1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Predicates for Numeric Objects (GNU Octave (version 6.2.0))</title>
<meta name="description" content="Predicates for Numeric Objects (GNU Octave (version 6.2.0))">
<meta name="keywords" content="Predicates for Numeric Objects (GNU Octave (version 6.2.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Numeric-Data-Types.html" rel="up" title="Numeric Data Types">
<link href="Strings.html" rel="next" title="Strings">
<link href="Promotion-and-Demotion-of-Data-Types.html" rel="prev" title="Promotion and Demotion of Data Types">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<span id="Predicates-for-Numeric-Objects"></span><div class="header">
<p>
Previous: <a href="Promotion-and-Demotion-of-Data-Types.html" accesskey="p" rel="prev">Promotion and Demotion of Data Types</a>, Up: <a href="Numeric-Data-Types.html" accesskey="u" rel="up">Numeric Data Types</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Predicates-for-Numeric-Objects-1"></span><h3 class="section">4.8 Predicates for Numeric Objects</h3>
<p>Since the type of a variable may change during the execution of a
program, it can be necessary to do type checking at run-time. Doing this
also allows you to change the behavior of a function depending on the
type of the input. As an example, this naive implementation of <code>abs</code>
returns the absolute value of the input if it is a real number, and the
length of the input if it is a complex number.
</p>
<div class="example">
<pre class="example">function a = abs (x)
if (isreal (x))
a = sign (x) .* x;
elseif (iscomplex (x))
a = sqrt (real(x).^2 + imag(x).^2);
endif
endfunction
</pre></div>
<p>The following functions are available for determining the type of a
variable.
</p>
<span id="XREFisnumeric"></span><dl>
<dt id="index-isnumeric">: <em></em> <strong>isnumeric</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return true if <var>x</var> is a numeric object, i.e., an integer, real, or
complex array.
</p>
<p>Logical and character arrays are not considered to be numeric.
</p>
<p><strong>See also:</strong> <a href="Integer-Data-Types.html#XREFisinteger">isinteger</a>, <a href="#XREFisfloat">isfloat</a>, <a href="#XREFisreal">isreal</a>, <a href="#XREFiscomplex">iscomplex</a>, <a href="Character-Arrays.html#XREFischar">ischar</a>, <a href="#XREFislogical">islogical</a>, <a href="Character-Arrays.html#XREFisstring">isstring</a>, <a href="Basic-Usage-of-Cell-Arrays.html#XREFiscell">iscell</a>, <a href="Creating-Structures.html#XREFisstruct">isstruct</a>, <a href="Built_002din-Data-Types.html#XREFisa">isa</a>.
</p></dd></dl>
<span id="XREFislogical"></span><dl>
<dt id="index-islogical">: <em></em> <strong>islogical</strong> <em>(<var>x</var>)</em></dt>
<dt id="index-isbool">: <em></em> <strong>isbool</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return true if <var>x</var> is a logical object.
</p>
<p><strong>See also:</strong> <a href="Character-Arrays.html#XREFischar">ischar</a>, <a href="#XREFisfloat">isfloat</a>, <a href="Integer-Data-Types.html#XREFisinteger">isinteger</a>, <a href="Character-Arrays.html#XREFisstring">isstring</a>, <a href="#XREFisnumeric">isnumeric</a>, <a href="Built_002din-Data-Types.html#XREFisa">isa</a>.
</p></dd></dl>
<span id="XREFisfloat"></span><dl>
<dt id="index-isfloat">: <em></em> <strong>isfloat</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return true if <var>x</var> is a floating-point numeric object.
</p>
<p>Objects of class double or single are floating-point objects.
</p>
<p><strong>See also:</strong> <a href="Integer-Data-Types.html#XREFisinteger">isinteger</a>, <a href="Character-Arrays.html#XREFischar">ischar</a>, <a href="#XREFislogical">islogical</a>, <a href="#XREFisnumeric">isnumeric</a>, <a href="Character-Arrays.html#XREFisstring">isstring</a>, <a href="Built_002din-Data-Types.html#XREFisa">isa</a>.
