1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Minimizers (GNU Octave (version 6.2.0))</title>
<meta name="description" content="Minimizers (GNU Octave (version 6.2.0))">
<meta name="keywords" content="Minimizers (GNU Octave (version 6.2.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Nonlinear-Equations.html" rel="up" title="Nonlinear Equations">
<link href="Diagonal-and-Permutation-Matrices.html" rel="next" title="Diagonal and Permutation Matrices">
<link href="Solvers.html" rel="prev" title="Solvers">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<span id="Minimizers"></span><div class="header">
<p>
Previous: <a href="Solvers.html" accesskey="p" rel="prev">Solvers</a>, Up: <a href="Nonlinear-Equations.html" accesskey="u" rel="up">Nonlinear Equations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Minimizers-1"></span><h3 class="section">20.2 Minimizers</h3>
<span id="index-local-minimum"></span>
<span id="index-finding-minimums"></span>
<p>Often it is useful to find the minimum value of a function rather than just
the zeroes where it crosses the x-axis. <code>fminbnd</code> is designed for the
simpler, but very common, case of a univariate function where the interval
to search is bounded. For unbounded minimization of a function with
potentially many variables use <code>fminunc</code> or <code>fminsearch</code>. The two
functions use different internal algorithms and some knowledge of the objective
function is required. For functions which can be differentiated,
<code>fminunc</code> is appropriate. For functions with discontinuities, or for
which a gradient search would fail, use <code>fminsearch</code>.
See <a href="Optimization.html">Optimization</a>, for minimization with the presence of constraint
functions. Note that searches can be made for maxima by simply inverting the
objective function
(<code>Fto_max = -Fto_min</code>).
</p>
<span id="XREFfminbnd"></span><dl>
<dt id="index-fminbnd">: <em><var>x</var> =</em> <strong>fminbnd</strong> <em>(<var>fun</var>, <var>a</var>, <var>b</var>)</em></dt>
<dt id="index-fminbnd-1">: <em><var>x</var> =</em> <strong>fminbnd</strong> <em>(<var>fun</var>, <var>a</var>, <var>b</var>, <var>options</var>)</em></dt>
<dt id="index-fminbnd-2">: <em>[<var>x</var>, <var>fval</var>, <var>info</var>, <var>output</var>] =</em> <strong>fminbnd</strong> <em>(…)</em></dt>
<dd><p>Find a minimum point of a univariate function.
</p>
<p><var>fun</var> is a function handle, inline function, or string containing the
name of the function to evaluate.
</p>
<p>The starting interval is specified by <var>a</var> (left boundary) and <var>b</var>
(right boundary). The endpoints must be finite.
</p>
<p><var>options</var> is a structure specifying additional parameters which
control the algorithm. Currently, <code>fminbnd</code> recognizes these options:
<code>"Display"</code>, <code>"FunValCheck"</code>, <code>"MaxFunEvals"</code>,
<code>"MaxIter"</code>, <code>"OutputFcn"</code>, <code>"TolX"</code>.
</p>
<p><code>"MaxFunEvals"</code> proscribes the maximum number of function evaluations
before optimization is halted. The default value is 500.
The value must be a positive integer.
</p>
<p><code>"MaxIter"</code> proscribes the maximum number of algorithm iterations
before optimization is halted. The default value is 500.
The value must be a positive integer.
</p>
<p><code>"TolX"</code> specifies the termination tolerance for the solution <var>x</var>.
The default is <code>1e-4</code>.
</p>
<p>For a description of the other options, see <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
To initialize an options structure with default values for <code>fminbnd</code>
use <code>options = optimset ("fminbnd")</code>.
</p>
<p>On exit, the function returns <var>x</var>, the approximate minimum point, and
<var>fval</var>, the function evaluated <var>x</var>.
</p>
<p>The third output <var>info</var> reports whether the algorithm succeeded and may
take one of the following values:
</p>
<ul>
<li> 1
The algorithm converged to a solution.
</li><li> 0
Iteration limit (either <code>MaxIter</code> or <code>MaxFunEvals</code>) exceeded.
