File: Minimizers.html

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (374 lines) | stat: -rw-r--r-- 17,783 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Minimizers (GNU Octave (version 6.2.0))</title>

<meta name="description" content="Minimizers (GNU Octave (version 6.2.0))">
<meta name="keywords" content="Minimizers (GNU Octave (version 6.2.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Nonlinear-Equations.html" rel="up" title="Nonlinear Equations">
<link href="Diagonal-and-Permutation-Matrices.html" rel="next" title="Diagonal and Permutation Matrices">
<link href="Solvers.html" rel="prev" title="Solvers">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<span id="Minimizers"></span><div class="header">
<p>
Previous: <a href="Solvers.html" accesskey="p" rel="prev">Solvers</a>, Up: <a href="Nonlinear-Equations.html" accesskey="u" rel="up">Nonlinear Equations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Minimizers-1"></span><h3 class="section">20.2 Minimizers</h3>
<span id="index-local-minimum"></span>
<span id="index-finding-minimums"></span>

<p>Often it is useful to find the minimum value of a function rather than just
the zeroes where it crosses the x-axis.  <code>fminbnd</code> is designed for the
simpler, but very common, case of a univariate function where the interval
to search is bounded.  For unbounded minimization of a function with
potentially many variables use <code>fminunc</code> or <code>fminsearch</code>.  The two
functions use different internal algorithms and some knowledge of the objective
function is required.  For functions which can be differentiated,
<code>fminunc</code> is appropriate.  For functions with discontinuities, or for
which a gradient search would fail, use <code>fminsearch</code>.
See <a href="Optimization.html">Optimization</a>, for minimization with the presence of constraint
functions.  Note that searches can be made for maxima by simply inverting the
objective function
(<code>Fto_max = -Fto_min</code>).
</p>
<span id="XREFfminbnd"></span><dl>
<dt id="index-fminbnd">: <em><var>x</var> =</em> <strong>fminbnd</strong> <em>(<var>fun</var>, <var>a</var>, <var>b</var>)</em></dt>
<dt id="index-fminbnd-1">: <em><var>x</var> =</em> <strong>fminbnd</strong> <em>(<var>fun</var>, <var>a</var>, <var>b</var>, <var>options</var>)</em></dt>
<dt id="index-fminbnd-2">: <em>[<var>x</var>, <var>fval</var>, <var>info</var>, <var>output</var>] =</em> <strong>fminbnd</strong> <em>(&hellip;)</em></dt>
<dd><p>Find a minimum point of a univariate function.
</p>
<p><var>fun</var> is a function handle, inline function, or string containing the
name of the function to evaluate.
</p>
<p>The starting interval is specified by <var>a</var> (left boundary) and <var>b</var>
(right boundary).  The endpoints must be finite.
</p>
<p><var>options</var> is a structure specifying additional parameters which
control the algorithm.  Currently, <code>fminbnd</code> recognizes these options:
<code>&quot;Display&quot;</code>, <code>&quot;FunValCheck&quot;</code>, <code>&quot;MaxFunEvals&quot;</code>,
<code>&quot;MaxIter&quot;</code>, <code>&quot;OutputFcn&quot;</code>, <code>&quot;TolX&quot;</code>.
</p>
<p><code>&quot;MaxFunEvals&quot;</code> proscribes the maximum number of function evaluations
before optimization is halted.  The default value is 500.
The value must be a positive integer.
</p>
<p><code>&quot;MaxIter&quot;</code> proscribes the maximum number of algorithm iterations
before optimization is halted.  The default value is 500.
The value must be a positive integer.
</p>
<p><code>&quot;TolX&quot;</code> specifies the termination tolerance for the solution <var>x</var>.
The default is <code>1e-4</code>.
</p>
<p>For a description of the other options, see <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
To initialize an options structure with default values for <code>fminbnd</code>
use <code>options = optimset (&quot;fminbnd&quot;)</code>.
</p>
<p>On exit, the function returns <var>x</var>, the approximate minimum point, and
<var>fval</var>, the function evaluated <var>x</var>.
</p>
<p>The third output <var>info</var> reports whether the algorithm succeeded and may
take one of the following values:
</p>
<ul>
<li> 1
The algorithm converged to a solution.

</li><li> 0
Iteration limit (either <code>MaxIter</code> or <code>MaxFunEvals</code>) exceeded.

