ref{XREFerfcx,,erfcx}, @ref{XREFerfi,,erfi}, @ref{XREFdawson,,dawson}, @ref{XREFerfcinv,,erfcinv}}
@end deftypefn
@c erfcinv libinterp/corefcn/mappers.cc
@anchor{XREFerfcinv}
@deftypefn {} {} erfcinv (@var{x})
Compute the inverse complementary error function.
The inverse complementary error function is defined such that
@example
erfc (@var{y}) == @var{x}
@end example
@xseealso{@ref{XREFerfc,,erfc}, @ref{XREFerf,,erf}, @ref{XREFerfcx,,erfcx}, @ref{XREFerfi,,erfi}, @ref{XREFdawson,,dawson}, @ref{XREFerfinv,,erfinv}}
@end deftypefn
@c expint scripts/specfun/expint.m
@anchor{XREFexpint}
@deftypefn {} {} expint (@var{x})
Compute the exponential integral.
The exponential integral is defined as:
@tex
$$
{\rm E_1} (x) = \int_x^\infty {e^{-t} \over t} dt
$$
@end tex
@ifnottex
@example
@group
+oo
/
| exp (-t)
E_1 (x) = | -------- dt
| t
/
x
@end group
@end example
@end ifnottex
Note: For compatibility, this function uses the @sc{matlab} definition
of the exponential integral. Most other sources refer to this particular
value as @math{E_1 (x)}, and the exponential integral as
@tex
$$
{\rm Ei} (x) = - \int_{-x}^\infty {e^{-t} \over t} dt.
$$
@end tex
@ifnottex
@example
@group
+oo
/
| exp (-t)
Ei (x) = - | -------- dt
| t
/
-x
@end group
@end example
@end ifnottex
The two definitions are related, for positive real values of @var{x}, by
@tex
$
E_1 (-x) = -{\rm Ei} (x) - i\pi.
$
@end tex
@ifnottex
@w{@code{E_1 (-x) = -Ei (x) - i*pi}}.
@end ifnottex
References:
@nospell{M. Abramowitz and I.A. Stegun},
@cite{Handbook of Mathematical Functions}, 1964.
@nospell{N. Bleistein and R.A. Handelsman},
@cite{Asymptotic expansions of integrals}, 1986.
@xseealso{@ref{XREFcosint,,cosint}, @ref{XREFsinint,,sinint}, @ref{XREFexp,,exp}}
@end deftypefn
@c gamma libinterp/corefcn/mappers.cc
@anchor{XREFgamma}
@deftypefn {} {} gamma (@var{z})
Compute the Gamma function.
The Gamma function is defined as
@tex
$$
\Gamma (z) = \int_0^\infty t^{z-1} e^{-t} dt.
$$
@end tex
@ifnottex
@example
@group
infinity
/
gamma (z) = | t^(z-1) exp (-t) dt.
/
t=0
@end group
@end example
@end ifnottex
Programming Note: The gamma function can grow quite large even for small
input values. In many cases it may be preferable to use the natural
logarithm of the gamma function (@code{gammaln}) in calculations to minimize
loss of precision. The final result is then
@code{exp (@var{result_using_gammaln}).}
@xseealso{@ref{XREFgammainc,,gammainc}, @ref{XREFgammaln,,gammaln}, @ref{XREFfactorial,,factorial}}
@end deftypefn
@c gammainc scripts/specfun/gammainc.m
@anchor{XREFgammainc}
@deftypefn {} {} gammainc (@var{x}, @var{a})
@deftypefnx {} {} gammainc (@var{x}, @var{a}, @var{tail})
Compute the normalized incomplete gamma function.
This is defined as
@tex
$$
\gamma (x, a) = {1 \over {\Gamma (a)}}\displaystyle{\int_0^x t^{a-1} e^{-t} dt}
$$
@end tex
@ifnottex
@example
@group
x
1 /
gammainc (x, a) = --------- | exp (-t) t^(a-1) dt
gamma (a) /
t=0
@end group
@end example
@end ifnottex
with the limiting value of 1 as @var{x} approaches infinity.
The standard notation is @math{P(a,x)}, e.g., @nospell{Abramowitz} and
@nospell{Stegun} (6.5.1).
If @var{a} is scalar, then @code{gammainc (@var{x}, @var{a})} is returned
for each element of @var{x} and vice versa.