</li><li> -1
The algorithm was terminated by a user <code>OutputFcn</code>.
</li></ul>
<p>Programming Notes: The search for a minimum is restricted to be in the
finite interval bound by <var>a</var> and <var>b</var>. If you have only one initial
point to begin searching from then you will need to use an unconstrained
minimization algorithm such as <code>fminunc</code> or <code>fminsearch</code>.
<code>fminbnd</code> internally uses a Golden Section search strategy.
</p>
<p><strong>See also:</strong> <a href="Solvers.html#XREFfzero">fzero</a>, <a href="#XREFfminunc">fminunc</a>, <a href="#XREFfminsearch">fminsearch</a>, <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>
<span id="XREFfminunc"></span><dl>
<dt id="index-fminunc">: <em></em> <strong>fminunc</strong> <em>(<var>fcn</var>, <var>x0</var>)</em></dt>
<dt id="index-fminunc-1">: <em></em> <strong>fminunc</strong> <em>(<var>fcn</var>, <var>x0</var>, <var>options</var>)</em></dt>
<dt id="index-fminunc-2">: <em>[<var>x</var>, <var>fval</var>, <var>info</var>, <var>output</var>, <var>grad</var>, <var>hess</var>] =</em> <strong>fminunc</strong> <em>(<var>fcn</var>, …)</em></dt>
<dd><p>Solve an unconstrained optimization problem defined by the function
<var>fcn</var>.
</p>
<p><code>fminunc</code> attempts to determine a vector <var>x</var> such that
<code><var>fcn</var> (<var>x</var>)</code> is a local minimum.
</p>
<p><var>fun</var> is a function handle, inline function, or string containing the
name of the function to evaluate. <var>fcn</var> should accept a vector (array)
defining the unknown variables, and return the objective function value,
optionally with gradient.
</p>
<p><var>x0</var> determines a starting guess. The shape of <var>x0</var> is preserved in
all calls to <var>fcn</var>, but otherwise is treated as a column vector.
</p>
<p><var>options</var> is a structure specifying additional parameters which
control the algorithm. Currently, <code>fminunc</code> recognizes these options:
<code>"AutoScaling"</code>, <code>"FinDiffType"</code>, <code>"FunValCheck"</code>,
<code>"GradObj"</code>, <code>"MaxFunEvals"</code>, <code>"MaxIter"</code>,
<code>"OutputFcn"</code>, <code>"TolFun"</code>, <code>"TolX"</code>, <code>"TypicalX"</code>.
</p>
<p>If <code>"AutoScaling"</code> is <code>"on"</code>, the variables will be
automatically scaled according to the column norms of the (estimated)
Jacobian. As a result, <code>"TolFun"</code> becomes scaling-independent. By
default, this option is <code>"off"</code> because it may sometimes deliver
unexpected (though mathematically correct) results.
</p>
<p>If <code>"GradObj"</code> is <code>"on"</code>, it specifies that <var>fcn</var>—when
called with two output arguments—also returns the Jacobian matrix of
partial first derivatives at the requested point.
</p>
<p><code>"MaxFunEvals"</code> proscribes the maximum number of function evaluations
before optimization is halted. The default value is
<code>100 * number_of_variables</code>, i.e., <code>100 * length (<var>x0</var>)</code>.
The value must be a positive integer.
</p>
<p><code>"MaxIter"</code> proscribes the maximum number of algorithm iterations
before optimization is halted. The default value is 400.
The value must be a positive integer.
</p>
<p><code>"TolX"</code> specifies the termination tolerance for the unknown variables
<var>x</var>, while <code>"TolFun"</code> is a tolerance for the objective function
value <var>fval</var>. The default is <code>1e-6</code> for both options.
</p>
<p>For a description of the other options, see <code>optimset</code>.
</p>
<p>On return, <var>x</var> is the location of the minimum and <var>fval</var> contains
the value of the objective function at <var>x</var>.
</p>
<p><var>info</var> may be one of the following values:
</p>
<dl compact="compact">
<dt>1</dt>
<dd><p>Converged to a solution point. Relative gradient error is less than
specified by <code>TolFun</code>.