</p></dd></dl>
<span id="XREFisreal"></span><dl>
<dt id="index-isreal">: <em></em> <strong>isreal</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return true if <var>x</var> is a non-complex matrix or scalar.
</p>
<p>For compatibility with <small>MATLAB</small>, this includes logical and character
matrices.
</p>
<p><strong>See also:</strong> <a href="#XREFiscomplex">iscomplex</a>, <a href="#XREFisnumeric">isnumeric</a>, <a href="Built_002din-Data-Types.html#XREFisa">isa</a>.
</p></dd></dl>
<span id="XREFiscomplex"></span><dl>
<dt id="index-iscomplex">: <em></em> <strong>iscomplex</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return true if <var>x</var> is a complex-valued numeric object.
</p>
<p><strong>See also:</strong> <a href="#XREFisreal">isreal</a>, <a href="#XREFisnumeric">isnumeric</a>, <a href="Character-Arrays.html#XREFischar">ischar</a>, <a href="#XREFisfloat">isfloat</a>, <a href="#XREFislogical">islogical</a>, <a href="Character-Arrays.html#XREFisstring">isstring</a>, <a href="Built_002din-Data-Types.html#XREFisa">isa</a>.
</p></dd></dl>
<span id="XREFismatrix"></span><dl>
<dt id="index-ismatrix">: <em></em> <strong>ismatrix</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return true if <var>x</var> is a 2-D array.
</p>
<p>A matrix is an object with two dimensions (<code>ndims (<var>x</var>) == 2</code>) for
which <code>size (<var>x</var>)</code> returns <code>[M, N]</code><!-- /@w --> with non-negative M and
N.
</p>
<p><strong>See also:</strong> <a href="#XREFisscalar">isscalar</a>, <a href="#XREFisvector">isvector</a>, <a href="Basic-Usage-of-Cell-Arrays.html#XREFiscell">iscell</a>, <a href="Creating-Structures.html#XREFisstruct">isstruct</a>, <a href="Information.html#XREFissparse">issparse</a>, <a href="Built_002din-Data-Types.html#XREFisa">isa</a>.
</p></dd></dl>
<span id="XREFisvector"></span><dl>
<dt id="index-isvector">: <em></em> <strong>isvector</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return true if <var>x</var> is a vector.
</p>
<p>A vector is a 2-D array where one of the dimensions is equal to 1 (either
1xN or Nx1). As a consequence of this definition, a 1x1
array (a scalar) is also a vector.
</p>
<p><strong>See also:</strong> <a href="#XREFisscalar">isscalar</a>, <a href="#XREFismatrix">ismatrix</a>, <a href="#XREFiscolumn">iscolumn</a>, <a href="#XREFisrow">isrow</a>, <a href="Object-Sizes.html#XREFsize">size</a>.
</p></dd></dl>
<span id="XREFisrow"></span><dl>
<dt id="index-isrow">: <em></em> <strong>isrow</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return true if <var>x</var> is a row vector.
</p>
<p>A row vector is a 2-D array for which <code>size (<var>x</var>)</code> returns
<code>[1, N]</code><!-- /@w --> with non-negative N.
</p>
<p><strong>See also:</strong> <a href="#XREFiscolumn">iscolumn</a>, <a href="#XREFisscalar">isscalar</a>, <a href="#XREFisvector">isvector</a>, <a href="#XREFismatrix">ismatrix</a>, <a href="Object-Sizes.html#XREFsize">size</a>.
</p></dd></dl>
<span id="XREFiscolumn"></span><dl>
<dt id="index-iscolumn">: <em></em> <strong>iscolumn</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return true if <var>x</var> is a column vector.
</p>
<p>A column vector is a 2-D array for which <code>size (<var>x</var>)</code> returns
<code>[N, 1]</code><!-- /@w --> with non-negative N.
