File: Coordinate-Transformations.html

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (157 lines) | stat: -rw-r--r-- 8,671 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Coordinate Transformations (GNU Octave (version 6.2.0))</title>

<meta name="description" content="Coordinate Transformations (GNU Octave (version 6.2.0))">
<meta name="keywords" content="Coordinate Transformations (GNU Octave (version 6.2.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Arithmetic.html" rel="up" title="Arithmetic">
<link href="Mathematical-Constants.html" rel="next" title="Mathematical Constants">
<link href="Rational-Approximations.html" rel="prev" title="Rational Approximations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<span id="Coordinate-Transformations"></span><div class="header">
<p>
Next: <a href="Mathematical-Constants.html" accesskey="n" rel="next">Mathematical Constants</a>, Previous: <a href="Rational-Approximations.html" accesskey="p" rel="prev">Rational Approximations</a>, Up: <a href="Arithmetic.html" accesskey="u" rel="up">Arithmetic</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Coordinate-Transformations-1"></span><h3 class="section">17.8 Coordinate Transformations</h3>

<span id="XREFcart2pol"></span><dl>
<dt id="index-cart2pol">: <em>[<var>theta</var>, <var>r</var>] =</em> <strong>cart2pol</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt id="index-cart2pol-1">: <em>[<var>theta</var>, <var>r</var>, <var>z</var>] =</em> <strong>cart2pol</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt id="index-cart2pol-2">: <em>[<var>theta</var>, <var>r</var>] =</em> <strong>cart2pol</strong> <em>(<var>C</var>)</em></dt>
<dt id="index-cart2pol-3">: <em>[<var>theta</var>, <var>r</var>, <var>z</var>] =</em> <strong>cart2pol</strong> <em>(<var>C</var>)</em></dt>
<dt id="index-cart2pol-4">: <em><var>P</var> =</em> <strong>cart2pol</strong> <em>(&hellip;)</em></dt>
<dd>
<p>Transform Cartesian coordinates to polar or cylindrical coordinates.
</p>
<p>The inputs <var>x</var>, <var>y</var> (, and <var>z</var>) must be the same shape, or
scalar.  If called with a single matrix argument then each row of <var>C</var>
represents the Cartesian coordinate (<var>x</var>, <var>y</var> (, <var>z</var>)).
</p>
<p><var>theta</var> describes the angle relative to the positive x-axis.
</p>
<p><var>r</var> is the distance to the z-axis (0,&nbsp;0,&nbsp;z)<!-- /@w -->.
</p>
<p>If only a single return argument is requested then return a matrix <var>P</var>
where each row represents one polar/(cylindrical) coordinate
(<var>theta</var>, <var>phi</var> (, <var>z</var>)).
</p>
<p><strong>See also:</strong> <a href="#XREFpol2cart">pol2cart</a>, <a href="#XREFcart2sph">cart2sph</a>, <a href="#XREFsph2cart">sph2cart</a>.
</p></dd></dl>


<span id="XREFpol2cart"></span><dl>
<dt id="index-pol2cart">: <em>[<var>x</var>, <var>y</var>] =</em> <strong>pol2cart</strong> <em>(<var>theta</var>, <var>r</var>)</em></dt>
<dt id="index-pol2cart-1">: <em>[<var>x</var>, <var>y</var>, <var>z</var>] =</em> <strong>pol2cart</strong> <em>(<var>theta</var>, <var>r</var>, <var>z</var>)</em></dt>
<dt id="index-pol2cart-2">: <em>[<var>x</var>, <var>y</var>] =</em> <strong>pol2cart</strong> <em>(<var>P</var>)</em></dt>
<dt id="index-pol2cart-3">: <em>[<var>x</var>, <var>y</var>, <var>z</var>] =</em> <strong>pol2cart</strong> <em>(<var>P</var>)</em></dt>
<dt id="index-pol2cart-4">: <em><var>C</var> =</em> <strong>pol2cart</strong> <em>(&hellip;)</em></dt>
<dd><p>Transform polar or cylindrical coordinates to Cartesian coordinates.
</p>
<p>The inputs <var>theta</var>, <var>r</var>, (and <var>z</var>) must be the same shape, or
scalar.  If called with a single matrix argument then each row of <var>P</var>
represents the polar/(cylindrical) coordinate (<var>theta</var>, <var>r</var>
(, <var>z</var>)).
</p>
<p><var>theta</var> describes the angle relative to the positive x-axis.
</p>
<p><var>r</var> is the distance to the z-axis (0, 0, z).
</p>
<p>If only a single return argument is requested then return a matrix <var>C</var>
where each row represents one Cartesian coordinate
(<var>x</var>, <var>y</var> (, <var>z</var>)).
</p>
<p><strong>See also:</strong> <a href="#XREFcart2pol">cart2pol</a>, <a href="#XREFsph2cart">sph2cart</a>, <a href="#XREFcart2sph">cart2sph</a>.
</p></dd></dl>