If neither @var{x} nor @var{a} is scalar then the sizes of @var{x} and
@var{a} must agree, and @code{gammainc} is applied element-by-element.
The elements of @var{a} must be non-negative.
By default, @var{tail} is @qcode{"lower"} and the incomplete gamma function
integrated from 0 to @var{x} is computed. If @var{tail} is @qcode{"upper"}
then the complementary function integrated from @var{x} to infinity is
calculated.
If @var{tail} is @qcode{"scaledlower"}, then the lower incomplete gamma
function is multiplied by
@tex
$\Gamma(a+1)\exp(x)x^{-a}$.
@end tex
@ifnottex
@math{gamma(a+1)*exp(x)/(x^a)}.
@end ifnottex
If @var{tail} is @qcode{"scaledupper"}, then the upper incomplete gamma
function is multiplied by the same quantity.
References:
@nospell{M. Abramowitz and I.A. Stegun},
@cite{Handbook of mathematical functions},
@nospell{Dover publications, Inc.}, 1972.
@nospell{W. Gautschi},
@cite{A computational procedure for incomplete gamma functions},
@nospell{ACM Trans.@: Math Software}, pp.@: 466--481, Vol 5, No.@: 4, 2012.
@nospell{W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery},
@cite{Numerical Recipes in Fortran 77}, ch.@: 6.2, Vol 1, 1992.
@xseealso{@ref{XREFgamma,,gamma}, @ref{XREFgammaincinv,,gammaincinv}, @ref{XREFgammaln,,gammaln}}
@end deftypefn
@c gammaincinv scripts/specfun/gammaincinv.m
@anchor{XREFgammaincinv}
@deftypefn {} {} gammaincinv (@var{y}, @var{a})
@deftypefnx {} {} gammaincinv (@var{y}, @var{a}, @var{tail})
Compute the inverse of the normalized incomplete gamma function.
The normalized incomplete gamma function is defined as
@tex
$$
\gamma (x, a) = {1 \over {\Gamma (a)}}\displaystyle{\int_0^x t^{a-1} e^{-t} dt}
$$
@end tex
@ifnottex
@example
@group
x
1 /
gammainc (x, a) = --------- | exp (-t) t^(a-1) dt
gamma (a) /
t=0
@end group
@end example
@end ifnottex
and @code{gammaincinv (gammainc (@var{x}, @var{a}), @var{a}) = @var{x}}
for each non-negative value of @var{x}. If @var{a} is scalar then
@code{gammaincinv (@var{y}, @var{a})} is returned for each element of
@var{y} and vice versa.
If neither @var{y} nor @var{a} is scalar then the sizes of @var{y} and
@var{a} must agree, and @code{gammaincinv} is applied element-by-element.
The variable @var{y} must be in the interval @math{[0,1]} while @var{a} must
be real and positive.
By default, @var{tail} is @qcode{"lower"} and the inverse of the incomplete
gamma function integrated from 0 to @var{x} is computed. If @var{tail} is
@qcode{"upper"}, then the complementary function integrated from @var{x} to
infinity is inverted.
The function is computed with Newton's method by solving
@tex
$$
y - \gamma (x, a) = 0
$$
@end tex
@ifnottex
@example
@var{y} - gammainc (@var{x}, @var{a}) = 0
@end example
@end ifnottex
Reference: @nospell{A. Gil, J. Segura, and N. M. Temme}, @cite{Efficient and
accurate algorithms for the computation and inversion of the incomplete
gamma function ratios}, @nospell{SIAM J. Sci.@: Computing}, pp.@:
A2965--A2981, Vol 34, 2012.
@xseealso{@ref{XREFgammainc,,gammainc}, @ref{XREFgamma,,gamma}, @ref{XREFgammaln,,gammaln}}
@end deftypefn
@c legendre scripts/specfun/legendre.m
@anchor{XREFlegendre}
@deftypefn {} {@var{l} =} legendre (@var{n}, @var{x})
@deftypefnx {} {@var{l} =} legendre (@var{n}, @var{x}, @var{normalization})
Compute the associated Legendre function of degree @var{n} and order
@var{m} = 0 @dots{} @var{n}.
The value @var{n} must be a real non-negative integer.
@var{x} is a vector with real-valued elements in the range [-1, 1].
