1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Matrix Factorizations (GNU Octave (version 6.2.0))</title>
<meta name="description" content="Matrix Factorizations (GNU Octave (version 6.2.0))">
<meta name="keywords" content="Matrix Factorizations (GNU Octave (version 6.2.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Linear-Algebra.html" rel="up" title="Linear Algebra">
<link href="Functions-of-a-Matrix.html" rel="next" title="Functions of a Matrix">
<link href="Basic-Matrix-Functions.html" rel="prev" title="Basic Matrix Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<span id="Matrix-Factorizations"></span><div class="header">
<p>
Next: <a href="Functions-of-a-Matrix.html" accesskey="n" rel="next">Functions of a Matrix</a>, Previous: <a href="Basic-Matrix-Functions.html" accesskey="p" rel="prev">Basic Matrix Functions</a>, Up: <a href="Linear-Algebra.html" accesskey="u" rel="up">Linear Algebra</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Matrix-Factorizations-1"></span><h3 class="section">18.3 Matrix Factorizations</h3>
<span id="index-matrix-factorizations"></span>
<span id="XREFchol"></span><dl>
<dt id="index-chol">: <em><var>R</var> =</em> <strong>chol</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-chol-1">: <em>[<var>R</var>, <var>p</var>] =</em> <strong>chol</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-chol-2">: <em>[<var>R</var>, <var>p</var>, <var>Q</var>] =</em> <strong>chol</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-chol-3">: <em>[<var>R</var>, <var>p</var>, <var>Q</var>] =</em> <strong>chol</strong> <em>(<var>A</var>, "vector")</em></dt>
<dt id="index-chol-4">: <em>[<var>L</var>, …] =</em> <strong>chol</strong> <em>(…, "lower")</em></dt>
<dt id="index-chol-5">: <em>[<var>R</var>, …] =</em> <strong>chol</strong> <em>(…, "upper")</em></dt>
<dd><span id="index-Cholesky-factorization"></span>
<p>Compute the upper Cholesky factor, <var>R</var>, of the real symmetric
or complex Hermitian positive definite matrix <var>A</var>.
</p>
<p>The upper Cholesky factor <var>R</var> is computed by using the upper
triangular part of matrix <var>A</var> and is defined by
</p>
<div class="example">
<pre class="example"><var>R</var>' * <var>R</var> = <var>A</var>.
</pre></div>
<p>Calling <code>chol</code> using the optional <code>"upper"</code> flag has the
same behavior. In contrast, using the optional <code>"lower"</code> flag,
<code>chol</code> returns the lower triangular factorization, computed by using
the lower triangular part of matrix <var>A</var>, such that
</p>
<div class="example">
<pre class="example"><var>L</var> * <var>L</var>' = <var>A</var>.
</pre></div>
<p>Called with one output argument <code>chol</code> fails if matrix <var>A</var> is
not positive definite. Note that if matrix <var>A</var> is not real symmetric
or complex Hermitian then the lower triangular part is considered to be
the (complex conjugate) transpose of the upper triangular part, or vice
versa, given the <code>"lower"</code> flag.
</p>
<p>Called with two or more output arguments <var>p</var> flags whether the matrix
<var>A</var> was positive definite and <code>chol</code> does not fail. A zero value
of <var>p</var> indicates that matrix <var>A</var> is positive definite and <var>R</var>
gives the factorization. Otherwise, <var>p</var> will have a positive value.
</p>
<p>If called with three output arguments matrix <var>A</var> must be sparse and
a sparsity preserving row/column permutation is applied to matrix <var>A</var>
prior to the factorization. That is <var>R</var> is the factorization of
<code><var>A</var>(<var>Q</var>,<var>Q</var>)</code> such that
</p>
<div class="example">
<pre class="example"><var>R</var>' * <var>R</var> = <var>Q</var>' * <var>A</var> * <var>Q</var>.
</pre></div>
<p>The sparsity preserving permutation is generally returned as a matrix.
However, given the optional flag <code>"vector"</code>, <var>Q</var> will be
returned as a vector such that
</p>
<div class="example">
<pre class="example"><var>R</var>' * <var>R</var> = <var>A</var>(<var>Q</var>, <var>Q</var>).
</pre></div>
<p>In general the lower triangular factorization is significantly faster for
sparse matrices.
</p>
<p><strong>See also:</strong> <a href="#XREFhess">hess</a>, <a href="#XREFlu">lu</a>, <a href="#XREFqr">qr</a>, <a href="#XREFqz">qz</a>, <a href="#XREFschur">schur</a>, <a href="#XREFsvd">svd</a>, <a href="Iterative-Techniques.html#XREFichol">ichol</a>, <a href="#XREFcholinv">cholinv</a>, <a href="#XREFchol2inv">chol2inv</a>, <a href="#XREFcholupdate">cholupdate</a>, <a href="#XREFcholinsert">cholinsert</a>, <a href="#XREFcholdelete">choldelete</a>, <a href="#XREFcholshift">cholshift</a>.
</p></dd></dl>
<span id="XREFcholinv"></span><dl>
<dt id="index-cholinv">: <em></em> <strong>cholinv</strong> <em>(<var>A</var>)</em></dt>
<dd><p>Compute the inverse of the symmetric positive definite matrix <var>A</var> using
the Cholesky factorization.
</p>
<p><strong>See also:</strong> <a href="#XREFchol">chol</a>, <a href="#XREFchol2inv">chol2inv</a>, <a href="Basic-Matrix-Functions.html#XREFinv">inv</a>.
</p></dd></dl>
<span id="XREFchol2inv"></span><dl>
<dt id="index-chol2inv">: <em></em> <strong>chol2inv</strong> <em>(<var>U</var>)</em></dt>
<dd><p>Invert a symmetric, positive definite square matrix from its Cholesky
decomposition, <var>U</var>.
</p>
<p>Note that <var>U</var> should be an upper-triangular matrix with positive
diagonal elements. <code>chol2inv (<var>U</var>)</code> provides
<code>inv (<var>U</var>'*<var>U</var>)</code> but it is much faster than using <code>inv</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFchol">chol</a>, <a href="#XREFcholinv">cholinv</a>, <a href="Basic-Matrix-Functions.html#XREFinv">inv</a>.
</p></dd></dl>
<span id="XREFcholupdate"></span><dl>
<dt id="index-cholupdate">: <em>[<var>R1</var>, <var>info</var>] =</em> <strong>cholupdate</strong> <em>(<var>R</var>, <var>u</var>, <var>op</var>)</em></dt>
<dd><p>Update or downdate a Cholesky factorization.
