File: Solvers.html

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (392 lines) | stat: -rw-r--r-- 15,546 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Solvers (GNU Octave (version 6.2.0))</title>

<meta name="description" content="Solvers (GNU Octave (version 6.2.0))">
<meta name="keywords" content="Solvers (GNU Octave (version 6.2.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Nonlinear-Equations.html" rel="up" title="Nonlinear Equations">
<link href="Minimizers.html" rel="next" title="Minimizers">
<link href="Nonlinear-Equations.html" rel="prev" title="Nonlinear Equations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<span id="Solvers"></span><div class="header">
<p>
Next: <a href="Minimizers.html" accesskey="n" rel="next">Minimizers</a>, Up: <a href="Nonlinear-Equations.html" accesskey="u" rel="up">Nonlinear Equations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Solvers-1"></span><h3 class="section">20.1 Solvers</h3>

<p>Octave can solve sets of nonlinear equations of the form
</p>
<div class="example">
<pre class="example">F (x) = 0
</pre></div>


<p>using the function <code>fsolve</code>, which is based on the <small>MINPACK</small>
subroutine <code>hybrd</code>.  This is an iterative technique so a starting
point must be provided.  This also has the consequence that
convergence is not guaranteed even if a solution exists.
</p>
<span id="XREFfsolve"></span><dl>
<dt id="index-fsolve">: <em></em> <strong>fsolve</strong> <em>(<var>fcn</var>, <var>x0</var>)</em></dt>
<dt id="index-fsolve-1">: <em></em> <strong>fsolve</strong> <em>(<var>fcn</var>, <var>x0</var>, <var>options</var>)</em></dt>
<dt id="index-fsolve-2">: <em>[<var>x</var>, <var>fval</var>, <var>info</var>, <var>output</var>, <var>fjac</var>] =</em> <strong>fsolve</strong> <em>(&hellip;)</em></dt>
<dd><p>Solve a system of nonlinear equations defined by the function <var>fcn</var>.
</p>
<p><var>fun</var> is a function handle, inline function, or string containing the
name of the function to evaluate.  <var>fcn</var> should accept a vector (array)
defining the unknown variables, and return a vector of left-hand sides of
the equations.  Right-hand sides are defined to be zeros.  In other words,
this function attempts to determine a vector <var>x</var> such that
<code><var>fcn</var> (<var>x</var>)</code> gives (approximately) all zeros.
</p>
<p><var>x0</var> is an initial guess for the solution.  The shape of <var>x0</var> is
preserved in all calls to <var>fcn</var>, but otherwise is treated as a column
vector.
</p>
<p><var>options</var> is a structure specifying additional parameters which
control the algorithm.  Currently, <code>fsolve</code> recognizes these options:
<code>&quot;AutoScaling&quot;</code>, <code>&quot;ComplexEqn&quot;</code>, <code>&quot;FinDiffType&quot;</code>,
<code>&quot;FunValCheck&quot;</code>, <code>&quot;Jacobian&quot;</code>, <code>&quot;MaxFunEvals&quot;</code>,
<code>&quot;MaxIter&quot;</code>, <code>&quot;OutputFcn&quot;</code>, <code>&quot;TolFun&quot;</code>, <code>&quot;TolX&quot;</code>,
<code>&quot;TypicalX&quot;</code>, and <code>&quot;Updating&quot;</code>.
</p>
<p>If <code>&quot;AutoScaling&quot;</code> is <code>&quot;on&quot;</code>, the variables will be
automatically scaled according to the column norms of the (estimated)
Jacobian.  As a result, <code>&quot;TolFun&quot;</code> becomes scaling-independent.  By
default, this option is <code>&quot;off&quot;</code> because it may sometimes deliver
unexpected (though mathematically correct) results.
</p>
<p>If <code>&quot;ComplexEqn&quot;</code> is <code>&quot;on&quot;</code>, <code>fsolve</code> will attempt to solve
complex equations in complex variables, assuming that the equations possess
a complex derivative (i.e., are holomorphic).  If this is not what you want,
you should unpack the real and imaginary parts of the system to get a real
system.
</p>
<p>If <code>&quot;Jacobian&quot;</code> is <code>&quot;on&quot;</code>, it specifies that <var>fcn</var>&mdash;when
called with 2 output arguments&mdash;also returns the Jacobian matrix of
right-hand sides at the requested point.
</p>
<p><code>&quot;MaxFunEvals&quot;</code> proscribes the maximum number of function evaluations
before optimization is halted.  The default value is
<code>100 * number_of_variables</code>, i.e., <code>100 * length (<var>x0</var>)</code>.
The value must be a positive integer.
</p>
<p>If <code>&quot;Updating&quot;</code> is <code>&quot;on&quot;</code>, the function will attempt to use
Broyden updates to update the Jacobian, in order to reduce the
number of Jacobian calculations.  If your user function always calculates
the Jacobian (regardless of number of output arguments) then this option
provides no advantage and should be disabled.
</p>
<p><code>&quot;TolX&quot;</code> specifies the termination tolerance in the unknown variables,
while <code>&quot;TolFun&quot;</code> is a tolerance for equations.  Default is <code>1e-6</code>
for both <code>&quot;TolX&quot;</code> and <code>&quot;TolFun&quot;</code>.
</p>
<p>For a description of the other options, see <code>optimset</code>.  To initialize
an options structure with default values for <code>fsolve</code> use
<code>options = optimset (&quot;fsolve&quot;)</code>.
</p>
<p>The first output <var>x</var> is the solution while the second output <var>fval</var>
contains the value of the function <var>fcn</var> evaluated at <var>x</var> (ideally
a vector of all zeros).
</p>
<p>The third output <var>info</var> reports whether the algorithm succeeded and may
take one of the following values:
</p>
<dl compact="compact">
<dt>1</dt>
<dd><p>Converged to a solution point.  Relative residual error is less than
specified by <code>TolFun</code>.
</p>
</dd>
<dt>2</dt>
<dd><p>Last relative step size was less than <code>TolX</code>.
</p>
</dd>
<dt>3</dt>
<dd><p>Last relative decrease in residual was less than <code>TolFun</code>.
</p>
</dd>
<dt>0</dt>
<dd><p>Iteration limit (either <code>MaxIter</code> or <code>MaxFunEvals</code>) exceeded.
</p>
</dd>
<dt>-1</dt>
<dd><p>Stopped by <code>OutputFcn</code>.
</p>
</dd>
<dt>-3</dt>
<dd><p>The trust region radius became excessively small.
</p></dd>
</dl>