The optional argument @var{normalization} may be one of @qcode{"unnorm"},
@qcode{"sch"}, or @qcode{"norm"}. The default if no normalization is given
is @qcode{"unnorm"}.
When the optional argument @var{normalization} is @qcode{"unnorm"}, compute
the associated Legendre function of degree @var{n} and order @var{m} and
return all values for @var{m} = 0 @dots{} @var{n}. The return value has one
dimension more than @var{x}.
The associated Legendre function of degree @var{n} and order @var{m}:
@tex
$$
P^m_n(x) = (-1)^m (1-x^2)^{m/2}{d^m\over {dx^m}}P_n (x)
$$
@end tex
@ifnottex
@example
@group
m m 2 m/2 d^m
P(x) = (-1) * (1-x ) * ---- P(x)
n dx^m n
@end group
@end example
@end ifnottex
@noindent
with Legendre polynomial of degree @var{n}:
@tex
$$
P(x) = {1\over{2^n n!}}\biggl({d^n\over{dx^n}}(x^2 - 1)^n\biggr)
$$
@end tex
@ifnottex
@example
@group
1 d^n 2 n
P(x) = ------ [----(x - 1) ]
n 2^n n! dx^n
@end group
@end example
@end ifnottex
@noindent
@code{legendre (3, [-1.0, -0.9, -0.8])} returns the matrix:
@example
@group
x | -1.0 | -0.9 | -0.8
------------------------------------
m=0 | -1.00000 | -0.47250 | -0.08000
m=1 | 0.00000 | -1.99420 | -1.98000
m=2 | 0.00000 | -2.56500 | -4.32000
m=3 | 0.00000 | -1.24229 | -3.24000
@end group
@end example
When the optional argument @var{normalization} is @qcode{"sch"}, compute
the Schmidt semi-normalized associated Legendre function. The Schmidt
semi-normalized associated Legendre function is related to the unnormalized
Legendre functions by the following:
For Legendre functions of degree @var{n} and order 0:
@tex
$$
SP^0_n (x) = P^0_n (x)
$$
@end tex
@ifnottex
@example
@group
0 0
SP(x) = P(x)
n n
@end group
@end example
@end ifnottex
For Legendre functions of degree n and order m:
@tex
$$
SP^m_n (x) = P^m_n (x)(-1)^m\biggl({2(n-m)!\over{(n+m)!}}\biggl)^{0.5}
$$
@end tex
@ifnottex
@example
@group
m m m 2(n-m)! 0.5
SP(x) = P(x) * (-1) * [-------]
n n (n+m)!
@end group
@end example
@end ifnottex
When the optional argument @var{normalization} is @qcode{"norm"}, compute
the fully normalized associated Legendre function. The fully normalized
associated Legendre function is related to the unnormalized associated
Legendre functions by the following:
For Legendre functions of degree @var{n} and order @var{m}
@tex
$$
NP^m_n (x) = P^m_n (x)(-1)^m\biggl({(n+0.5)(n-m)!\over{(n+m)!}}\biggl)^{0.5}
$$
@end tex
@ifnottex
@example
@group
m m m (n+0.5)(n-m)! 0.5
NP(x) = P(x) * (-1) * [-------------]
n n (n+m)!
@end group
@end example
@end ifnottex
@end deftypefn
@anchor{XREFgammaln}
@c lgamma libinterp/corefcn/mappers.cc
@anchor{XREFlgamma}
@deftypefn {} {} gammaln (@var{x})
@deftypefnx {} {} lgamma (@var{x})
Return the natural logarithm of the gamma function of @var{x}.
@xseealso{@ref{XREFgamma,,gamma}, @ref{XREFgammainc,,gammainc}}
@end deftypefn
@c psi libinterp/corefcn/psi.cc
@anchor{XREFpsi}
@deftypefn {} {} psi (@var{z})
@deftypefnx {} {} psi (@var{k}, @var{z})
Compute the psi (polygamma) function.
The polygamma functions are the @var{k}th derivative of the logarithm
of the gamma function. If unspecified, @var{k} defaults to zero. A value
of zero computes the digamma function, a value of 1, the trigamma function,
and so on.
The digamma function is defined:
@tex
$$
\Psi (z) = {d (log (\Gamma (z))) \over dx}
$$
@end tex
@ifnottex
@example
@group
psi (z) = d (log (gamma (z))) / dx
@end group
@end example
@end ifnottex
When computing the digamma function (when @var{k} equals zero), @var{z}
can have any value real or complex value. However, for polygamma functions
(@var{k} higher than 0), @var{z} must be real and non-negative.