</p>
<p>Given an upper triangular matrix <var>R</var> and a column vector <var>u</var>,
attempt to determine another upper triangular matrix <var>R1</var> such that
</p>
<ul>
<li> <var>R1</var>’*<var>R1</var> = <var>R</var>’*<var>R</var> + <var>u</var>*<var>u</var>’
if <var>op</var> is <code>"+"</code>
</li><li> <var>R1</var>’*<var>R1</var> = <var>R</var>’*<var>R</var> - <var>u</var>*<var>u</var>’
if <var>op</var> is <code>"-"</code>
</li></ul>
<p>If <var>op</var> is <code>"-"</code>, <var>info</var> is set to
</p>
<ul>
<li> 0 if the downdate was successful,
</li><li> 1 if <var>R</var>’*<var>R</var> - <var>u</var>*<var>u</var>’ is not positive definite,
</li><li> 2 if <var>R</var> is singular.
</li></ul>
<p>If <var>info</var> is not present, an error message is printed in cases 1 and 2.
</p>
<p><strong>See also:</strong> <a href="#XREFchol">chol</a>, <a href="#XREFcholinsert">cholinsert</a>, <a href="#XREFcholdelete">choldelete</a>, <a href="#XREFcholshift">cholshift</a>.
</p></dd></dl>
<span id="XREFcholinsert"></span><dl>
<dt id="index-cholinsert">: <em><var>R1</var> =</em> <strong>cholinsert</strong> <em>(<var>R</var>, <var>j</var>, <var>u</var>)</em></dt>
<dt id="index-cholinsert-1">: <em>[<var>R1</var>, <var>info</var>] =</em> <strong>cholinsert</strong> <em>(<var>R</var>, <var>j</var>, <var>u</var>)</em></dt>
<dd><p>Update a Cholesky factorization given a row or column to insert in the
original factored matrix.
</p>
<p>Given a Cholesky factorization of a real symmetric or complex Hermitian
positive definite matrix <var>A</var> = <var>R</var>’*<var>R</var><!-- /@w -->, <var>R</var> upper
triangular, return the Cholesky factorization of
<var>A1</var>, where A1(p,p) = A<!-- /@w -->, A1(:,j) = A1(j,:)’ = u<!-- /@w --> and
p = <span class="nolinebreak">[1:j-1,j+1:n+1]</span><!-- /@w -->. u(j)<!-- /@w --> should be positive.
</p>
<p>On return, <var>info</var> is set to
</p>
<ul>
<li> 0 if the insertion was successful,
</li><li> 1 if <var>A1</var> is not positive definite,
</li><li> 2 if <var>R</var> is singular.
</li></ul>
<p>If <var>info</var> is not present, an error message is printed in cases 1 and 2.
</p>
<p><strong>See also:</strong> <a href="#XREFchol">chol</a>, <a href="#XREFcholupdate">cholupdate</a>, <a href="#XREFcholdelete">choldelete</a>, <a href="#XREFcholshift">cholshift</a>.
</p></dd></dl>
<span id="XREFcholdelete"></span><dl>
<dt id="index-choldelete">: <em><var>R1</var> =</em> <strong>choldelete</strong> <em>(<var>R</var>, <var>j</var>)</em></dt>
<dd><p>Update a Cholesky factorization given a row or column to delete from the
original factored matrix.
</p>
<p>Given a Cholesky factorization of a real symmetric or complex Hermitian
positive definite matrix <var>A</var> = <var>R</var>’*<var>R</var><!-- /@w -->, <var>R</var> upper
triangular, return the Cholesky factorization of A(p,p)<!-- /@w -->, where
p = <span class="nolinebreak">[1:j-1,j+1:n+1]</span><!-- /@w -->.
</p>
<p><strong>See also:</strong> <a href="#XREFchol">chol</a>, <a href="#XREFcholupdate">cholupdate</a>, <a href="#XREFcholinsert">cholinsert</a>, <a href="#XREFcholshift">cholshift</a>.
</p></dd></dl>
<span id="XREFcholshift"></span><dl>
<dt id="index-cholshift">: <em><var>R1</var> =</em> <strong>cholshift</strong> <em>(<var>R</var>, <var>i</var>, <var>j</var>)</em></dt>
<dd><p>Update a Cholesky factorization given a range of columns to shift in the
original factored matrix.
</p>
<p>Given a Cholesky factorization of a real symmetric or complex Hermitian
positive definite matrix <var>A</var> = <var>R</var>’*<var>R</var><!-- /@w -->, <var>R</var> upper
triangular, return the Cholesky factorization of
<var>A</var>(p,p)<!-- /@w -->, where p<!-- /@w --> is the permutation <br>
<code>p = [1:i-1, shift(i:j, 1), j+1:n]</code> if <var>i</var> < <var>j</var><!-- /@w --> <br>
or <br>
<code>p = [1:j-1, shift(j:i,-1), i+1:n]</code> if <var>j</var> < <var>i</var><!-- /@w -->. <br>
</p>
<p><strong>See also:</strong> <a href="#XREFchol">chol</a>, <a href="#XREFcholupdate">cholupdate</a>, <a href="#XREFcholinsert">cholinsert</a>, <a href="#XREFcholdelete">choldelete</a>.
</p></dd></dl>
<span id="XREFhess"></span><dl>
<dt id="index-hess">: <em><var>H</var> =</em> <strong>hess</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-hess-1">: <em>[<var>P</var>, <var>H</var>] =</em> <strong>hess</strong> <em>(<var>A</var>)</em></dt>
<dd><span id="index-Hessenberg-decomposition"></span>
<p>Compute the Hessenberg decomposition of the matrix <var>A</var>.
</p>
<p>The Hessenberg decomposition is
<code><var>P</var> * <var>H</var> * <var>P</var>' = <var>A</var></code> where <var>P</var> is a square
unitary matrix (<code><var>P</var>' * <var>P</var> = I</code>, using complex-conjugate
transposition) and <var>H</var> is upper Hessenberg
(<code><var>H</var>(i, j) = 0 forall i > j+1)</code>.
</p>
<p>The Hessenberg decomposition is usually used as the first step in an
eigenvalue computation, but has other applications as well
(see Golub, Nash, and Van Loan,
IEEE Transactions on Automatic Control, 1979).
</p>
<p><strong>See also:</strong> <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a href="#XREFchol">chol</a>, <a href="#XREFlu">lu</a>, <a href="#XREFqr">qr</a>, <a href="#XREFqz">qz</a>, <a href="#XREFschur">schur</a>, <a href="#XREFsvd">svd</a>.
</p></dd></dl>
<span id="XREFlu"></span><dl>
<dt id="index-lu">: <em>[<var>L</var>, <var>U</var>] =</em> <strong>lu</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-lu-1">: <em>[<var>L</var>, <var>U</var>, <var>P</var>] =</em> <strong>lu</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-lu-2">: <em>[<var>L</var>, <var>U</var>, <var>P</var>, <var>Q</var>] =</em> <strong>lu</strong> <em>(<var>S</var>)</em></dt>
<dt id="index-lu-3">: <em>[<var>L</var>, <var>U</var>, <var>P</var>, <var>Q</var>, <var>R</var>] =</em> <strong>lu</strong> <em>(<var>S</var>)</em></dt>
<dt id="index-lu-4">: <em>[…] =</em> <strong>lu</strong> <em>(<var>S</var>, <var>thresh</var>)</em></dt>
<dt id="index-lu-5">: <em><var>y</var> =</em> <strong>lu</strong> <em>(…)</em></dt>
<dt id="index-lu-6">: <em>[…] =</em> <strong>lu</strong> <em>(…, "vector")</em></dt>
<dd><span id="index-LU-decomposition"></span>
<p>Compute the LU decomposition of <var>A</var>.