</p>
<p><strong>See also:</strong> <a href="#XREFisrow">isrow</a>, <a href="#XREFisscalar">isscalar</a>, <a href="#XREFisvector">isvector</a>, <a href="#XREFismatrix">ismatrix</a>, <a href="Object-Sizes.html#XREFsize">size</a>.
</p></dd></dl>
<span id="XREFisscalar"></span><dl>
<dt id="index-isscalar">: <em></em> <strong>isscalar</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return true if <var>x</var> is a scalar.
</p>
<p>A scalar is an object with two dimensions for which <code>size (<var>x</var>)</code>
returns <code>[1, 1]</code><!-- /@w -->.
</p>
<p><strong>See also:</strong> <a href="#XREFisvector">isvector</a>, <a href="#XREFismatrix">ismatrix</a>, <a href="Object-Sizes.html#XREFsize">size</a>.
</p></dd></dl>
<span id="XREFissquare"></span><dl>
<dt id="index-issquare">: <em></em> <strong>issquare</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return true if <var>x</var> is a 2-D square array.
</p>
<p>A square array is a 2-D object for which <code>size (<var>x</var>)</code> returns
<code>[N, N]</code><!-- /@w --> where N is a non-negative integer.
</p>
<p><strong>See also:</strong> <a href="#XREFisscalar">isscalar</a>, <a href="#XREFisvector">isvector</a>, <a href="#XREFismatrix">ismatrix</a>, <a href="Object-Sizes.html#XREFsize">size</a>.
</p></dd></dl>
<span id="XREFissymmetric"></span><dl>
<dt id="index-issymmetric">: <em></em> <strong>issymmetric</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-issymmetric-1">: <em></em> <strong>issymmetric</strong> <em>(<var>A</var>, <var>tol</var>)</em></dt>
<dt id="index-issymmetric-2">: <em></em> <strong>issymmetric</strong> <em>(<var>A</var>, <code>"skew"</code>)</em></dt>
<dt id="index-issymmetric-3">: <em></em> <strong>issymmetric</strong> <em>(<var>A</var>, <code>"skew"</code>, <var>tol</var>)</em></dt>
<dd><p>Return true if <var>A</var> is a symmetric or skew-symmetric matrix within the
tolerance specified by <var>tol</var>.
</p>
<p>The default tolerance is zero (uses faster code).
</p>
<p>The type of symmetry to check may be specified with the additional input
<code>"nonskew"</code> (default) for regular symmetry or <code>"skew"</code> for
skew-symmetry.
</p>
<p>Background: A matrix is symmetric if the transpose of the matrix is equal
to the original matrix: <code><var>A</var> == <var>A</var>.'</code><!-- /@w -->. If a tolerance
is given then symmetry is determined by
<code>norm (<var>A</var> - <var>A</var>.', Inf) / norm (<var>A</var>, Inf) < <var>tol</var></code>.
</p>
<p>A matrix is skew-symmetric if the transpose of the matrix is equal to the
negative of the original matrix: <code><var>A</var> == <span class="nolinebreak">-</span><var>A</var>.'</code><!-- /@w -->. If a
tolerance is given then skew-symmetry is determined by
<code>norm (<var>A</var> + <var>A</var>.', Inf) / norm (<var>A</var>, Inf) < <var>tol</var></code>.
</p>
<p><strong>See also:</strong> <a href="#XREFishermitian">ishermitian</a>, <a href="#XREFisdefinite">isdefinite</a>.
</p></dd></dl>
<span id="XREFishermitian"></span><dl>
<dt id="index-ishermitian">: <em></em> <strong>ishermitian</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-ishermitian-1">: <em></em> <strong>ishermitian</strong> <em>(<var>A</var>, <var>tol</var>)</em></dt>
<dt id="index-ishermitian-2">: <em></em> <strong>ishermitian</strong> <em>(<var>A</var>, <code>"skew"</code>)</em></dt>
<dt id="index-ishermitian-3">: <em></em> <strong>ishermitian</strong> <em>(<var>A</var>, <code>"skew"</code>, <var>tol</var>)</em></dt>
<dd><p>Return true if <var>A</var> is a Hermitian or skew-Hermitian matrix within the
tolerance specified by <var>tol</var>.
