1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Creating Permutation Matrices (GNU Octave (version 6.2.0))</title>
<meta name="description" content="Creating Permutation Matrices (GNU Octave (version 6.2.0))">
<meta name="keywords" content="Creating Permutation Matrices (GNU Octave (version 6.2.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Basic-Usage.html" rel="up" title="Basic Usage">
<link href="Explicit-and-Implicit-Conversions.html" rel="next" title="Explicit and Implicit Conversions">
<link href="Creating-Diagonal-Matrices.html" rel="prev" title="Creating Diagonal Matrices">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<span id="Creating-Permutation-Matrices"></span><div class="header">
<p>
Next: <a href="Explicit-and-Implicit-Conversions.html" accesskey="n" rel="next">Explicit and Implicit Conversions</a>, Previous: <a href="Creating-Diagonal-Matrices.html" accesskey="p" rel="prev">Creating Diagonal Matrices</a>, Up: <a href="Basic-Usage.html" accesskey="u" rel="up">Basic Usage</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Creating-Permutation-Matrices-1"></span><h4 class="subsection">21.1.2 Creating Permutation Matrices</h4>
<p>For creating permutation matrices, Octave does not introduce a new function,
but rather overrides an existing syntax: permutation matrices can be
conveniently created by indexing an identity matrix by permutation vectors.
That is, if <var>q</var> is a permutation vector of length <var>n</var>, the expression
</p>
<div class="example">
<pre class="example"> P = eye (n) (:, q);
</pre></div>
<p>will create a permutation matrix - a special matrix object.
</p>
<div class="example">
<pre class="example">eye (n) (q, :)
</pre></div>
<p>will also work (and create a row permutation matrix), as well as
</p>
<div class="example">
<pre class="example">eye (n) (q1, q2).
</pre></div>
<p>For example:
</p>
<div class="example">
<pre class="example"> eye (4) ([1,3,2,4],:)
⇒
Permutation Matrix
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
eye (4) (:,[1,3,2,4])
⇒
Permutation Matrix
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
</pre></div>
<p>Mathematically, an identity matrix is both diagonal and permutation matrix.
In Octave, <code>eye (n)</code> returns a diagonal matrix, because a matrix
can only have one class. You can convert this diagonal matrix to a permutation
matrix by indexing it by an identity permutation, as shown below.
This is a special property of the identity matrix; indexing other diagonal
matrices generally produces a full matrix.
</p>
<div class="example">
<pre class="example"> eye (3)
⇒
Diagonal Matrix
1 0 0
0 1 0
0 0 1
eye(3)(1:3,:)
⇒
Permutation Matrix
1 0 0
0 1 0
0 0 1
</pre></div>
<p>Some other built-in functions can also return permutation matrices. Examples
include
<em>inv</em> or <em>lu</em>.
</p>
</body>
</html>
|