</p>
<p>If <var>A</var> is full then subroutines from <small>LAPACK</small> are used, and if
<var>A</var> is sparse then <small>UMFPACK</small> is used.
</p>
<p>The result is returned in a permuted form, according to the optional return
value <var>P</var>. For example, given the matrix <code><var>A</var> = [1, 2; 3, 4]</code>,
</p>
<div class="example">
<pre class="example">[<var>L</var>, <var>U</var>, <var>P</var>] = lu (<var>A</var>)
</pre></div>
<p>returns
</p>
<div class="example">
<pre class="example">L =
1.00000 0.00000
0.33333 1.00000
U =
3.00000 4.00000
0.00000 0.66667
P =
0 1
1 0
</pre></div>
<p>The matrix is not required to be square.
</p>
<p>When called with two or three output arguments and a sparse input matrix,
<code>lu</code> does not attempt to perform sparsity preserving column permutations.
Called with a fourth output argument, the sparsity preserving column
transformation <var>Q</var> is returned, such that
<code><var>P</var> * <var>A</var> * <var>Q</var> = <var>L</var> * <var>U</var></code>. This is the
<strong>preferred</strong> way to call <code>lu</code> with sparse input matrices.
</p>
<p>Called with a fifth output argument and a sparse input matrix, <code>lu</code>
attempts to use a scaling factor <var>R</var> on the input matrix such that
<code><var>P</var> * (<var>R</var> \ <var>A</var>) * <var>Q</var> = <var>L</var> * <var>U</var></code>.
This typically leads to a sparser and more stable factorization.
</p>
<p>An additional input argument <var>thresh</var> that defines the pivoting
threshold can be given. <var>thresh</var> can be a scalar, in which case
it defines the <small>UMFPACK</small> pivoting tolerance for both symmetric and
unsymmetric cases. If <var>thresh</var> is a 2-element vector, then the first
element defines the pivoting tolerance for the unsymmetric <small>UMFPACK</small>
pivoting strategy and the second for the symmetric strategy. By default,
the values defined by <code>spparms</code> are used ([0.1, 0.001]).
</p>
<p>Given the string argument <code>"vector"</code>, <code>lu</code> returns the values
of <var>P</var> and <var>Q</var> as vector values, such that for full matrix,
<code><var>A</var>(<var>P</var>,:) = <var>L</var> * <var>U</var></code>, and <code><var>R</var>(<var>P</var>,:)
* <var>A</var>(:,<var>Q</var>) = <var>L</var> * <var>U</var></code>.
</p>
<p>With two output arguments, returns the permuted forms of the upper and
lower triangular matrices, such that <code><var>A</var> = <var>L</var> * <var>U</var></code>.
With one output argument <var>y</var>, then the matrix returned by the
<small>LAPACK</small> routines is returned. If the input matrix is sparse then the
matrix <var>L</var> is embedded into <var>U</var> to give a return value similar to
the full case. For both full and sparse matrices, <code>lu</code> loses the
permutation information.
</p>
<p><strong>See also:</strong> <a href="#XREFluupdate">luupdate</a>, <a href="Iterative-Techniques.html#XREFilu">ilu</a>, <a href="#XREFchol">chol</a>, <a href="#XREFhess">hess</a>, <a href="#XREFqr">qr</a>, <a href="#XREFqz">qz</a>, <a href="#XREFschur">schur</a>, <a href="#XREFsvd">svd</a>.
</p></dd></dl>
<span id="XREFluupdate"></span><dl>
<dt id="index-luupdate">: <em>[<var>L</var>, <var>U</var>] =</em> <strong>luupdate</strong> <em>(<var>L</var>, <var>U</var>, <var>x</var>, <var>y</var>)</em></dt>
<dt id="index-luupdate-1">: <em>[<var>L</var>, <var>U</var>, <var>P</var>] =</em> <strong>luupdate</strong> <em>(<var>L</var>, <var>U</var>, <var>P</var>, <var>x</var>, <var>y</var>)</em></dt>
<dd><p>Given an LU factorization of a real or complex matrix
<var>A</var> = <var>L</var>*<var>U</var><!-- /@w -->, <var>L</var> lower unit trapezoidal and
<var>U</var> upper trapezoidal, return the LU factorization
of <var>A</var> + <var>x</var>*<var>y</var>.’<!-- /@w -->, where <var>x</var> and <var>y</var> are
column vectors (rank-1 update) or matrices with equal number of columns
(rank-k update).
</p>
<p>Optionally, row-pivoted updating can be used by supplying a row permutation
(pivoting) matrix <var>P</var>; in that case, an updated permutation matrix is
returned. Note that if <var>L</var>, <var>U</var>, <var>P</var> is a pivoted
LU factorization as obtained by <code>lu</code>:
</p>
<div class="example">
<pre class="example">[<var>L</var>, <var>U</var>, <var>P</var>] = lu (<var>A</var>);
</pre></div>
<p>then a factorization of <code><var>A</var>+<var>x</var>*<var>y</var>.'</code> can be obtained
either as
</p>
<div class="example">
<pre class="example">[<var>L1</var>, <var>U1</var>] = lu (<var>L</var>, <var>U</var>, <var>P</var>*<var>x</var>, <var>y</var>)
</pre></div>
<p>or
</p>
<div class="example">
<pre class="example">[<var>L1</var>, <var>U1</var>, <var>P1</var>] = lu (<var>L</var>, <var>U</var>, <var>P</var>, <var>x</var>, <var>y</var>)
</pre></div>
<p>The first form uses the unpivoted algorithm, which is faster, but less
stable. The second form uses a slower pivoted algorithm, which is more
stable.
</p>
<p>The matrix case is done as a sequence of rank-1 updates; thus, for large
enough k, it will be both faster and more accurate to recompute the
factorization from scratch.
</p>
<p><strong>See also:</strong> <a href="#XREFlu">lu</a>, <a href="#XREFcholupdate">cholupdate</a>, <a href="#XREFqrupdate">qrupdate</a>.