</p>
<p>The default tolerance is zero (uses faster code).
</p>
<p>The type of symmetry to check may be specified with the additional input
<code>"nonskew"</code> (default) for regular Hermitian or <code>"skew"</code> for
skew-Hermitian.
</p>
<p>Background: A matrix is Hermitian if the complex conjugate transpose of the
matrix is equal to the original matrix: <code><var>A</var> == <var>A</var>'</code><!-- /@w -->. If
a tolerance is given then the calculation is
<code>norm (<var>A</var> - <var>A</var>', Inf) / norm (<var>A</var>, Inf) < <var>tol</var></code>.
</p>
<p>A matrix is skew-Hermitian if the complex conjugate transpose of the matrix
is equal to the negative of the original matrix:
<code><var>A</var> == <span class="nolinebreak">-</span><var>A</var>'</code><!-- /@w -->. If a
tolerance is given then the calculation is
<code>norm (<var>A</var> + <var>A</var>', Inf) / norm (<var>A</var>, Inf) < <var>tol</var></code>.
</p>
<p><strong>See also:</strong> <a href="#XREFissymmetric">issymmetric</a>, <a href="#XREFisdefinite">isdefinite</a>.
</p></dd></dl>
<span id="XREFisdefinite"></span><dl>
<dt id="index-isdefinite">: <em></em> <strong>isdefinite</strong> <em>(<var>A</var>)</em></dt>
<dt id="index-isdefinite-1">: <em></em> <strong>isdefinite</strong> <em>(<var>A</var>, <var>tol</var>)</em></dt>
<dd><p>Return true if <var>A</var> is symmetric positive definite matrix within the
tolerance specified by <var>tol</var>.
</p>
<p>If <var>tol</var> is omitted, use a tolerance of
<code>100 * eps * norm (<var>A</var>, "fro")</code>.
</p>
<p>Background: A positive definite matrix has eigenvalues which are all
greater than zero. A positive semi-definite matrix has eigenvalues which
are all greater than or equal to zero. The matrix <var>A</var> is very likely to
be positive semi-definite if the following two conditions hold for a
suitably small tolerance <var>tol</var>.
</p>
<div class="example">
<pre class="example">isdefinite (<var>A</var>) ⇒ 0
isdefinite (<var>A</var> + 5*<var>tol</var>, <var>tol</var>) ⇒ 1
</pre></div>
<p><strong>See also:</strong> <a href="#XREFissymmetric">issymmetric</a>, <a href="#XREFishermitian">ishermitian</a>.
</p></dd></dl>
<span id="XREFisbanded"></span><dl>
<dt id="index-isbanded">: <em></em> <strong>isbanded</strong> <em>(<var>A</var>, <var>lower</var>, <var>upper</var>)</em></dt>
<dd><p>Return true if <var>A</var> is a matrix with entries confined between
<var>lower</var> diagonals below the main diagonal and <var>upper</var> diagonals
above the main diagonal.
</p>
<p><var>lower</var> and <var>upper</var> must be non-negative integers.
</p>
<p><strong>See also:</strong> <a href="#XREFisdiag">isdiag</a>, <a href="#XREFistril">istril</a>, <a href="#XREFistriu">istriu</a>, <a href="Basic-Matrix-Functions.html#XREFbandwidth">bandwidth</a>.
</p></dd></dl>
<span id="XREFisdiag"></span><dl>
<dt id="index-isdiag">: <em></em> <strong>isdiag</strong> <em>(<var>A</var>)</em></dt>
<dd><p>Return true if <var>A</var> is a diagonal matrix.
</p>
<p><strong>See also:</strong> <a href="#XREFisbanded">isbanded</a>, <a href="#XREFistril">istril</a>, <a href="#XREFistriu">istriu</a>, <a href="Rearranging-Matrices.html#XREFdiag">diag</a>, <a href="Basic-Matrix-Functions.html#XREFbandwidth">bandwidth</a>.