</p>
</dd>
<dt>2</dt>
<dd><p>Last relative step size was less than <code>TolX</code>.
</p>
</dd>
<dt>3</dt>
<dd><p>Last relative change in function value was less than <code>TolFun</code>.
</p>
</dd>
<dt>0</dt>
<dd><p>Iteration limit exceeded—either maximum number of algorithm iterations
<code>MaxIter</code> or maximum number of function evaluations <code>MaxFunEvals</code>.
</p>
</dd>
<dt>-1</dt>
<dd><p>Algorithm terminated by <code>OutputFcn</code>.
</p>
</dd>
<dt>-3</dt>
<dd><p>The trust region radius became excessively small.
</p></dd>
</dl>
<p>Optionally, <code>fminunc</code> can return a structure with convergence
statistics (<var>output</var>), the output gradient (<var>grad</var>) at the
solution <var>x</var>, and approximate Hessian (<var>hess</var>) at the solution
<var>x</var>.
</p>
<p>Application Notes: If the objective function is a single nonlinear equation
of one variable then using <code>fminbnd</code> is usually a better choice.
</p>
<p>The algorithm used by <code>fminunc</code> is a gradient search which depends
on the objective function being differentiable. If the function has
discontinuities it may be better to use a derivative-free algorithm such as
<code>fminsearch</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFfminbnd">fminbnd</a>, <a href="#XREFfminsearch">fminsearch</a>, <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>
<span id="XREFfminsearch"></span><dl>
<dt id="index-fminsearch">: <em><var>x</var> =</em> <strong>fminsearch</strong> <em>(<var>fun</var>, <var>x0</var>)</em></dt>
<dt id="index-fminsearch-1">: <em><var>x</var> =</em> <strong>fminsearch</strong> <em>(<var>fun</var>, <var>x0</var>, <var>options</var>)</em></dt>
<dt id="index-fminsearch-2">: <em><var>x</var> =</em> <strong>fminsearch</strong> <em>(<var>problem</var>)</em></dt>
<dt id="index-fminsearch-3">: <em>[<var>x</var>, <var>fval</var>, <var>exitflag</var>, <var>output</var>] =</em> <strong>fminsearch</strong> <em>(…)</em></dt>
<dd>
<p>Find a value of <var>x</var> which minimizes the multi-variable function
<var>fun</var>.
</p>
<p><var>fun</var> is a function handle, inline function, or string containing the
name of the function to evaluate.
</p>
<p>The search begins at the point <var>x0</var> and iterates using the
Nelder & Mead Simplex algorithm (a derivative-free method). This
algorithm is better-suited to functions which have discontinuities or for
which a gradient-based search such as <code>fminunc</code> fails.
</p>
<p>Options for the search are provided in the parameter <var>options</var> using the
function <code>optimset</code>. Currently, <code>fminsearch</code> accepts the options:
<code>"Display"</code>, <code>"FunValCheck"</code>,<code>"MaxFunEvals"</code>,
<code>"MaxIter"</code>, <code>"OutputFcn"</code>, <code>"TolFun"</code>, <code>"TolX"</code>.
</p>
<p><code>"MaxFunEvals"</code> proscribes the maximum number of function evaluations
before optimization is halted. The default value is
<code>200 * number_of_variables</code>, i.e., <code>200 * length (<var>x0</var>)</code>.
The value must be a positive integer.
</p>
<p><code>"MaxIter"</code> proscribes the maximum number of algorithm iterations
before optimization is halted. The default value is
<code>200 * number_of_variables</code>, i.e., <code>200 * length (<var>x0</var>)</code>.
The value must be a positive integer.
</p>
<p>For a description of the other options, see <code>optimset</code>. To initialize
an options structure with default values for <code>fminsearch</code> use
<code>options = optimset ("fminsearch")</code>.
</p>
<p><code>fminsearch</code> may also be called with a single structure argument
with the following fields:
</p>
<dl compact="compact">
<dt><code>objective</code></dt>
<dd><p>The objective function.