</p></dd></dl>
<span id="XREFqr"></span><dl>
<dt id="index-qr">: <em>[<var>Q</var>, <var>R</var>] =</em> <strong>qr</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-qr-1">: <em>[<var>Q</var>, <var>R</var>, <var>P</var>] =</em> <strong>qr</strong> <em>(<var>A</var>) # non-sparse A</em></dt>
<dt id="index-qr-2">: <em><var>X</var> =</em> <strong>qr</strong> <em>(<var>A</var>) # non-sparse A</em></dt>
<dt id="index-qr-3">: <em><var>R</var> =</em> <strong>qr</strong> <em>(<var>A</var>) # sparse A</em></dt>
<dt id="index-qr-4">: <em>[<var>C</var>, <var>R</var>] =</em> <strong>qr</strong> <em>(<var>A</var>, <var>B</var>)</em></dt>
<dt id="index-qr-5">: <em>[…] =</em> <strong>qr</strong> <em>(…, 0)</em></dt>
<dt id="index-qr-6">: <em>[…] =</em> <strong>qr</strong> <em>(…, "vector")</em></dt>
<dt id="index-qr-7">: <em>[…] =</em> <strong>qr</strong> <em>(…, "matrix")</em></dt>
<dd><span id="index-QR-factorization"></span>
<p>Compute the QR factorization of <var>A</var>, using standard <small>LAPACK</small>
subroutines.
</p>
<p>The QR factorization is
</p>
<div class="example">
<pre class="example"><var>Q</var> * <var>R</var> = <var>A</var>
</pre></div>
<p>where <var>Q</var> is an orthogonal matrix and <var>R</var> is upper triangular.
</p>
<p>For example, given the matrix <code><var>A</var> = [1, 2; 3, 4]</code>,
</p>
<div class="example">
<pre class="example">[<var>Q</var>, <var>R</var>] = qr (<var>A</var>)
</pre></div>
<p>returns
</p>
<div class="example">
<pre class="example"><var>Q</var> =
-0.31623 -0.94868
-0.94868 0.31623
<var>R</var> =
-3.16228 -4.42719
0.00000 -0.63246
</pre></div>
<p>which multiplied together return the original matrix
</p>
<div class="example">
<pre class="example"><var>Q</var> * <var>R</var>
⇒
1.0000 2.0000
3.0000 4.0000
</pre></div>
<p>If just a single return value is requested then it is either <var>R</var>, if
<var>A</var> is sparse, or <var>X</var>, such that <code><var>R</var> = triu (<var>X</var>)</code> if
<var>A</var> is full. (Note: unlike most commands, the single return value is not
the first return value when multiple values are requested.)
</p>
<p>If the matrix <var>A</var> is full, and a third output <var>P</var> is requested, then
<code>qr</code> calculates the permuted QR factorization
</p>
<div class="example">
<pre class="example"><var>Q</var> * <var>R</var> = <var>A</var> * <var>P</var>
</pre></div>
<p>where <var>Q</var> is an orthogonal matrix, <var>R</var> is upper triangular, and
<var>P</var> is a permutation matrix.
</p>
<p>The permuted QR factorization has the additional property that the
diagonal entries of <var>R</var> are ordered by decreasing magnitude. In other
words, <code>abs (diag (<var>R</var>))</code> will be ordered from largest to smallest.
</p>
<p>For example, given the matrix <code><var>A</var> = [1, 2; 3, 4]</code>,
</p>
<div class="example">
<pre class="example">[<var>Q</var>, <var>R</var>, <var>P</var>] = qr (<var>A</var>)
</pre></div>
<p>returns
</p>
<div class="example">
<pre class="example"><var>Q</var> =
-0.44721 -0.89443
-0.89443 0.44721
<var>R</var> =
-4.47214 -3.13050
0.00000 0.44721
<var>P</var> =
0 1
1 0
</pre></div>
<p>If the input matrix <var>A</var> is sparse then the sparse QR factorization
is computed using <small>CSPARSE</small>. Because the matrix <var>Q</var> is, in general, a
full matrix, it is recommended to request only one return value <var>R</var>. In
that case, the computation avoids the construction of <var>Q</var> and returns
<var>R</var> such that <code><var>R</var> = chol (<var>A</var>' * <var>A</var>)</code>.
</p>
<p>If an additional matrix <var>B</var> is supplied and two return values are
requested, then <code>qr</code> returns <var>C</var>, where
<code><var>C</var> = <var>Q</var>' * <var>B</var></code>. This allows the least squares
approximation of <code><var>A</var> \ <var>B</var></code> to be calculated as
</p>
<div class="example">
<pre class="example">[<var>C</var>, <var>R</var>] = qr (<var>A</var>, <var>B</var>)
<var>x</var> = <var>R</var> \ <var>C</var>
</pre></div>
<p>If the final argument is the string <code>"vector"</code> then <var>P</var> is a
permutation vector (of the columns of <var>A</var>) instead of a permutation matrix.
In this case, the defining relationship is
</p>
<div class="example">
<pre class="example"><var>Q</var> * <var>R</var> = <var>A</var>(:, <var>P</var>)
</pre></div>
<p>The default, however, is to return a permutation matrix and this may be
explicitly specified by using a final argument of <code>"matrix"</code>.
</p>
<p>If the final argument is the scalar 0 an <code>"economy"</code> factorization is
returned. When the original matrix <var>A</var> has size MxN and M > N then the
<code>"economy"</code> factorization will calculate just N rows in <var>R</var> and N
columns in <var>Q</var> and omit the zeros in <var>R</var>. If M ≤ N there is no
difference between the economy and standard factorizations. When calculating
an <code>"economy"</code> factorization the output <var>P</var> is always a vector
rather than a matrix.
</p>
<p>Background: The QR factorization has applications in the solution of least
squares problems
</p>
<div class="example">
<pre class="example">min norm (A*x - b)
</pre></div>
<p>for overdetermined systems of equations (i.e.,
<var>A</var>
is a tall, thin matrix).
</p>
<p>The permuted QR factorization
<code>[<var>Q</var>, <var>R</var>, <var>P</var>] = qr (<var>A</var>)</code> allows the construction of an
orthogonal basis of <code>span (A)</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFchol">chol</a>, <a href="#XREFhess">hess</a>, <a href="#XREFlu">lu</a>, <a href="#XREFqz">qz</a>, <a href="#XREFschur">schur</a>, <a href="#XREFsvd">svd</a>, <a href="#XREFqrupdate">qrupdate</a>, <a href="#XREFqrinsert">qrinsert</a>, <a href="#XREFqrdelete">qrdelete</a>, <a href="#XREFqrshift">qrshift</a>.
</p></dd></dl>
<span id="XREFqrupdate"></span><dl>
<dt id="index-qrupdate">: <em>[<var>Q1</var>, <var>R1</var>] =</em> <strong>qrupdate</strong> <em>(<var>Q</var>, <var>R</var>, <var>u</var>, <var>v</var>)</em></dt>
<dd><p>Update a QR factorization given update vectors or matrices.
</p>
<p>Given a QR factorization of a real or complex matrix
<var>A</var> = <var>Q</var>*<var>R</var><!-- /@w -->, <var>Q</var> unitary and
<var>R</var> upper trapezoidal, return the QR factorization of
<var>A</var> + <var>u</var>*<var>v</var>’<!-- /@w -->, where <var>u</var> and <var>v</var> are column vectors
(rank-1 update) or matrices with equal number of columns
(rank-k update). Notice that the latter case is done as a sequence of
rank-1 updates; thus, for k large enough, it will be both faster and more
accurate to recompute the factorization from scratch.