@xseealso{@ref{XREFgamma,,gamma}, @ref{XREFgammainc,,gammainc}, @ref{XREFgammaln,,gammaln}}
@end deftypefn
@c sinint scripts/specfun/sinint.m
@anchor{XREFsinint}
@deftypefn {} {} sinint (@var{x})
Compute the sine integral function:
@tex
$$
{\rm Si} (x) = \int_0^x {\sin (t) \over t} dt
$$
@end tex
@ifnottex
@example
@group
x
/
Si (x) = | sin (t) / t dt
/
0
@end group
@end example
@end ifnottex
Reference:
@nospell{M. Abramowitz and I.A. Stegun},
@cite{Handbook of Mathematical Functions}, 1964.
@xseealso{@ref{XREFcosint,,cosint}, @ref{XREFexpint,,expint}, @ref{XREFsin,,sin}}
@end deftypefn
@node Rational Approximations
@section Rational Approximations
@c rat scripts/general/rat.m
@anchor{XREFrat}
@deftypefn {} {@var{s} =} rat (@var{x})
@deftypefnx {} {@var{s} =} rat (@var{x}, @var{tol})
@deftypefnx {} {[@var{n}, @var{d}] =} rat (@dots{})
Find a rational approximation of @var{x} to within the tolerance defined by
@var{tol}.
If unspecified, the default tolerance is @code{1e-6 * norm (@var{x}(:), 1)}.
When called with one output argument, return a string containing a
continued fraction expansion (multiple terms).
When called with two output arguments, return numeric matrices for the
numerator and denominator of a fractional representation of @var{x} such
that @code{@var{x} = @var{n} ./ @var{d}}.
For example:
@example
@group
s = rat (pi)
@result{} s = 3 + 1/(7 + 1/16)
[n, d] = rat (pi)
@result{} n = 355
@result{} d = 113
n / d - pi
@result{} 0.00000026676
@end group
@end example
Programming Note: With one output @code{rat} produces a string which is a
continued fraction expansion. To produce a string which is a simple
fraction (one numerator, one denominator) use @code{rats}.
@xseealso{@ref{XREFrats,,rats}, @ref{XREFformat,,format}}
@end deftypefn
@c rats libinterp/corefcn/pr-output.cc
@anchor{XREFrats}
@deftypefn {} {@var{s} =} rats (@var{x})
@deftypefnx {} {@var{s} =} rats (@var{x}, @var{len})
Convert @var{x} into a rational approximation represented as a string.
A rational approximation to a floating point number is a simple fraction
with numerator @var{N} and denominator @var{D} such that
@code{@var{x} = @var{N}/@var{D}}.
The optional second argument defines the maximum length of the string
representing the elements of @var{x}. By default, @var{len} is 9.
If the length of the smallest possible rational approximation exceeds
@var{len}, an asterisk (*) padded with spaces will be returned instead.
Example conversion from matrix to string, and back again.
@example
@group
r = rats (hilb (4));
x = str2num (r)
@end group
@end example
@xseealso{@ref{XREFrat,,rat}, @ref{XREFformat,,format}}
@end deftypefn
@node Coordinate Transformations
@section Coordinate Transformations
@c cart2pol scripts/general/cart2pol.m
@anchor{XREFcart2pol}
@deftypefn {} {[@var{theta}, @var{r}] =} cart2pol (@var{x}, @var{y})
@deftypefnx {} {[@var{theta}, @var{r}, @var{z}] =} cart2pol (@var{x}, @var{y}, @var{z})
@deftypefnx {} {[@var{theta}, @var{r}] =} cart2pol (@var{C})
@deftypefnx {} {[@var{theta}, @var{r}, @var{z}] =} cart2pol (@var{C})
@deftypefnx {} {@var{P} =} cart2pol (@dots{})
Transform Cartesian coordinates to polar or cylindrical coordinates.
The inputs @var{x}, @var{y} (, and @var{z}) must be the same shape, or
scalar. If called with a single matrix argument then each row of @var{C}
represents the Cartesian coordinate (@var{x}, @var{y} (, @var{z})).
@var{theta} describes the angle relative to the positive x-axis.
@var{r} is the distance to the z-axis @w{(0, 0, z)}.