</p></dd></dl>
<span id="XREFistril"></span><dl>
<dt id="index-istril">: <em></em> <strong>istril</strong> <em>(<var>A</var>)</em></dt>
<dd><p>Return true if <var>A</var> is a lower triangular matrix.
</p>
<p>A lower triangular matrix has nonzero entries only on the main diagonal and
below.
</p>
<p><strong>See also:</strong> <a href="#XREFistriu">istriu</a>, <a href="#XREFisbanded">isbanded</a>, <a href="#XREFisdiag">isdiag</a>, <a href="Rearranging-Matrices.html#XREFtril">tril</a>, <a href="Basic-Matrix-Functions.html#XREFbandwidth">bandwidth</a>.
</p></dd></dl>
<span id="XREFistriu"></span><dl>
<dt id="index-istriu">: <em></em> <strong>istriu</strong> <em>(<var>A</var>)</em></dt>
<dd><p>Return true if <var>A</var> is an upper triangular matrix.
</p>
<p>An upper triangular matrix has nonzero entries only on the main diagonal and
above.
</p>
<p><strong>See also:</strong> <a href="#XREFisdiag">isdiag</a>, <a href="#XREFisbanded">isbanded</a>, <a href="#XREFistril">istril</a>, <a href="Rearranging-Matrices.html#XREFtriu">triu</a>, <a href="Basic-Matrix-Functions.html#XREFbandwidth">bandwidth</a>.
</p></dd></dl>
<span id="XREFisprime"></span><dl>
<dt id="index-isprime">: <em></em> <strong>isprime</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return a logical array which is true where the elements of <var>x</var> are prime
numbers and false where they are not.
</p>
<p>A prime number is conventionally defined as a positive integer greater than
1 (e.g., 2, 3, …) which is divisible only by itself and 1. Octave
extends this definition to include both negative integers and complex
values. A negative integer is prime if its positive counterpart is prime.
This is equivalent to <code>isprime (abs (x))</code>.
</p>
<p>If <code>class (<var>x</var>)</code> is complex, then primality is tested in the domain
of Gaussian integers (<a href="https://en.wikipedia.org/wiki/Gaussian_integer">https://en.wikipedia.org/wiki/Gaussian_integer</a>).
Some non-complex integers are prime in the ordinary sense, but not in the
domain of Gaussian integers. For example, <em>5 = (1+2i)*(1-2i)</em> shows
that 5 is not prime because it has a factor other than itself and 1.
Exercise caution when testing complex and real values together in the same
matrix.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">isprime (1:6)
⇒ 0 1 1 0 1 0
</pre></div>
<div class="example">
<pre class="example">isprime ([i, 2, 3, 5])
⇒ 0 0 1 0
</pre></div>
<p>Programming Note: <code>isprime</code> is appropriate if the maximum value in
<var>x</var> is not too large (< 1e15). For larger values special purpose
factorization code should be used.
</p>
<p>Compatibility Note: <small>MATLAB</small> does not extend the definition of prime
numbers and will produce an error if given negative or complex inputs.
</p>
<p><strong>See also:</strong> <a href="Utility-Functions.html#XREFprimes">primes</a>, <a href="Utility-Functions.html#XREFfactor">factor</a>, <a href="Utility-Functions.html#XREFgcd">gcd</a>, <a href="Utility-Functions.html#XREFlcm">lcm</a>.
</p></dd></dl>
<p>If instead of knowing properties of variables, you wish to know which
variables are defined and to gather other information about the
workspace itself, see <a href="Status-of-Variables.html">Status of Variables</a>.
</p>
<hr>
<div class="header">
<p>
Previous: <a href="Promotion-and-Demotion-of-Data-Types.html" accesskey="p" rel="prev">Promotion and Demotion of Data Types</a>, Up: <a href="Numeric-Data-Types.html" accesskey="u" rel="up">Numeric Data Types</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|