File: Multi_002ddimensional-Interpolation.html

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (299 lines) | stat: -rw-r--r-- 16,045 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Multi-dimensional Interpolation (GNU Octave (version 6.2.0))</title>

<meta name="description" content="Multi-dimensional Interpolation (GNU Octave (version 6.2.0))">
<meta name="keywords" content="Multi-dimensional Interpolation (GNU Octave (version 6.2.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Interpolation.html" rel="up" title="Interpolation">
<link href="Geometry.html" rel="next" title="Geometry">
<link href="One_002ddimensional-Interpolation.html" rel="prev" title="One-dimensional Interpolation">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<span id="Multi_002ddimensional-Interpolation"></span><div class="header">
<p>
Previous: <a href="One_002ddimensional-Interpolation.html" accesskey="p" rel="prev">One-dimensional Interpolation</a>, Up: <a href="Interpolation.html" accesskey="u" rel="up">Interpolation</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Multi_002ddimensional-Interpolation-1"></span><h3 class="section">29.2 Multi-dimensional Interpolation</h3>

<p>There are three multi-dimensional interpolation functions in Octave, with
similar capabilities.  Methods using Delaunay tessellation are described
in <a href="Interpolation-on-Scattered-Data.html">Interpolation on Scattered Data</a>.
</p>
<span id="XREFinterp2"></span><dl>
<dt id="index-interp2">: <em><var>zi</var> =</em> <strong>interp2</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>xi</var>, <var>yi</var>)</em></dt>
<dt id="index-interp2-1">: <em><var>zi</var> =</em> <strong>interp2</strong> <em>(<var>z</var>, <var>xi</var>, <var>yi</var>)</em></dt>
<dt id="index-interp2-2">: <em><var>zi</var> =</em> <strong>interp2</strong> <em>(<var>z</var>, <var>n</var>)</em></dt>
<dt id="index-interp2-3">: <em><var>zi</var> =</em> <strong>interp2</strong> <em>(<var>z</var>)</em></dt>
<dt id="index-interp2-4">: <em><var>zi</var> =</em> <strong>interp2</strong> <em>(&hellip;, <var>method</var>)</em></dt>
<dt id="index-interp2-5">: <em><var>zi</var> =</em> <strong>interp2</strong> <em>(&hellip;, <var>method</var>, <var>extrap</var>)</em></dt>
<dd>
<p>Two-dimensional interpolation.
</p>
<p>Interpolate reference data <var>x</var>, <var>y</var>, <var>z</var> to determine <var>zi</var>
at the coordinates <var>xi</var>, <var>yi</var>.  The reference data <var>x</var>, <var>y</var>
can be matrices, as returned by <code>meshgrid</code>, in which case the sizes of
<var>x</var>, <var>y</var>, and <var>z</var> must be equal.  If <var>x</var>, <var>y</var> are
vectors describing a grid then <code>length (<var>x</var>) == columns (<var>z</var>)</code>
and <code>length (<var>y</var>) == rows (<var>z</var>)</code>.  In either case the input
data must be strictly monotonic.
</p>
<p>If called without <var>x</var>, <var>y</var>, and just a single reference data matrix
<var>z</var>, the 2-D region
<code><var>x</var> = 1:columns (<var>z</var>), <var>y</var> = 1:rows (<var>z</var>)</code> is assumed.
This saves memory if the grid is regular and the distance between points is
not important.
</p>
<p>If called with a single reference data matrix <var>z</var> and a refinement
value <var>n</var>, then perform interpolation over a grid where each original
interval has been recursively subdivided <var>n</var> times.  This results in
<code>2^<var>n</var>-1</code> additional points for every interval in the original
grid.  If <var>n</var> is omitted a value of 1 is used.  As an example, the
interval [0,1] with <code><var>n</var>==2</code> results in a refined interval with
points at [0, 1/4, 1/2, 3/4, 1].
</p>
<p>The interpolation <var>method</var> is one of:
</p>
<dl compact="compact">
<dt><code>&quot;nearest&quot;</code></dt>
<dd><p>Return the nearest neighbor.
</p>
</dd>
<dt><code>&quot;linear&quot;</code> (default)</dt>
<dd><p>Linear interpolation from nearest neighbors.
</p>
</dd>
<dt><code>&quot;pchip&quot;</code></dt>
<dd><p>Piecewise cubic Hermite interpolating polynomial&mdash;shape-preserving
interpolation with smooth first derivative.
</p>
</dd>
<dt><code>&quot;cubic&quot;</code></dt>
<dd><p>Cubic interpolation (same as <code>&quot;pchip&quot;</code>).
</p>
</dd>
<dt><code>&quot;spline&quot;</code></dt>
<dd><p>Cubic spline interpolation&mdash;smooth first and second derivatives
throughout the curve.
</p></dd>
</dl>