If only a single return argument is requested then return a matrix @var{P}
where each row represents one polar/(cylindrical) coordinate
(@var{theta}, @var{phi} (, @var{z})).
@xseealso{@ref{XREFpol2cart,,pol2cart}, @ref{XREFcart2sph,,cart2sph}, @ref{XREFsph2cart,,sph2cart}}
@end deftypefn
@c pol2cart scripts/general/pol2cart.m
@anchor{XREFpol2cart}
@deftypefn {} {[@var{x}, @var{y}] =} pol2cart (@var{theta}, @var{r})
@deftypefnx {} {[@var{x}, @var{y}, @var{z}] =} pol2cart (@var{theta}, @var{r}, @var{z})
@deftypefnx {} {[@var{x}, @var{y}] =} pol2cart (@var{P})
@deftypefnx {} {[@var{x}, @var{y}, @var{z}] =} pol2cart (@var{P})
@deftypefnx {} {@var{C} =} pol2cart (@dots{})
Transform polar or cylindrical coordinates to Cartesian coordinates.
The inputs @var{theta}, @var{r}, (and @var{z}) must be the same shape, or
scalar. If called with a single matrix argument then each row of @var{P}
represents the polar/(cylindrical) coordinate (@var{theta}, @var{r}
(, @var{z})).
@var{theta} describes the angle relative to the positive x-axis.
@var{r} is the distance to the z-axis (0, 0, z).
If only a single return argument is requested then return a matrix @var{C}
where each row represents one Cartesian coordinate
(@var{x}, @var{y} (, @var{z})).
@xseealso{@ref{XREFcart2pol,,cart2pol}, @ref{XREFsph2cart,,sph2cart}, @ref{XREFcart2sph,,cart2sph}}
@end deftypefn
@c cart2sph scripts/general/cart2sph.m
@anchor{XREFcart2sph}
@deftypefn {} {[@var{theta}, @var{phi}, @var{r}] =} cart2sph (@var{x}, @var{y}, @var{z})
@deftypefnx {} {[@var{theta}, @var{phi}, @var{r}] =} cart2sph (@var{C})
@deftypefnx {} {@var{S} =} cart2sph (@dots{})
Transform Cartesian coordinates to spherical coordinates.
The inputs @var{x}, @var{y}, and @var{z} must be the same shape, or scalar.
If called with a single matrix argument then each row of @var{C} represents
the Cartesian coordinate (@var{x}, @var{y}, @var{z}).
@var{theta} describes the angle relative to the positive x-axis.
@var{phi} is the angle relative to the xy-plane.
@var{r} is the distance to the origin @w{(0, 0, 0)}.
If only a single return argument is requested then return a matrix @var{S}
where each row represents one spherical coordinate
(@var{theta}, @var{phi}, @var{r}).
@xseealso{@ref{XREFsph2cart,,sph2cart}, @ref{XREFcart2pol,,cart2pol}, @ref{XREFpol2cart,,pol2cart}}
@end deftypefn
@c sph2cart scripts/general/sph2cart.m
@anchor{XREFsph2cart}
@deftypefn {} {[@var{x}, @var{y}, @var{z}] =} sph2cart (@var{theta}, @var{phi}, @var{r})
@deftypefnx {} {[@var{x}, @var{y}, @var{z}] =} sph2cart (@var{S})
@deftypefnx {} {@var{C} =} sph2cart (@dots{})
Transform spherical coordinates to Cartesian coordinates.
The inputs @var{theta}, @var{phi}, and @var{r} must be the same shape, or
scalar. If called with a single matrix argument then each row of @var{S}
represents the spherical coordinate (@var{theta}, @var{phi}, @var{r}).
@var{theta} describes the angle relative to the positive x-axis.
@var{phi} is the angle relative to the xy-plane.
@var{r} is the distance to the origin @w{(0, 0, 0)}.
If only a single return argument is requested then return a matrix @var{C}
where each row represents one Cartesian coordinate
(@var{x}, @var{y}, @var{z}).
@xseealso{@ref{XREFcart2sph,,cart2sph}, @ref{XREFpol2cart,,pol2cart}, @ref{XREFcart2pol,,cart2pol}}
@end deftypefn
@node Mathematical Constants
@section Mathematical Constants
@c e libinterp/corefcn/data.cc
@anchor{XREFe}
@deftypefn {} {} e
@deftypefnx {} {} e (@var{n})
@deftypefnx {} {} e (@var{n}, @var{m})
@deftypefnx {} {} e (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {} {} e (@dots{}, @var{class})
Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the base of natural logarithms.