</li><li> -1
The algorithm was terminated by a user <code>OutputFcn</code>.
</li></ul>

<p>Programming Notes: The search for a minimum is restricted to be in the
finite interval bound by <var>a</var> and <var>b</var>.  If you have only one initial
point to begin searching from then you will need to use an unconstrained
minimization algorithm such as <code>fminunc</code> or <code>fminsearch</code>.
<code>fminbnd</code> internally uses a Golden Section search strategy.
</p>
<p><strong>See also:</strong> <a href="Solvers.html#XREFfzero">fzero</a>, <a href="#XREFfminunc">fminunc</a>, <a href="#XREFfminsearch">fminsearch</a>, <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>


<span id="XREFfminunc"></span><dl>
<dt id="index-fminunc">: <em></em> <strong>fminunc</strong> <em>(<var>fcn</var>, <var>x0</var>)</em></dt>
<dt id="index-fminunc-1">: <em></em> <strong>fminunc</strong> <em>(<var>fcn</var>, <var>x0</var>, <var>options</var>)</em></dt>
<dt id="index-fminunc-2">: <em>[<var>x</var>, <var>fval</var>, <var>info</var>, <var>output</var>, <var>grad</var>, <var>hess</var>] =</em> <strong>fminunc</strong> <em>(<var>fcn</var>, &hellip;)</em></dt>
<dd><p>Solve an unconstrained optimization problem defined by the function
<var>fcn</var>.
</p>
<p><code>fminunc</code> attempts to determine a vector <var>x</var> such that
<code><var>fcn</var> (<var>x</var>)</code> is a local minimum.
</p>
<p><var>fun</var> is a function handle, inline function, or string containing the
name of the function to evaluate.  <var>fcn</var> should accept a vector (array)
defining the unknown variables, and return the objective function value,
optionally with gradient.
</p>
<p><var>x0</var> determines a starting guess.  The shape of <var>x0</var> is preserved in
all calls to <var>fcn</var>, but otherwise is treated as a column vector.
</p>
<p><var>options</var> is a structure specifying additional parameters which
control the algorithm.  Currently, <code>fminunc</code> recognizes these options:
<code>&quot;AutoScaling&quot;</code>, <code>&quot;FinDiffType&quot;</code>, <code>&quot;FunValCheck&quot;</code>,
<code>&quot;GradObj&quot;</code>, <code>&quot;MaxFunEvals&quot;</code>, <code>&quot;MaxIter&quot;</code>,
<code>&quot;OutputFcn&quot;</code>, <code>&quot;TolFun&quot;</code>, <code>&quot;TolX&quot;</code>, <code>&quot;TypicalX&quot;</code>.
</p>
<p>If <code>&quot;AutoScaling&quot;</code> is <code>&quot;on&quot;</code>, the variables will be
automatically scaled according to the column norms of the (estimated)
Jacobian.  As a result, <code>&quot;TolFun&quot;</code> becomes scaling-independent.  By
default, this option is <code>&quot;off&quot;</code> because it may sometimes deliver
unexpected (though mathematically correct) results.
</p>
<p>If <code>&quot;GradObj&quot;</code> is <code>&quot;on&quot;</code>, it specifies that <var>fcn</var>&mdash;when
called with two output arguments&mdash;also returns the Jacobian matrix of
partial first derivatives at the requested point.
</p>
<p><code>&quot;MaxFunEvals&quot;</code> proscribes the maximum number of function evaluations
before optimization is halted.  The default value is
<code>100 * number_of_variables</code>, i.e., <code>100 * length (<var>x0</var>)</code>.
The value must be a positive integer.
</p>
<p><code>&quot;MaxIter&quot;</code> proscribes the maximum number of algorithm iterations
before optimization is halted.  The default value is 400.
The value must be a positive integer.
</p>
<p><code>&quot;TolX&quot;</code> specifies the termination tolerance for the unknown variables
<var>x</var>, while <code>&quot;TolFun&quot;</code> is a tolerance for the objective function
value <var>fval</var>.  The default is <code>1e-6</code> for both options.
</p>
<p>For a description of the other options, see <code>optimset</code>.
</p>
<p>On return, <var>x</var> is the location of the minimum and <var>fval</var> contains
the value of the objective function at <var>x</var>.
</p>
<p><var>info</var> may be one of the following values:
</p>
<dl compact="compact">
<dt>1</dt>
<dd><p>Converged to a solution point.  Relative gradient error is less than
specified by <code>TolFun</code>.
</p>
</dd>
<dt>2</dt>
<dd><p>Last relative step size was less than <code>TolX</code>.
</p>
</dd>
<dt>3</dt>
<dd><p>Last relative change in function value was less than <code>TolFun</code>.
</p>
</dd>
<dt>0</dt>
<dd><p>Iteration limit exceeded&mdash;either maximum number of algorithm iterations
<code>MaxIter</code> or maximum number of function evaluations <code>MaxFunEvals</code>.
</p>
</dd>
<dt>-1</dt>
<dd><p>Algorithm terminated by <code>OutputFcn</code>.
</p>
</dd>
<dt>-3</dt>
<dd><p>The trust region radius became excessively small.
</p></dd>
</dl>