<p><var>extrap</var> is a scalar number.  It replaces values beyond the endpoints
with <var>extrap</var>.  Note that if <var>extrap</var> is used, <var>method</var> must
be specified as well.  If <var>extrap</var> is omitted and the <var>method</var> is
<code>&quot;spline&quot;</code>, then the extrapolated values of the <code>&quot;spline&quot;</code> are
used.  Otherwise the default <var>extrap</var> value for any other <var>method</var>
is <code>&quot;NA&quot;</code>.
</p>
<p><strong>See also:</strong> <a href="One_002ddimensional-Interpolation.html#XREFinterp1">interp1</a>, <a href="#XREFinterp3">interp3</a>, <a href="#XREFinterpn">interpn</a>, <a href="Three_002dDimensional-Plots.html#XREFmeshgrid">meshgrid</a>.
</p></dd></dl>


<span id="XREFinterp3"></span><dl>
<dt id="index-interp3">: <em><var>vi</var> =</em> <strong>interp3</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>v</var>, <var>xi</var>, <var>yi</var>, <var>zi</var>)</em></dt>
<dt id="index-interp3-1">: <em><var>vi</var> =</em> <strong>interp3</strong> <em>(<var>v</var>, <var>xi</var>, <var>yi</var>, <var>zi</var>)</em></dt>
<dt id="index-interp3-2">: <em><var>vi</var> =</em> <strong>interp3</strong> <em>(<var>v</var>, <var>n</var>)</em></dt>
<dt id="index-interp3-3">: <em><var>vi</var> =</em> <strong>interp3</strong> <em>(<var>v</var>)</em></dt>
<dt id="index-interp3-4">: <em><var>vi</var> =</em> <strong>interp3</strong> <em>(&hellip;, <var>method</var>)</em></dt>
<dt id="index-interp3-5">: <em><var>vi</var> =</em> <strong>interp3</strong> <em>(&hellip;, <var>method</var>, <var>extrapval</var>)</em></dt>
<dd>
<p>Three-dimensional interpolation.
</p>
<p>Interpolate reference data <var>x</var>, <var>y</var>, <var>z</var>, <var>v</var> to determine
<var>vi</var> at the coordinates <var>xi</var>, <var>yi</var>, <var>zi</var>.  The reference
data <var>x</var>, <var>y</var>, <var>z</var> can be matrices, as returned by
<code>meshgrid</code>, in which case the sizes of <var>x</var>, <var>y</var>, <var>z</var>, and
<var>v</var> must be equal.  If <var>x</var>, <var>y</var>, <var>z</var> are vectors describing
a cubic grid then <code>length (<var>x</var>) == columns (<var>v</var>)</code>,
<code>length (<var>y</var>) == rows (<var>v</var>)</code>, and
<code>length (<var>z</var>) == size (<var>v</var>, 3)</code>.  In either case the input
data must be strictly monotonic.
</p>
<p>If called without <var>x</var>, <var>y</var>, <var>z</var>, and just a single reference
data matrix <var>v</var>, the 3-D region
<code><var>x</var> = 1:columns (<var>v</var>), <var>y</var> = 1:rows (<var>v</var>),
<var>z</var> = 1:size (<var>v</var>, 3)</code> is assumed.
This saves memory if the grid is regular and the distance between points is
not important.
</p>
<p>If called with a single reference data matrix <var>v</var> and a refinement
value <var>n</var>, then perform interpolation over a 3-D grid where each
original interval has been recursively subdivided <var>n</var> times.  This
results in <code>2^<var>n</var>-1</code> additional points for every interval in the
original grid.  If <var>n</var> is omitted a value of 1 is used.  As an
example, the interval [0,1] with <code><var>n</var>==2</code> results in a refined
interval with points at [0, 1/4, 1/2, 3/4, 1].
</p>
<p>The interpolation <var>method</var> is one of:
</p>
<dl compact="compact">
<dt><code>&quot;nearest&quot;</code></dt>
<dd><p>Return the nearest neighbor.
</p>
</dd>
<dt><code>&quot;linear&quot;</code> (default)</dt>
<dd><p>Linear interpolation from nearest neighbors.
</p>
</dd>
<dt><code>&quot;cubic&quot;</code></dt>
<dd><p>Piecewise cubic Hermite interpolating polynomial&mdash;shape-preserving
interpolation with smooth first derivative (not implemented yet).
</p>
</dd>
<dt><code>&quot;spline&quot;</code></dt>
<dd><p>Cubic spline interpolation&mdash;smooth first and second derivatives
throughout the curve.
</p></dd>
</dl>