The constant
@tex
$e$ satisfies the equation $\log (e) = 1$.
@end tex
@ifnottex
@samp{e} satisfies the equation @code{log} (e) = 1.
@end ifnottex
When called with no arguments, return a scalar with the value @math{e}.
When called with a single argument, return a square matrix with the
dimension specified.
When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either @qcode{"double"} or @qcode{"single"}.
@xseealso{@ref{XREFlog,,log}, @ref{XREFexp,,exp}, @ref{XREFpi,,pi}, @ref{XREFI,,I}}
@end deftypefn
@c pi libinterp/corefcn/data.cc
@anchor{XREFpi}
@deftypefn {} {} pi
@deftypefnx {} {} pi (@var{n})
@deftypefnx {} {} pi (@var{n}, @var{m})
@deftypefnx {} {} pi (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {} {} pi (@dots{}, @var{class})
Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the ratio of the circumference of a circle to its
@tex
diameter($\pi$).
@end tex
@ifnottex
diameter.
@end ifnottex
Internally, @code{pi} is computed as @samp{4.0 * atan (1.0)}.
When called with no arguments, return a scalar with the value of
@tex
$\pi$.
@end tex
@ifnottex
pi.
@end ifnottex
When called with a single argument, return a square matrix with the
dimension specified.
When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either @qcode{"double"} or @qcode{"single"}.
@xseealso{@ref{XREFe,,e}, @ref{XREFI,,I}}
@end deftypefn
@c I libinterp/corefcn/data.cc
@anchor{XREFI}
@c List other forms of function in documentation index
@findex i
@findex j
@findex J
@deftypefn {} {} I
@deftypefnx {} {} I (@var{n})
@deftypefnx {} {} I (@var{n}, @var{m})
@deftypefnx {} {} I (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {} {} I (@dots{}, @var{class})
Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the pure imaginary unit, defined as
@tex
$\sqrt{-1}$.
@end tex
@ifnottex
@w{@code{sqrt (-1)}}.
@end ifnottex
I, and its equivalents i, j, and J, are functions so any of the names may
be reused for other purposes (such as i for a counter variable).
When called with no arguments, return a scalar with the value @math{i}.
When called with a single argument, return a square matrix with the
dimension specified.
When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either @qcode{"double"} or @qcode{"single"}.
@xseealso{@ref{XREFe,,e}, @ref{XREFpi,,pi}, @ref{XREFlog,,log}, @ref{XREFexp,,exp}}
@end deftypefn
@c Inf libinterp/corefcn/data.cc
@anchor{XREFInf}
@c List other form of function in documentation index
@findex inf
@deftypefn {} {} Inf
@deftypefnx {} {} Inf (@var{n})
@deftypefnx {} {} Inf (@var{n}, @var{m})
@deftypefnx {} {} Inf (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {} {} Inf (@dots{}, @var{class})
Return a scalar, matrix or N-dimensional array whose elements are all equal
to the IEEE representation for positive infinity.
Infinity is produced when results are too large to be represented using the
IEEE floating point format for numbers. Two common examples which produce
infinity are division by zero and overflow.
@example
@group
[ 1/0 e^800 ]
@result{} Inf Inf
@end group
@end example
When called with no arguments, return a scalar with the value @samp{Inf}.
When called with a single argument, return a square matrix with the
dimension specified.
When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either @qcode{"double"} or @qcode{"single"}.
@xseealso{@ref{XREFisinf,,isinf}, @ref{XREFNaN,,NaN}}
@end deftypefn
@c NaN libinterp/corefcn/data.cc
@anchor{XREFNaN}
@c List other form of function in documentation index
@findex nan
@deftypefn {} {} NaN
@deftypefnx {} {} NaN (@var{n})
@deftypefnx {} {} NaN (@var{n}, @var{m})
@deftypefnx {} {} NaN (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {} {} NaN (@dots{}, @var{class})
Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the IEEE symbol NaN (Not a Number).
NaN is the result of operations which do not produce a well defined
numerical result. Common operations which produce a NaN are arithmetic
with infinity
@tex
($\infty - \infty$), zero divided by zero ($0/0$),
@end tex
@ifnottex
(Inf - Inf), zero divided by zero (0/0),
@end ifnottex
and any operation involving another NaN value (5 + NaN).