<p>Optionally, <code>fminunc</code> can return a structure with convergence
statistics (<var>output</var>), the output gradient (<var>grad</var>) at the
solution <var>x</var>, and approximate Hessian (<var>hess</var>) at the solution
<var>x</var>.
</p>
<p>Application Notes: If the objective function is a single nonlinear equation
of one variable then using <code>fminbnd</code> is usually a better choice.
</p>
<p>The algorithm used by <code>fminunc</code> is a gradient search which depends
on the objective function being differentiable.  If the function has
discontinuities it may be better to use a derivative-free algorithm such as
<code>fminsearch</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFfminbnd">fminbnd</a>, <a href="#XREFfminsearch">fminsearch</a>, <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>


<span id="XREFfminsearch"></span><dl>
<dt id="index-fminsearch">: <em><var>x</var> =</em> <strong>fminsearch</strong> <em>(<var>fun</var>, <var>x0</var>)</em></dt>
<dt id="index-fminsearch-1">: <em><var>x</var> =</em> <strong>fminsearch</strong> <em>(<var>fun</var>, <var>x0</var>, <var>options</var>)</em></dt>
<dt id="index-fminsearch-2">: <em><var>x</var> =</em> <strong>fminsearch</strong> <em>(<var>problem</var>)</em></dt>
<dt id="index-fminsearch-3">: <em>[<var>x</var>, <var>fval</var>, <var>exitflag</var>, <var>output</var>] =</em> <strong>fminsearch</strong> <em>(&hellip;)</em></dt>
<dd>
<p>Find a value of <var>x</var> which minimizes the multi-variable function
<var>fun</var>.
</p>
<p><var>fun</var> is a function handle, inline function, or string containing the
name of the function to evaluate.
</p>
<p>The search begins at the point <var>x0</var> and iterates using the
Nelder &amp; Mead Simplex algorithm (a derivative-free method).  This
algorithm is better-suited to functions which have discontinuities or for
which a gradient-based search such as <code>fminunc</code> fails.
</p>
<p>Options for the search are provided in the parameter <var>options</var> using the
function <code>optimset</code>.  Currently, <code>fminsearch</code> accepts the options:
<code>&quot;Display&quot;</code>, <code>&quot;FunValCheck&quot;</code>,<code>&quot;MaxFunEvals&quot;</code>,
<code>&quot;MaxIter&quot;</code>, <code>&quot;OutputFcn&quot;</code>, <code>&quot;TolFun&quot;</code>, <code>&quot;TolX&quot;</code>.
</p>
<p><code>&quot;MaxFunEvals&quot;</code> proscribes the maximum number of function evaluations
before optimization is halted.  The default value is
<code>200 * number_of_variables</code>, i.e., <code>200 * length (<var>x0</var>)</code>.
The value must be a positive integer.
</p>
<p><code>&quot;MaxIter&quot;</code> proscribes the maximum number of algorithm iterations
before optimization is halted.  The default value is
<code>200 * number_of_variables</code>, i.e., <code>200 * length (<var>x0</var>)</code>.
The value must be a positive integer.
</p>
<p>For a description of the other options, see <code>optimset</code>.  To initialize
an options structure with default values for <code>fminsearch</code> use
<code>options = optimset (&quot;fminsearch&quot;)</code>.
</p>
<p><code>fminsearch</code> may also be called with a single structure argument
with the following fields:
</p>
<dl compact="compact">
<dt><code>objective</code></dt>
<dd><p>The objective function.
</p>
</dd>
<dt><code>x0</code></dt>
<dd><p>The initial point.
</p>
</dd>
<dt><code>solver</code></dt>
<dd><p>Must be set to <code>&quot;fminsearch&quot;</code>.
</p>
</dd>
<dt><code>options</code></dt>
<dd><p>A structure returned from <code>optimset</code> or an empty matrix to
indicate that defaults should be used.
</p></dd>
</dl>

