File: Correlation-and-Regression-Analysis.html

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (238 lines) | stat: -rw-r--r-- 10,979 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Correlation and Regression Analysis (GNU Octave (version 6.2.0))</title>

<meta name="description" content="Correlation and Regression Analysis (GNU Octave (version 6.2.0))">
<meta name="keywords" content="Correlation and Regression Analysis (GNU Octave (version 6.2.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Statistics.html" rel="up" title="Statistics">
<link href="Distributions.html" rel="next" title="Distributions">
<link href="Basic-Statistical-Functions.html" rel="prev" title="Basic Statistical Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<span id="Correlation-and-Regression-Analysis"></span><div class="header">
<p>
Next: <a href="Distributions.html" accesskey="n" rel="next">Distributions</a>, Previous: <a href="Basic-Statistical-Functions.html" accesskey="p" rel="prev">Basic Statistical Functions</a>, Up: <a href="Statistics.html" accesskey="u" rel="up">Statistics</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Correlation-and-Regression-Analysis-1"></span><h3 class="section">26.4 Correlation and Regression Analysis</h3>


<span id="XREFcov"></span><dl>
<dt id="index-cov">: <em></em> <strong>cov</strong> <em>(<var>x</var>)</em></dt>
<dt id="index-cov-1">: <em></em> <strong>cov</strong> <em>(<var>x</var>, <var>opt</var>)</em></dt>
<dt id="index-cov-2">: <em></em> <strong>cov</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt id="index-cov-3">: <em></em> <strong>cov</strong> <em>(<var>x</var>, <var>y</var>, <var>opt</var>)</em></dt>
<dd><p>Compute the covariance matrix.
</p>
<p>If each row of <var>x</var> and <var>y</var> is an observation, and each column is
a variable, then the (<var>i</var>,&nbsp;<var>j</var><span class="nolinebreak">)-th</span><!-- /@w --> entry of
<code>cov (<var>x</var>, <var>y</var>)</code> is the covariance between the <var>i</var>-th
variable in <var>x</var> and the <var>j</var>-th variable in <var>y</var>.
</p>
<div class="example">
<pre class="example">cov (<var>x</var>) = 1/(N-1) * SUM_i (<var>x</var>(i) - mean(<var>x</var>)) * (<var>y</var>(i) - mean(<var>y</var>))
</pre></div>

<p>where <em>N</em> is the length of the <var>x</var> and <var>y</var> vectors.
</p>

<p>If called with one argument, compute <code>cov (<var>x</var>, <var>x</var>)</code>, the
covariance between the columns of <var>x</var>.
</p>
<p>The argument <var>opt</var> determines the type of normalization to use.
Valid values are
</p>
<dl compact="compact">
<dt>0:</dt>
<dd><p>normalize with <em>N-1</em>, provides the best unbiased estimator of the
covariance [default]
</p>
</dd>
<dt>1:</dt>
<dd><p>normalize with <em>N</em>, this provides the second moment around the mean
</p></dd>
</dl>

<p>Compatibility Note:: Octave always treats rows of <var>x</var> and <var>y</var>
as multivariate random variables.
For two inputs, however, <small>MATLAB</small> treats <var>x</var> and <var>y</var> as two
univariate distributions regardless of their shapes, and will calculate
<code>cov ([<var>x</var>(:), <var>y</var>(:)])</code> whenever the number of elements in
<var>x</var> and <var>y</var> are equal.  This will result in a 2x2 matrix.
Code relying on <small>MATLAB</small>&rsquo;s definition will need to be changed when
running in Octave.
</p>
<p><strong>See also:</strong> <a href="#XREFcorr">corr</a>.
</p></dd></dl>


<span id="XREFcorr"></span><dl>
<dt id="index-corr">: <em></em> <strong>corr</strong> <em>(<var>x</var>)</em></dt>
<dt id="index-corr-1">: <em></em> <strong>corr</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><p>Compute matrix of correlation coefficients.
</p>
<p>If each row of <var>x</var> and <var>y</var> is an observation and each column is
a variable, then the (<var>i</var>,&nbsp;<var>j</var><span class="nolinebreak">)-th</span><!-- /@w --> entry of
<code>corr (<var>x</var>, <var>y</var>)</code> is the correlation between the
<var>i</var>-th variable in <var>x</var> and the <var>j</var>-th variable in <var>y</var>.
</p>
<div class="example">
<pre class="example">corr (<var>x</var>,<var>y</var>) = cov (<var>x</var>,<var>y</var>) / (std (<var>x</var>) * std (<var>y</var>))
</pre></div>

<p>If called with one argument, compute <code>corr (<var>x</var>, <var>x</var>)</code>,
the correlation between the columns of <var>x</var>.
</p>
<p><strong>See also:</strong> <a href="#XREFcov">cov</a>.
</p></dd></dl>