<span id="XREFcart2sph"></span><dl>
<dt id="index-cart2sph">: <em>[<var>theta</var>, <var>phi</var>, <var>r</var>] =</em> <strong>cart2sph</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt id="index-cart2sph-1">: <em>[<var>theta</var>, <var>phi</var>, <var>r</var>] =</em> <strong>cart2sph</strong> <em>(<var>C</var>)</em></dt>
<dt id="index-cart2sph-2">: <em><var>S</var> =</em> <strong>cart2sph</strong> <em>(&hellip;)</em></dt>
<dd><p>Transform Cartesian coordinates to spherical coordinates.
</p>
<p>The inputs <var>x</var>, <var>y</var>, and <var>z</var> must be the same shape, or scalar.
If called with a single matrix argument then each row of <var>C</var> represents
the Cartesian coordinate (<var>x</var>, <var>y</var>, <var>z</var>).
</p>
<p><var>theta</var> describes the angle relative to the positive x-axis.
</p>
<p><var>phi</var> is the angle relative to the xy-plane.
</p>
<p><var>r</var> is the distance to the origin (0,&nbsp;0,&nbsp;0)<!-- /@w -->.
</p>
<p>If only a single return argument is requested then return a matrix <var>S</var>
where each row represents one spherical coordinate
(<var>theta</var>, <var>phi</var>, <var>r</var>).
</p>
<p><strong>See also:</strong> <a href="#XREFsph2cart">sph2cart</a>, <a href="#XREFcart2pol">cart2pol</a>, <a href="#XREFpol2cart">pol2cart</a>.
</p></dd></dl>


<span id="XREFsph2cart"></span><dl>
<dt id="index-sph2cart">: <em>[<var>x</var>, <var>y</var>, <var>z</var>] =</em> <strong>sph2cart</strong> <em>(<var>theta</var>, <var>phi</var>, <var>r</var>)</em></dt>
<dt id="index-sph2cart-1">: <em>[<var>x</var>, <var>y</var>, <var>z</var>] =</em> <strong>sph2cart</strong> <em>(<var>S</var>)</em></dt>
<dt id="index-sph2cart-2">: <em><var>C</var> =</em> <strong>sph2cart</strong> <em>(&hellip;)</em></dt>
<dd><p>Transform spherical coordinates to Cartesian coordinates.
</p>
<p>The inputs <var>theta</var>, <var>phi</var>, and <var>r</var> must be the same shape, or
scalar.  If called with a single matrix argument then each row of <var>S</var>
represents the spherical coordinate (<var>theta</var>, <var>phi</var>, <var>r</var>).
</p>
<p><var>theta</var> describes the angle relative to the positive x-axis.
</p>
<p><var>phi</var> is the angle relative to the xy-plane.
</p>
<p><var>r</var> is the distance to the origin (0,&nbsp;0,&nbsp;0)<!-- /@w -->.
</p>
<p>If only a single return argument is requested then return a matrix <var>C</var>
where each row represents one Cartesian coordinate
(<var>x</var>, <var>y</var>, <var>z</var>).
</p>
<p><strong>See also:</strong> <a href="#XREFcart2sph">cart2sph</a>, <a href="#XREFpol2cart">pol2cart</a>, <a href="#XREFcart2pol">cart2pol</a>.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Mathematical-Constants.html" accesskey="n" rel="next">Mathematical Constants</a>, Previous: <a href="Rational-Approximations.html" accesskey="p" rel="prev">Rational Approximations</a>, Up: <a href="Arithmetic.html" accesskey="u" rel="up">Arithmetic</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>