<p><var>extrapval</var> is a scalar number.  It replaces values beyond the endpoints
with <var>extrapval</var>.  Note that if <var>extrapval</var> is used, <var>method</var>
must be specified as well.  If <var>extrapval</var> is omitted and the
<var>method</var> is <code>&quot;spline&quot;</code>, then the extrapolated values of the
<code>&quot;spline&quot;</code> are used.  Otherwise the default <var>extrapval</var> value for
any other <var>method</var> is <code>&quot;NA&quot;</code>.
</p>
<p><strong>See also:</strong> <a href="One_002ddimensional-Interpolation.html#XREFinterp1">interp1</a>, <a href="#XREFinterp2">interp2</a>, <a href="#XREFinterpn">interpn</a>, <a href="Three_002dDimensional-Plots.html#XREFmeshgrid">meshgrid</a>.
</p></dd></dl>


<span id="XREFinterpn"></span><dl>
<dt id="index-interpn">: <em><var>vi</var> =</em> <strong>interpn</strong> <em>(<var>x1</var>, <var>x2</var>, &hellip;, <var>v</var>, <var>y1</var>, <var>y2</var>, &hellip;)</em></dt>
<dt id="index-interpn-1">: <em><var>vi</var> =</em> <strong>interpn</strong> <em>(<var>v</var>, <var>y1</var>, <var>y2</var>, &hellip;)</em></dt>
<dt id="index-interpn-2">: <em><var>vi</var> =</em> <strong>interpn</strong> <em>(<var>v</var>, <var>m</var>)</em></dt>
<dt id="index-interpn-3">: <em><var>vi</var> =</em> <strong>interpn</strong> <em>(<var>v</var>)</em></dt>
<dt id="index-interpn-4">: <em><var>vi</var> =</em> <strong>interpn</strong> <em>(&hellip;, <var>method</var>)</em></dt>
<dt id="index-interpn-5">: <em><var>vi</var> =</em> <strong>interpn</strong> <em>(&hellip;, <var>method</var>, <var>extrapval</var>)</em></dt>
<dd>
<p>Perform <var>n</var>-dimensional interpolation, where <var>n</var> is at least two.
</p>
<p>Each element of the <var>n</var>-dimensional array <var>v</var> represents a value
at a location given by the parameters <var>x1</var>, <var>x2</var>, &hellip;, <var>xn</var>.
The parameters <var>x1</var>, <var>x2</var>, &hellip;, <var>xn</var> are either
<var>n</var>-dimensional arrays of the same size as the array <var>v</var> in
the <code>&quot;ndgrid&quot;</code> format or vectors.
</p>
<p>The parameters <var>y1</var>, <var>y2</var>, &hellip;, <var>yn</var> represent the points at
which the array <var>vi</var> is interpolated.  They can be vectors of the same
length and orientation in which case they are interpreted as coordinates of
scattered points.  If they are vectors of differing orientation or length,
they are used to form a grid in <code>&quot;ndgrid&quot;</code> format.  They can also be
<var>n</var>-dimensional arrays of equal size.
</p>
<p>If <var>x1</var>, &hellip;, <var>xn</var> are omitted, they are assumed to be
<code>x1 = 1 : size (<var>v</var>, 1)</code>, etc.  If <var>m</var> is specified, then
the interpolation adds a point half way between each of the interpolation
points.  This process is performed <var>m</var> times.  If only <var>v</var> is
specified, then <var>m</var> is assumed to be <code>1</code>.
</p>
<p>The interpolation <var>method</var> is one of:
</p>
<dl compact="compact">
<dt><code>&quot;nearest&quot;</code></dt>
<dd><p>Return the nearest neighbor.
</p>
</dd>
<dt><code>&quot;linear&quot;</code> (default)</dt>
<dd><p>Linear interpolation from nearest neighbors.
</p>
</dd>
<dt><code>&quot;pchip&quot;</code></dt>
<dd><p>Piecewise cubic Hermite interpolating polynomial&mdash;shape-preserving
interpolation with smooth first derivative (not implemented yet).
</p>
</dd>
<dt><code>&quot;cubic&quot;</code></dt>
<dd><p>Cubic interpolation (same as <code>&quot;pchip&quot;</code> [not implemented yet]).
</p>
</dd>
<dt><code>&quot;spline&quot;</code></dt>
<dd><p>Cubic spline interpolation&mdash;smooth first and second derivatives
throughout the curve.
</p></dd>
</dl>