</p>
<p>The QR factorization supplied may be either full (Q is square) or
economized (R is square).
</p>
<p><strong>See also:</strong> <a href="#XREFqr">qr</a>, <a href="#XREFqrinsert">qrinsert</a>, <a href="#XREFqrdelete">qrdelete</a>, <a href="#XREFqrshift">qrshift</a>.
</p></dd></dl>
<span id="XREFqrinsert"></span><dl>
<dt id="index-qrinsert">: <em>[<var>Q1</var>, <var>R1</var>] =</em> <strong>qrinsert</strong> <em>(<var>Q</var>, <var>R</var>, <var>j</var>, <var>x</var>, <var>orient</var>)</em></dt>
<dd><p>Update a QR factorization given a row or column to insert in the original
factored matrix.
</p>
<p>Given a QR factorization of a real or complex matrix
<var>A</var> = <var>Q</var>*<var>R</var><!-- /@w -->, <var>Q</var> unitary and
<var>R</var> upper trapezoidal, return the QR factorization of
<span class="nolinebreak">[A(:,1:j-1)</span> x A(:,j:n)]<!-- /@w -->, where <var>u</var> is a column vector to be inserted
into <var>A</var> (if <var>orient</var> is <code>"col"</code>), or the
QR factorization of <span class="nolinebreak">[A(1:j-1,:);x;A(:,j:n)]</span><!-- /@w -->, where <var>x</var> is a row
vector to be inserted into <var>A</var> (if <var>orient</var> is <code>"row"</code>).
</p>
<p>The default value of <var>orient</var> is <code>"col"</code>. If <var>orient</var> is
<code>"col"</code>, <var>u</var> may be a matrix and <var>j</var> an index vector
resulting in the QR factorization of a matrix <var>B</var> such that
B(:,<var>j</var>)<!-- /@w --> gives <var>u</var> and B(:,<var>j</var>) = []<!-- /@w --> gives <var>A</var>.
Notice that the latter case is done as a sequence of k insertions;
thus, for k large enough, it will be both faster and more accurate to
recompute the factorization from scratch.
</p>
<p>If <var>orient</var> is <code>"col"</code>, the QR factorization supplied may
be either full (Q is square) or economized (R is square).
</p>
<p>If <var>orient</var> is <code>"row"</code>, full factorization is needed.
</p>
<p><strong>See also:</strong> <a href="#XREFqr">qr</a>, <a href="#XREFqrupdate">qrupdate</a>, <a href="#XREFqrdelete">qrdelete</a>, <a href="#XREFqrshift">qrshift</a>.
</p></dd></dl>
<span id="XREFqrdelete"></span><dl>
<dt id="index-qrdelete">: <em>[<var>Q1</var>, <var>R1</var>] =</em> <strong>qrdelete</strong> <em>(<var>Q</var>, <var>R</var>, <var>j</var>, <var>orient</var>)</em></dt>
<dd><p>Update a QR factorization given a row or column to delete from the original
factored matrix.
</p>
<p>Given a QR factorization of a real or complex matrix
<var>A</var> = <var>Q</var>*<var>R</var><!-- /@w -->, <var>Q</var> unitary and
<var>R</var> upper trapezoidal, return the QR factorization of
<span class="nolinebreak">[A(:,1:j-1),</span> U, A(:,j:n)]<!-- /@w -->,
where <var>u</var> is a column vector to be inserted into <var>A</var>
(if <var>orient</var> is <code>"col"</code>),
or the QR factorization of <span class="nolinebreak">[A(1:j-1,:);X;A(:,j:n)]</span><!-- /@w -->,
where <var>x</var> is a row <var>orient</var> is <code>"row"</code>).
The default value of <var>orient</var> is <code>"col"</code>.
</p>
<p>If <var>orient</var> is <code>"col"</code>, <var>j</var> may be an index vector
resulting in the QR factorization of a matrix <var>B</var> such that
A(:,<var>j</var>) = []<!-- /@w --> gives <var>B</var>. Notice that the latter case is done as
a sequence of k deletions; thus, for k large enough, it will be both faster
and more accurate to recompute the factorization from scratch.
</p>
<p>If <var>orient</var> is <code>"col"</code>, the QR factorization supplied may
be either full (Q is square) or economized (R is square).
</p>
<p>If <var>orient</var> is <code>"row"</code>, full factorization is needed.
</p>
<p><strong>See also:</strong> <a href="#XREFqr">qr</a>, <a href="#XREFqrupdate">qrupdate</a>, <a href="#XREFqrinsert">qrinsert</a>, <a href="#XREFqrshift">qrshift</a>.
</p></dd></dl>
<span id="XREFqrshift"></span><dl>
<dt id="index-qrshift">: <em>[<var>Q1</var>, <var>R1</var>] =</em> <strong>qrshift</strong> <em>(<var>Q</var>, <var>R</var>, <var>i</var>, <var>j</var>)</em></dt>
<dd><p>Update a QR factorization given a range of columns to shift in the original
factored matrix.
</p>
<p>Given a QR factorization of a real or complex matrix
<var>A</var> = <var>Q</var>*<var>R</var><!-- /@w -->, <var>Q</var> unitary and
<var>R</var> upper trapezoidal, return the QR factorization
of <var>A</var>(:,p)<!-- /@w -->, where p<!-- /@w --> is the permutation <br>
<code>p = [1:i-1, shift(i:j, 1), j+1:n]</code> if <var>i</var> < <var>j</var><!-- /@w --> <br>
or <br>
<code>p = [1:j-1, shift(j:i,-1), i+1:n]</code> if <var>j</var> < <var>i</var><!-- /@w -->. <br>
</p>
<p><strong>See also:</strong> <a href="#XREFqr">qr</a>, <a href="#XREFqrupdate">qrupdate</a>, <a href="#XREFqrinsert">qrinsert</a>, <a href="#XREFqrdelete">qrdelete</a>.
</p></dd></dl>
<span id="XREFqz"></span><dl>
<dt id="index-qz">: <em><var>lambda</var> =</em> <strong>qz</strong> <em>(<var>A</var>, <var>B</var>)</em></dt>
<dt id="index-qz-1">: <em>[<var>AA</var>, <var>BB</var>, <var>Q</var>, <var>Z</var>, <var>V</var>, <var>W</var>, <var>lambda</var>] =</em> <strong>qz</strong> <em>(<var>A</var>, <var>B</var>)</em></dt>
<dt id="index-qz-2">: <em>[<var>AA</var>, <var>BB</var>, <var>Z</var>] =</em> <strong>qz</strong> <em>(<var>A</var>, <var>B</var>, <var>opt</var>)</em></dt>
<dt id="index-qz-3">: <em>[<var>AA</var>, <var>BB</var>, <var>Z</var>, <var>lambda</var>] =</em> <strong>qz</strong> <em>(<var>A</var>, <var>B</var>, <var>opt</var>)</em></dt>
<dd><p>Compute the QZ decomposition of a generalized eigenvalue problem.