Note that NaN always compares not equal to NaN (NaN != NaN). This behavior
is specified by the IEEE standard for floating point arithmetic. To find
NaN values, use the @code{isnan} function.
When called with no arguments, return a scalar with the value @samp{NaN}.
When called with a single argument, return a square matrix with the
dimension specified.
When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either @qcode{"double"} or @qcode{"single"}.
@xseealso{@ref{XREFisnan,,isnan}, @ref{XREFInf,,Inf}}
@end deftypefn
@c eps libinterp/corefcn/data.cc
@anchor{XREFeps}
@deftypefn {} {} eps
@deftypefnx {} {} eps (@var{x})
@deftypefnx {} {} eps (@var{n}, @var{m})
@deftypefnx {} {} eps (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {} {} eps (@dots{}, @var{class})
Return a scalar, matrix or N-dimensional array whose elements are all eps,
the machine precision.
More precisely, @code{eps} is the relative spacing between any two adjacent
numbers in the machine's floating point system. This number is obviously
system dependent. On machines that support IEEE floating point arithmetic,
@code{eps} is approximately
@tex
$2.2204\times10^{-16}$ for double precision and $1.1921\times10^{-7}$
@end tex
@ifnottex
2.2204e-16 for double precision and 1.1921e-07
@end ifnottex
for single precision.
When called with no arguments, return a scalar with the value
@code{eps (1.0)}.
Given a single argument @var{x}, return the distance between @var{x} and the
next largest value.
When called with more than one argument the first two arguments are taken as
the number of rows and columns and any further arguments specify additional
matrix dimensions. The optional argument @var{class} specifies the return
type and may be either @qcode{"double"} or @qcode{"single"}.
@xseealso{@ref{XREFrealmax,,realmax}, @ref{XREFrealmin,,realmin}, @ref{XREFintmax,,intmax}, @ref{XREFflintmax,,flintmax}}
@end deftypefn
@c realmax libinterp/corefcn/data.cc
@anchor{XREFrealmax}
@deftypefn {} {} realmax
@deftypefnx {} {} realmax (@var{n})
@deftypefnx {} {} realmax (@var{n}, @var{m})
@deftypefnx {} {} realmax (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {} {} realmax (@dots{}, @var{class})
Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the largest floating point number that is representable.
The actual value is system dependent. On machines that support IEEE
floating point arithmetic, @code{realmax} is approximately
@tex
$1.7977\times10^{308}$ for double precision and $3.4028\times10^{38}$
@end tex
@ifnottex
1.7977e+308 for double precision and 3.4028e+38
@end ifnottex
for single precision.
When called with no arguments, return a scalar with the value
@code{realmax (@qcode{"double"})}.
When called with a single argument, return a square matrix with the
dimension specified.
When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either @qcode{"double"} or @qcode{"single"}.
@xseealso{@ref{XREFrealmin,,realmin}, @ref{XREFintmax,,intmax}, @ref{XREFflintmax,,flintmax}, @ref{XREFeps,,eps}}
@end deftypefn
@c realmin libinterp/corefcn/data.cc
@anchor{XREFrealmin}
@deftypefn {} {} realmin
@deftypefnx {} {} realmin (@var{n})
@deftypefnx {} {} realmin (@var{n}, @var{m})
@deftypefnx {} {} realmin (@var{n}, @var{m}, @var{k}, @dots{})
@deftypefnx {} {} realmin (@dots{}, @var{class})
Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the smallest normalized floating point number that is representable.
The actual value is system dependent. On machines that support
IEEE floating point arithmetic, @code{realmin} is approximately
@tex
$2.2251\times10^{-308}$ for double precision and $1.1755\times10^{-38}$
@end tex
@ifnottex
2.2251e-308 for double precision and 1.1755e-38
@end ifnottex
for single precision.
When called with no arguments, return a scalar with the value
@code{realmin (@qcode{"double"})}.
When called with a single argument, return a square matrix with the
dimension specified.
When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
The optional argument @var{class} specifies the return type and may be
either @qcode{"double"} or @qcode{"single"}.
@xseealso{@ref{XREFrealmax,,realmax}, @ref{XREFintmin,,intmin}, @ref{XREFeps,,eps}}
@end deftypefn
|