<p>The field <code>options</code> is optional.  All others are required.
</p>
<p>On exit, the function returns <var>x</var>, the minimum point, and <var>fval</var>,
the function value at the minimum.
</p>
<p>The third output <var>exitflag</var> reports whether the algorithm succeeded and
may take one of the following values:
</p>
<dl compact="compact">
<dt>1</dt>
<dd><p>if the algorithm converged
(size of the simplex is smaller than <code>TolX</code> <strong>AND</strong> the step in
function value between iterations is smaller than <code>TolFun</code>).
</p>
</dd>
<dt>0</dt>
<dd><p>if the maximum number of iterations or the maximum number of function
evaluations are exceeded.
</p>
</dd>
<dt>-1</dt>
<dd><p>if the iteration is stopped by the <code>&quot;OutputFcn&quot;</code>.
</p></dd>
</dl>

<p>The fourth output is a structure <var>output</var> containing runtime
about the algorithm.  Fields in the structure are <code>funcCount</code>
containing the number of function calls to <var>fun</var>, <code>iterations</code>
containing the number of iteration steps, <code>algorithm</code> with the name of
the search algorithm (always:
<code>&quot;Nelder-Mead simplex direct search&quot;</code>), and <code>message</code>
with the exit message.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">fminsearch (@(x) (x(1)-5).^2+(x(2)-8).^4, [0;0])
</pre></div>

<p>Note: If you need to find the minimum of a single variable function it is
probably better to use <code>fminbnd</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFfminbnd">fminbnd</a>, <a href="#XREFfminunc">fminunc</a>, <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>


<p>The function <code>humps</code> is a useful function for testing zero and
extrema finding functions.
</p>
<span id="XREFhumps"></span><dl>
<dt id="index-humps">: <em><var>y</var> =</em> <strong>humps</strong> <em>(<var>x</var>)</em></dt>
<dt id="index-humps-1">: <em>[<var>x</var>, <var>y</var>] =</em> <strong>humps</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Evaluate a function with multiple minima, maxima, and zero crossings.
</p>
<p>The output <var>y</var> is the evaluation of the rational function:
</p>

<div class="example">
<pre class="example">        1200*<var>x</var>^4 - 2880*<var>x</var>^3 + 2036*<var>x</var>^2 - 348*<var>x</var> - 88
 <var>y</var> = - ---------------------------------------------
         200*<var>x</var>^4 - 480*<var>x</var>^3 + 406*<var>x</var>^2 - 138*<var>x</var> + 17
</pre></div>


<p><var>x</var> may be a scalar, vector or array.  If <var>x</var> is omitted, the
default range [0:0.05:1] is used.
</p>
<p>When called with two output arguments, [<var>x</var>, <var>y</var>], <var>x</var> will
contain the input values, and <var>y</var> will contain the output from
<code>humps</code>.
</p>
<p>Programming Notes: <code>humps</code> has two local maxima located near <var>x</var> =
0.300 and 0.893, a local minimum near <var>x</var> = 0.637, and zeros near
<var>x</var> = -0.132 and 1.300.  <code>humps</code> is a useful function for testing
algorithms which find zeros or local minima and maxima.
</p>
<p>Try <code>demo humps</code> to see a plot of the <code>humps</code> function.
</p>
<p><strong>See also:</strong> <a href="Solvers.html#XREFfzero">fzero</a>, <a href="#XREFfminbnd">fminbnd</a>, <a href="#XREFfminunc">fminunc</a>, <a href="#XREFfminsearch">fminsearch</a>.
</p></dd></dl>



<hr>
<div class="header">
<p>
Previous: <a href="Solvers.html" accesskey="p" rel="prev">Solvers</a>, Up: <a href="Nonlinear-Equations.html" accesskey="u" rel="up">Nonlinear Equations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>