</p>
<p>The generalized eigenvalue problem is defined as
</p>
<p><em>A x = <var>lambda</var> B x</em>
</p>
<p>There are three calling forms of the function:
</p>
<ol>
<li> <code><var>lambda</var> = qz (<var>A</var>, <var>B</var>)</code>
<p>Compute the generalized eigenvalues
<var>lambda</var>.
</p>
</li><li> <code>[<var>AA</var>, <var>BB</var>, <var>Q</var>, <var>Z</var>, <var>V</var>, <var>W</var>, <var>lambda</var>] = qz (<var>A</var>, <var>B</var>)</code>
<p>Compute QZ decomposition, generalized eigenvectors, and generalized
eigenvalues.
</p>
<div class="example">
<pre class="example">
<var>A</var> * <var>V</var> = <var>B</var> * <var>V</var> * diag (<var>lambda</var>)
<var>W</var>' * <var>A</var> = diag (<var>lambda</var>) * <var>W</var>' * <var>B</var>
<var>AA</var> = <var>Q</var> * <var>A</var> * <var>Z</var>, <var>BB</var> = <var>Q</var> * <var>B</var> * <var>Z</var>
</pre></div>
<p>with <var>Q</var> and <var>Z</var> orthogonal (unitary for complex case).
</p>
</li><li> <code>[<var>AA</var>, <var>BB</var>, <var>Z</var> {, <var>lambda</var>}] = qz (<var>A</var>, <var>B</var>, <var>opt</var>)</code>
<p>As in form 2 above, but allows ordering of generalized eigenpairs for, e.g.,
solution of discrete time algebraic Riccati equations. Form 3 is not
available for complex matrices, and does not compute the generalized
eigenvectors <var>V</var>, <var>W</var>, nor the orthogonal matrix <var>Q</var>.
</p>
<dl compact="compact">
<dt><var>opt</var></dt>
<dd><p>for ordering eigenvalues of the GEP pencil. The leading block of
the revised pencil contains all eigenvalues that satisfy:
</p>
<dl compact="compact">
<dt><code>"N"</code></dt>
<dd><p>unordered (default)
</p>
</dd>
<dt><code>"S"</code></dt>
<dd><p>small: leading block has all
|<var>lambda</var>| < 1
</p>
</dd>
<dt><code>"B"</code></dt>
<dd><p>big: leading block has all
|<var>lambda</var>| ≥ 1
</p>
</dd>
<dt><code>"-"</code></dt>
<dd><p>negative real part: leading block has all eigenvalues in the open left
half-plane
</p>
</dd>
<dt><code>"+"</code></dt>
<dd><p>non-negative real part: leading block has all eigenvalues in the closed right
half-plane
</p></dd>
</dl>
</dd>
</dl>
</li></ol>
<p>Note: <code>qz</code> performs permutation balancing, but not scaling
(see <a href="Basic-Matrix-Functions.html#XREFbalance">balance</a>), which may be lead to less accurate results than
<code>eig</code>. The order of output arguments was selected for compatibility with
<small>MATLAB</small>.
</p>
<p><strong>See also:</strong> <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a href="#XREFordeig">ordeig</a>, <a href="Basic-Matrix-Functions.html#XREFbalance">balance</a>, <a href="#XREFlu">lu</a>, <a href="#XREFchol">chol</a>, <a href="#XREFhess">hess</a>, <a href="#XREFqr">qr</a>, <a href="#XREFqzhess">qzhess</a>, <a href="#XREFschur">schur</a>, <a href="#XREFsvd">svd</a>.
</p></dd></dl>
<span id="XREFqzhess"></span><dl>
<dt id="index-qzhess">: <em>[<var>aa</var>, <var>bb</var>, <var>q</var>, <var>z</var>] =</em> <strong>qzhess</strong> <em>(<var>A</var>, <var>B</var>)</em></dt>
<dd><p>Compute the Hessenberg-triangular decomposition of the matrix pencil
<code>(<var>A</var>, <var>B</var>)</code>, returning
<code><var>aa</var> = <var>q</var> * <var>A</var> * <var>z</var></code>,
<code><var>bb</var> = <var>q</var> * <var>B</var> * <var>z</var></code>, with <var>q</var> and <var>z</var>
orthogonal.
</p>
<p>For example:
</p>
<div class="example">
<pre class="example">[aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])
⇒ aa =
-3.02244 -4.41741
0.92998 0.69749
⇒ bb =
-8.60233 -9.99730
0.00000 -0.23250
⇒ q =
-0.58124 -0.81373
-0.81373 0.58124
⇒ z =
Diagonal Matrix
1 0
0 1
</pre></div>
<p>The Hessenberg-triangular decomposition is the first step in
Moler and Stewart’s QZ decomposition algorithm.
</p>
<p>Algorithm taken from Golub and Van Loan,
<cite>Matrix Computations, 2nd edition</cite>.
</p>
<p><strong>See also:</strong> <a href="#XREFlu">lu</a>, <a href="#XREFchol">chol</a>, <a href="#XREFhess">hess</a>, <a href="#XREFqr">qr</a>, <a href="#XREFqz">qz</a>, <a href="#XREFschur">schur</a>, <a href="#XREFsvd">svd</a>.
</p></dd></dl>
<span id="XREFschur"></span><dl>
<dt id="index-schur">: <em><var>S</var> =</em> <strong>schur</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-schur-1">: <em><var>S</var> =</em> <strong>schur</strong> <em>(<var>A</var>, "real")</em></dt>
<dt id="index-schur-2">: <em><var>S</var> =</em> <strong>schur</strong> <em>(<var>A</var>, "complex")</em></dt>
<dt id="index-schur-3">: <em><var>S</var> =</em> <strong>schur</strong> <em>(<var>A</var>, <var>opt</var>)</em></dt>
<dt id="index-schur-4">: <em>[<var>U</var>, <var>S</var>] =</em> <strong>schur</strong> <em>(…)</em></dt>
<dd><span id="index-Schur-decomposition"></span>
<p>Compute the Schur decomposition of <var>A</var>.
</p>
<p>The Schur decomposition is defined as
</p>
<div class="example">
<pre class="example"><code><var>S</var> = <var>U</var>' * <var>A</var> * <var>U</var></code>
</pre></div>
<p>where <var>U</var> is a unitary matrix
(<code><var>U</var>'* <var>U</var></code> is identity)
and <var>S</var> is upper triangular. The eigenvalues of <var>A</var> (and <var>S</var>)
are the diagonal elements of <var>S</var>. If the matrix <var>A</var> is real, then
the real Schur decomposition is computed, in which the matrix <var>U</var>
is orthogonal and <var>S</var> is block upper triangular with blocks of size at
most
<code>2 x 2</code>
along the diagonal. The diagonal elements of <var>S</var>
(or the eigenvalues of the
<code>2 x 2</code>
blocks, when appropriate) are the eigenvalues of <var>A</var> and <var>S</var>.