<p>The default method is <code>&quot;linear&quot;</code>.
</p>
<p><var>extrapval</var> is a scalar number.  It replaces values beyond the endpoints
with <var>extrapval</var>.  Note that if <var>extrapval</var> is used, <var>method</var>
must be specified as well.  If <var>extrapval</var> is omitted and the
<var>method</var> is <code>&quot;spline&quot;</code>, then the extrapolated values of the
<code>&quot;spline&quot;</code> are used.  Otherwise the default <var>extrapval</var> value for
any other <var>method</var> is <code>&quot;NA&quot;</code>.
</p>
<p><strong>See also:</strong> <a href="One_002ddimensional-Interpolation.html#XREFinterp1">interp1</a>, <a href="#XREFinterp2">interp2</a>, <a href="#XREFinterp3">interp3</a>, <a href="One_002ddimensional-Interpolation.html#XREFspline">spline</a>, <a href="Three_002dDimensional-Plots.html#XREFndgrid">ndgrid</a>.
</p></dd></dl>


<p>A significant difference between <code>interpn</code> and the other two
multi-dimensional interpolation functions is the fashion in which the
dimensions are treated.  For <code>interp2</code> and <code>interp3</code>, the y-axis is
considered to be the columns of the matrix, whereas the x-axis corresponds to
the rows of the array.  As Octave indexes arrays in column major order, the
first dimension of any array is the columns, and so <code>interpn</code> effectively
reverses the &rsquo;x&rsquo; and &rsquo;y&rsquo; dimensions.  Consider the example,
</p>
<div class="example">
<pre class="example">x = y = z = -1:1;
f = @(x,y,z) x.^2 - y - z.^2;
[xx, yy, zz] = meshgrid (x, y, z);
v = f (xx,yy,zz);
xi = yi = zi = -1:0.1:1;
[xxi, yyi, zzi] = meshgrid (xi, yi, zi);
vi = interp3 (x, y, z, v, xxi, yyi, zzi, &quot;spline&quot;);
[xxi, yyi, zzi] = ndgrid (xi, yi, zi);
vi2 = interpn (x, y, z, v, xxi, yyi, zzi, &quot;spline&quot;);
mesh (zi, yi, squeeze (vi2(1,:,:)));
</pre></div>

<p>where <code>vi</code> and <code>vi2</code> are identical.  The reversal of the
dimensions is treated in the <code>meshgrid</code> and <code>ndgrid</code> functions
respectively.
The result of this code can be seen in <a href="#fig_003ainterpn">Figure 29.4</a>.
</p>
<div class="float"><span id="fig_003ainterpn"></span>
<div align="center"><img src="interpn.png" alt="interpn">
</div>
<div class="float-caption"><p><strong>Figure 29.4: </strong>Demonstration of the use of <code>interpn</code></p></div></div>

<hr>
<div class="header">
<p>
Previous: <a href="One_002ddimensional-Interpolation.html" accesskey="p" rel="prev">One-dimensional Interpolation</a>, Up: <a href="Interpolation.html" accesskey="u" rel="up">Interpolation</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>