<span id="XREFcorrcoef"></span><dl>
<dt id="index-corrcoef">: <em><var>r</var> =</em> <strong>corrcoef</strong> <em>(<var>x</var>)</em></dt>
<dt id="index-corrcoef-1">: <em><var>r</var> =</em> <strong>corrcoef</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt id="index-corrcoef-2">: <em><var>r</var> =</em> <strong>corrcoef</strong> <em>(&hellip;, <var>param</var>, <var>value</var>, &hellip;)</em></dt>
<dt id="index-corrcoef-3">: <em>[<var>r</var>, <var>p</var>] =</em> <strong>corrcoef</strong> <em>(&hellip;)</em></dt>
<dt id="index-corrcoef-4">: <em>[<var>r</var>, <var>p</var>, <var>lci</var>, <var>hci</var>] =</em> <strong>corrcoef</strong> <em>(&hellip;)</em></dt>
<dd><p>Compute a matrix of correlation coefficients.
</p>
<p><var>x</var> is an array where each column contains a variable and each row is
an observation.
</p>
<p>If a second input <var>y</var> (of the same size as <var>x</var>) is given then
calculate the correlation coefficients between <var>x</var> and <var>y</var>.
</p>
<p><var>param</var>, <var>value</var> are optional pairs of parameters and values which
modify the calculation.  Valid options are:
</p>
<dl compact="compact">
<dt><code>&quot;alpha&quot;</code></dt>
<dd><p>Confidence level used for the bounds of the confidence interval, <var>lci</var>
and <var>hci</var>.  Default is 0.05, i.e., 95% confidence interval.
</p>
</dd>
<dt><code>&quot;rows&quot;</code></dt>
<dd><p>Determine processing of NaN values.  Acceptable values are <code>&quot;all&quot;</code>,
<code>&quot;complete&quot;</code>, and <code>&quot;pairwise&quot;</code>.  Default is <code>&quot;all&quot;</code>.
With <code>&quot;complete&quot;</code>, only the rows without NaN values are considered.
With <code>&quot;pairwise&quot;</code>, the selection of NaN-free rows is made for each
pair of variables.
</p></dd>
</dl>

<p>Output <var>r</var> is a matrix of Pearson&rsquo;s product moment correlation
coefficients for each pair of variables.
</p>
<p>Output <var>p</var> is a matrix of pair-wise p-values testing for the null
hypothesis of a correlation coefficient of zero.
</p>
<p>Outputs <var>lci</var> and <var>hci</var> are matrices containing, respectively, the
lower and higher bounds of the 95% confidence interval of each correlation
coefficient.
</p>
<p><strong>See also:</strong> <a href="#XREFcorr">corr</a>, <a href="#XREFcov">cov</a>.
</p></dd></dl>


<span id="XREFspearman"></span><dl>
<dt id="index-spearman">: <em></em> <strong>spearman</strong> <em>(<var>x</var>)</em></dt>
<dt id="index-spearman-1">: <em></em> <strong>spearman</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><span id="index-Spearman_0027s-Rho"></span>
<p>Compute Spearman&rsquo;s rank correlation coefficient
<var>rho</var>.
</p>
<p>For two data vectors <var>x</var> and <var>y</var>, Spearman&rsquo;s
<var>rho</var>
is the correlation coefficient of the ranks of <var>x</var> and <var>y</var>.
</p>
<p>If <var>x</var> and <var>y</var> are drawn from independent distributions,
<var>rho</var>
has zero mean and variance
<code>1 / (N - 1)</code>,
where <em>N</em> is the length of the <var>x</var> and <var>y</var> vectors, and is
asymptotically normally distributed.
</p>
<p><code>spearman (<var>x</var>)</code> is equivalent to
<code>spearman (<var>x</var>, <var>x</var>)</code>.
</p>
<p><strong>See also:</strong> <a href="Basic-Statistical-Functions.html#XREFranks">ranks</a>, <a href="#XREFkendall">kendall</a>.
</p></dd></dl>


<span id="XREFkendall"></span><dl>
<dt id="index-kendall">: <em></em> <strong>kendall</strong> <em>(<var>x</var>)</em></dt>
<dt id="index-kendall-1">: <em></em> <strong>kendall</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><span id="index-Kendall_0027s-Tau"></span>
<p>Compute Kendall&rsquo;s
<var>tau</var>.
</p>
<p>For two data vectors <var>x</var>, <var>y</var> of common length <em>N</em>, Kendall&rsquo;s
<var>tau</var>
is the correlation of the signs of all rank differences of
<var>x</var> and <var>y</var>; i.e., if both <var>x</var> and <var>y</var> have distinct
entries, then
</p>

<div class="example">
<pre class="example">         1
<var>tau</var> = -------   SUM sign (<var>q</var>(i) - <var>q</var>(j)) * sign (<var>r</var>(i) - <var>r</var>(j))
      N (N-1)   i,j
</pre></div>

<p>in which the
<var>q</var>(i) and <var>r</var>(i)
are the ranks of <var>x</var> and <var>y</var>, respectively.
</p>
<p>If <var>x</var> and <var>y</var> are drawn from independent distributions,
Kendall&rsquo;s
<var>tau</var>
is asymptotically normal with mean 0 and variance
<code>(2 * (2N+5)) / (9 * N * (N-1))</code>.
</p>
<p><code>kendall (<var>x</var>)</code> is equivalent to <code>kendall (<var>x</var>,
<var>x</var>)</code>.
</p>
<p><strong>See also:</strong> <a href="Basic-Statistical-Functions.html#XREFranks">ranks</a>, <a href="#XREFspearman">spearman</a>.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Distributions.html" accesskey="n" rel="next">Distributions</a>, Previous: <a href="Basic-Statistical-Functions.html" accesskey="p" rel="prev">Basic Statistical Functions</a>, Up: <a href="Statistics.html" accesskey="u" rel="up">Statistics</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>