</p>
<p>The default for real matrices is a real Schur decomposition.
A complex decomposition may be forced by passing the flag
<code>"complex"</code>.
</p>
<p>The eigenvalues are optionally ordered along the diagonal according to the
value of <var>opt</var>. <code><var>opt</var> = "a"</code> indicates that all eigenvalues
with negative real parts should be moved to the leading block of <var>S</var>
(used in <code>are</code>), <code><var>opt</var> = "d"</code> indicates that all
eigenvalues with magnitude less than one should be moved to the leading
block of <var>S</var> (used in <code>dare</code>), and <code><var>opt</var> = "u"</code>, the
default, indicates that no ordering of eigenvalues should occur. The
leading <var>k</var> columns of <var>U</var> always span the <var>A</var>-invariant
subspace corresponding to the <var>k</var> leading eigenvalues of <var>S</var>.
</p>
<p>The Schur decomposition is used to compute eigenvalues of a square
matrix, and has applications in the solution of algebraic Riccati
equations in control (see <code>are</code> and <code>dare</code>).
</p>
<p><strong>See also:</strong> <a href="#XREFrsf2csf">rsf2csf</a>, <a href="#XREFordschur">ordschur</a>, <a href="#XREFordeig">ordeig</a>, <a href="#XREFlu">lu</a>, <a href="#XREFchol">chol</a>, <a href="#XREFhess">hess</a>, <a href="#XREFqr">qr</a>, <a href="#XREFqz">qz</a>, <a href="#XREFsvd">svd</a>.
</p></dd></dl>
<span id="XREFrsf2csf"></span><dl>
<dt id="index-rsf2csf">: <em>[<var>U</var>, <var>T</var>] =</em> <strong>rsf2csf</strong> <em>(<var>UR</var>, <var>TR</var>)</em></dt>
<dd><p>Convert a real, upper quasi-triangular Schur form <var>TR</var> to a
complex, upper triangular Schur form <var>T</var>.
</p>
<p>Note that the following relations hold:
</p>
<p><code><var>UR</var> * <var>TR</var> * <var>UR</var>' = <var>U</var> * <var>T</var> * <var>U</var>'</code> and
<code><var>U</var>' * <var>U</var></code> is the identity matrix I.
</p>
<p>Note also that <var>U</var> and <var>T</var> are not unique.
</p>
<p><strong>See also:</strong> <a href="#XREFschur">schur</a>.
</p></dd></dl>
<span id="XREFordschur"></span><dl>
<dt id="index-ordschur">: <em>[<var>UR</var>, <var>SR</var>] =</em> <strong>ordschur</strong> <em>(<var>U</var>, <var>S</var>, <var>select</var>)</em></dt>
<dd><p>Reorders the real Schur factorization (<var>U</var>,<var>S</var>) obtained with the
<code>schur</code> function, so that selected eigenvalues appear in the upper left
diagonal blocks of the quasi triangular Schur matrix.
</p>
<p>The logical vector <var>select</var> specifies the selected eigenvalues as they
appear along <var>S</var>’s diagonal.
</p>
<p>For example, given the matrix <code><var>A</var> = [1, 2; 3, 4]</code>, and its Schur
decomposition
</p>
<div class="example">
<pre class="example">[<var>U</var>, <var>S</var>] = schur (<var>A</var>)
</pre></div>
<p>which returns
</p>
<div class="example">
<pre class="example"><var>U</var> =
-0.82456 -0.56577
0.56577 -0.82456
<var>S</var> =
-0.37228 -1.00000
0.00000 5.37228
</pre></div>
<p>It is possible to reorder the decomposition so that the positive eigenvalue
is in the upper left corner, by doing:
</p>
<div class="example">
<pre class="example">[<var>U</var>, <var>S</var>] = ordschur (<var>U</var>, <var>S</var>, [0,1])
</pre></div>
<p><strong>See also:</strong> <a href="#XREFschur">schur</a>, <a href="#XREFordeig">ordeig</a>.
</p></dd></dl>
<span id="XREFordeig"></span><dl>
<dt id="index-ordeig">: <em><var>lambda</var> =</em> <strong>ordeig</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-ordeig-1">: <em><var>lambda</var> =</em> <strong>ordeig</strong> <em>(<var>A</var>, <var>B</var>)</em></dt>
<dd><p>Return the eigenvalues of quasi-triangular matrices in their order of
appearance in the matrix <var>A</var>.
</p>
<p>The quasi-triangular matrix <var>A</var> is usually the result of a Schur
factorization. If called with a second input <var>B</var> then the generalized
eigenvalues of the pair <var>A</var>, <var>B</var> are returned in the order of
appearance of the matrix <code><var>A</var>-<var>lambda</var>*<var>B</var></code>. The pair
<var>A</var>, <var>B</var> is usually the result of a QZ decomposition.
</p>
<p><strong>See also:</strong> <a href="#XREFordschur">ordschur</a>, <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a href="#XREFschur">schur</a>, <a href="#XREFqz">qz</a>.
</p></dd></dl>
<span id="XREFsubspace"></span><dl>
<dt id="index-subspace">: <em><var>angle</var> =</em> <strong>subspace</strong> <em>(<var>A</var>, <var>B</var>)</em></dt>
<dd><p>Determine the largest principal angle between two subspaces
spanned by the columns of matrices <var>A</var> and <var>B</var>.
</p></dd></dl>
<span id="XREFsvd"></span><dl>
<dt id="index-svd">: <em><var>s</var> =</em> <strong>svd</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-svd-1">: <em>[<var>U</var>, <var>S</var>, <var>V</var>] =</em> <strong>svd</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-svd-2">: <em>[<var>U</var>, <var>S</var>, <var>V</var>] =</em> <strong>svd</strong> <em>(<var>A</var>, "econ")</em></dt>
<dt id="index-svd-3">: <em>[<var>U</var>, <var>S</var>, <var>V</var>] =</em> <strong>svd</strong> <em>(<var>A</var>, 0)</em></dt>
<dd><span id="index-singular-value-decomposition"></span>
<p>Compute the singular value decomposition of <var>A</var>.
</p>
<p>The singular value decomposition is defined by the relation
</p>
<div class="example">
<pre class="example">A = U*S*V'
</pre></div>
<p>The function <code>svd</code> normally returns only the vector of singular values.
When called with three return values, it computes
<var>U</var>, <var>S</var>, and <var>V</var>.
For example,
</p>
<div class="example">
<pre class="example">svd (hilb (3))
</pre></div>
<p>returns
</p>
<div class="example">
<pre class="example">ans =
1.4083189
0.1223271
0.0026873
</pre></div>
<p>and
</p>
<div class="example">
<pre class="example">[u, s, v] = svd (hilb (3))
</pre></div>
<p>returns
</p>
<div class="example">
<pre class="example">u =
-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867
s =
1.40832 0.00000 0.00000
0.00000 0.12233 0.00000
0.00000 0.00000 0.00269
v =
-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867
</pre></div>
<p>When given a second argument that is not 0, <code>svd</code> returns an economy-sized
decomposition, eliminating the unnecessary rows or columns of <var>U</var> or
<var>V</var>.