</p>
</dd>
<dt><code>x0</code></dt>
<dd><p>The initial point.
</p>
</dd>
<dt><code>solver</code></dt>
<dd><p>Must be set to <code>"fminsearch"</code>.
</p>
</dd>
<dt><code>options</code></dt>
<dd><p>A structure returned from <code>optimset</code> or an empty matrix to
indicate that defaults should be used.
</p></dd>
</dl>
<p>The field <code>options</code> is optional. All others are required.
</p>
<p>On exit, the function returns <var>x</var>, the minimum point, and <var>fval</var>,
the function value at the minimum.
</p>
<p>The third output <var>exitflag</var> reports whether the algorithm succeeded and
may take one of the following values:
</p>
<dl compact="compact">
<dt>1</dt>
<dd><p>if the algorithm converged
(size of the simplex is smaller than <code>TolX</code> <strong>AND</strong> the step in
function value between iterations is smaller than <code>TolFun</code>).
</p>
</dd>
<dt>0</dt>
<dd><p>if the maximum number of iterations or the maximum number of function
evaluations are exceeded.
</p>
</dd>
<dt>-1</dt>
<dd><p>if the iteration is stopped by the <code>"OutputFcn"</code>.
</p></dd>
</dl>
<p>The fourth output is a structure <var>output</var> containing runtime
about the algorithm. Fields in the structure are <code>funcCount</code>
containing the number of function calls to <var>fun</var>, <code>iterations</code>
containing the number of iteration steps, <code>algorithm</code> with the name of
the search algorithm (always:
<code>"Nelder-Mead simplex direct search"</code>), and <code>message</code>
with the exit message.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">fminsearch (@(x) (x(1)-5).^2+(x(2)-8).^4, [0;0])
</pre></div>
<p>Note: If you need to find the minimum of a single variable function it is
probably better to use <code>fminbnd</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFfminbnd">fminbnd</a>, <a href="#XREFfminunc">fminunc</a>, <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>
<p>The function <code>humps</code> is a useful function for testing zero and
extrema finding functions.
</p>
<span id="XREFhumps"></span><dl>
<dt id="index-humps">: <em><var>y</var> =</em> <strong>humps</strong> <em>(<var>x</var>)</em></dt>
<dt id="index-humps-1">: <em>[<var>x</var>, <var>y</var>] =</em> <strong>humps</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Evaluate a function with multiple minima, maxima, and zero crossings.
</p>
<p>The output <var>y</var> is the evaluation of the rational function:
</p>
<div class="example">
<pre class="example"> 1200*<var>x</var>^4 - 2880*<var>x</var>^3 + 2036*<var>x</var>^2 - 348*<var>x</var> - 88
<var>y</var> = - ---------------------------------------------
200*<var>x</var>^4 - 480*<var>x</var>^3 + 406*<var>x</var>^2 - 138*<var>x</var> + 17
</pre></div>
<p><var>x</var> may be a scalar, vector or array. If <var>x</var> is omitted, the
default range [0:0.05:1] is used.
</p>
<p>When called with two output arguments, [<var>x</var>, <var>y</var>], <var>x</var> will
contain the input values, and <var>y</var> will contain the output from
<code>humps</code>.
</p>
<p>Programming Notes: <code>humps</code> has two local maxima located near <var>x</var> =
0.300 and 0.893, a local minimum near <var>x</var> = 0.637, and zeros near
<var>x</var> = -0.132 and 1.300. <code>humps</code> is a useful function for testing
algorithms which find zeros or local minima and maxima.
</p>
<p>Try <code>demo humps</code> to see a plot of the <code>humps</code> function.
</p>
<p><strong>See also:</strong> <a href="Solvers.html#XREFfzero">fzero</a>, <a href="#XREFfminbnd">fminbnd</a>, <a href="#XREFfminunc">fminunc</a>, <a href="#XREFfminsearch">fminsearch</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Previous: <a href="Solvers.html" accesskey="p" rel="prev">Solvers</a>, Up: <a href="Nonlinear-Equations.html" accesskey="u" rel="up">Nonlinear Equations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|