</p>
<p>If the second argument is exactly 0, then the choice of decomposition is based
on the matrix <var>A</var>. If <var>A</var> has more rows than columns then an
economy-sized decomposition is returned, otherwise a regular decomposition
is calculated.
</p>
<p>Algorithm Notes: When calculating the full decomposition (left and right
singular matrices in addition to singular values) there is a choice of two
routines in <small>LAPACK</small>. The default routine used by Octave is <code>gesvd</code>.
The alternative is <code>gesdd</code> which is 5X faster, but may use more memory
and may be inaccurate for some input matrices. See the documentation for
<code>svd_driver</code> for more information on choosing a driver.
</p>
<p><strong>See also:</strong> <a href="#XREFsvd_005fdriver">svd_driver</a>, <a href="Sparse-Linear-Algebra.html#XREFsvds">svds</a>, <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a href="#XREFlu">lu</a>, <a href="#XREFchol">chol</a>, <a href="#XREFhess">hess</a>, <a href="#XREFqr">qr</a>, <a href="#XREFqz">qz</a>.
</p></dd></dl>
<span id="XREFsvd_005fdriver"></span><dl>
<dt id="index-svd_005fdriver">: <em><var>val</var> =</em> <strong>svd_driver</strong> <em>()</em></dt>
<dt id="index-svd_005fdriver-1">: <em><var>old_val</var> =</em> <strong>svd_driver</strong> <em>(<var>new_val</var>)</em></dt>
<dt id="index-svd_005fdriver-2">: <em></em> <strong>svd_driver</strong> <em>(<var>new_val</var>, "local")</em></dt>
<dd><p>Query or set the underlying <small>LAPACK</small> driver used by <code>svd</code>.
</p>
<p>Currently recognized values are <code>"gesdd"</code> and <code>"gesvd"</code>.
The default is <code>"gesvd"</code>.
</p>
<p>When called from inside a function with the <code>"local"</code> option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
</p>
<p>Algorithm Notes: The <small>LAPACK</small> library provides two routines for calculating
the full singular value decomposition (left and right singular matrices as
well as singular values). When calculating just the singular values the
following discussion is not relevant.
</p>
<p>The newer <code>gesdd</code> routine is based on a Divide-and-Conquer algorithm that
is 5X faster than the alternative <code>gesvd</code>, which is based on QR
factorization. However, the new algorithm can use significantly more memory.
For an MxN input matrix the memory usage is of order O(min(M,N) ^ 2),
whereas the alternative is of order O(max(M,N)).
</p>
<p>Beyond speed and memory issues, there have been instances where some input
matrices were not accurately decomposed by <code>gesdd</code>. See currently active
bug <a href="https://savannah.gnu.org/bugs/?55564">https://savannah.gnu.org/bugs/?55564</a>. Until these accuracy issues
are resolved in a new version of the <small>LAPACK</small> library, the default driver
in Octave has been set to <code>"gesvd"</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFsvd">svd</a>.
</p></dd></dl>
<span id="XREFhoush"></span><dl>
<dt id="index-housh">: <em>[<var>housv</var>, <var>beta</var>, <var>zer</var>] =</em> <strong>housh</strong> <em>(<var>x</var>, <var>j</var>, <var>z</var>)</em></dt>
<dd><p>Compute Householder reflection vector <var>housv</var> to reflect <var>x</var> to be
the j-th column of identity, i.e.,
</p>
<div class="example">
<pre class="example">(I - beta*housv*housv')x = norm (x)*e(j) if x(j) < 0,
(I - beta*housv*housv')x = -norm (x)*e(j) if x(j) >= 0
</pre></div>
<p>Inputs
</p>
<dl compact="compact">
<dt><var>x</var></dt>
<dd><p>vector
</p>
</dd>
<dt><var>j</var></dt>
<dd><p>index into vector
</p>
</dd>
<dt><var>z</var></dt>
<dd><p>threshold for zero (usually should be the number 0)
</p></dd>
</dl>
<p>Outputs (see Golub and Van Loan):
</p>
<dl compact="compact">
<dt><var>beta</var></dt>
<dd><p>If beta = 0, then no reflection need be applied (zer set to 0)
</p>
</dd>
<dt><var>housv</var></dt>
<dd><p>householder vector
</p></dd>
</dl>
</dd></dl>
<span id="XREFkrylov"></span><dl>
<dt id="index-krylov">: <em>[<var>u</var>, <var>h</var>, <var>nu</var>] =</em> <strong>krylov</strong> <em>(<var>A</var>, <var>V</var>, <var>k</var>, <var>eps1</var>, <var>pflg</var>)</em></dt>
<dd><p>Construct an orthogonal basis <var>u</var> of a block Krylov subspace.
</p>
<p>The block Krylov subspace has the following form:
</p>
<div class="example">
<pre class="example">[v a*v a^2*v … a^(k+1)*v]
</pre></div>
<p>The construction is made with Householder reflections to guard against loss
of orthogonality.
</p>
<p>If <var>V</var> is a vector, then <var>h</var> contains the Hessenberg matrix
such that <code>a*u == u*h+rk*ek'</code>, in which
<code>rk = a*u(:,k)-u*h(:,k)</code>, and <code>ek'</code> is the vector
<code>[0, 0, …, 1]</code> of length <var>k</var>. Otherwise, <var>h</var> is
meaningless.
</p>
<p>If <var>V</var> is a vector and <var>k</var> is greater than <code>length (A) - 1</code>,
then <var>h</var> contains the Hessenberg matrix such that <code>a*u == u*h</code>.
</p>
<p>The value of <var>nu</var> is the dimension of the span of the Krylov subspace
(based on <var>eps1</var>).
</p>
<p>If <var>b</var> is a vector and <var>k</var> is greater than <var>m-1</var>, then <var>h</var>
contains the Hessenberg decomposition of <var>A</var>.
</p>
<p>The optional parameter <var>eps1</var> is the threshold for zero. The default
value is 1e-12.
</p>
<p>If the optional parameter <var>pflg</var> is nonzero, row pivoting is used to
improve numerical behavior. The default value is 0.
</p>
<p>Reference: A. Hodel, P. Misra, <cite>Partial Pivoting in the
Computation of Krylov Subspaces of Large Sparse Systems</cite>, Proceedings of
the 42nd IEEE Conference on Decision and Control, December 2003.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Functions-of-a-Matrix.html" accesskey="n" rel="next">Functions of a Matrix</a>, Previous: <a href="Basic-Matrix-Functions.html" accesskey="p" rel="prev">Basic Matrix Functions</a>, Up: <a href="Linear-Algebra.html" accesskey="u" rel="up">Linear Algebra</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|