<p><var>output</var> is a structure containing runtime information about the
<code>fsolve</code> algorithm.  Fields in the structure are:
</p>
<dl compact="compact">
<dt><code>iterations</code></dt>
<dd><p>Number of iterations through loop.
</p>
</dd>
<dt><code>successful</code></dt>
<dd><p>Number of successful iterations.
</p>
</dd>
<dt><code>funcCount</code></dt>
<dd><p>Number of function evaluations.
</p>
</dd>
</dl>

<p>The final output <var>fjac</var> contains the value of the Jacobian evaluated
at <var>x</var>.
</p>
<p>Note: If you only have a single nonlinear equation of one variable, using
<code>fzero</code> is usually a much better idea.
</p>
<p>Note about user-supplied Jacobians:
As an inherent property of the algorithm, a Jacobian is always requested for
a solution vector whose residual vector is already known, and it is the last
accepted successful step.  Often this will be one of the last two calls, but
not always.  If the savings by reusing intermediate results from residual
calculation in Jacobian calculation are significant, the best strategy is to
employ <code>OutputFcn</code>: After a vector is evaluated for residuals, if
<code>OutputFcn</code> is called with that vector, then the intermediate results
should be saved for future Jacobian evaluation, and should be kept until a
Jacobian evaluation is requested or until <code>OutputFcn</code> is called with a
different vector, in which case they should be dropped in favor of this most
recent vector.  A short example how this can be achieved follows:
</p>
<div class="example">
<pre class="example">function [fval, fjac] = user_func (x, optimvalues, state)
persistent sav = [], sav0 = [];
if (nargin == 1)
  ## evaluation call
  if (nargout == 1)
    sav0.x = x; # mark saved vector
    ## calculate fval, save results to sav0.
  elseif (nargout == 2)
    ## calculate fjac using sav.
  endif
else
  ## outputfcn call.
  if (all (x == sav0.x))
    sav = sav0;
  endif
  ## maybe output iteration status, etc.
endif
endfunction

## &hellip;

fsolve (@user_func, x0, optimset (&quot;OutputFcn&quot;, @user_func, &hellip;))
</pre></div>

<p><strong>See also:</strong> <a href="#XREFfzero">fzero</a>, <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>


<p>The following is a complete example.  To solve the set of equations
</p>
<div class="example">
<pre class="example">-2x^2 + 3xy   + 4 sin(y) = 6
 3x^2 - 2xy^2 + 3 cos(x) = -4
</pre></div>


<p>you first need to write a function to compute the value of the given
function.  For example:
</p>
<div class="example">
<pre class="example">function y = f (x)
  y = zeros (2, 1);
  y(1) = -2*x(1)^2 + 3*x(1)*x(2)   + 4*sin(x(2)) - 6;
  y(2) =  3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;
endfunction
</pre></div>

<p>Then, call <code>fsolve</code> with a specified initial condition to find the
roots of the system of equations.  For example, given the function
<code>f</code> defined above,
</p>
<div class="example">
<pre class="example">[x, fval, info] = fsolve (@f, [1; 2])
</pre></div>

<p>results in the solution
</p>
<div class="example">
<pre class="example">x =

  0.57983
  2.54621

fval =

  -5.7184e-10
   5.5460e-10

info = 1
</pre></div>

<p>A value of <code>info = 1</code> indicates that the solution has converged.
</p>
<p>When no Jacobian is supplied (as in the example above) it is approximated
numerically.  This requires more function evaluations, and hence is
less efficient.  In the example above we could compute the Jacobian
analytically as
</p>

<div class="example">
<pre class="example">function [y, jac] = f (x)
  y = zeros (2, 1);
  y(1) = -2*x(1)^2 + 3*x(1)*x(2)   + 4*sin(x(2)) - 6;
  y(2) =  3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;
  if (nargout == 2)
    jac = zeros (2, 2);
    jac(1,1) =  3*x(2) - 4*x(1);
    jac(1,2) =  4*cos(x(2)) + 3*x(1);
    jac(2,1) = -2*x(2)^2 - 3*sin(x(1)) + 6*x(1);
    jac(2,2) = -4*x(1)*x(2);
  endif
endfunction
</pre></div>

<p>The Jacobian can then be used with the following call to <code>fsolve</code>:
</p>
<div class="example">
<pre class="example">[x, fval, info] = fsolve (@f, [1; 2], optimset (&quot;jacobian&quot;, &quot;on&quot;));
</pre></div>

<p>which gives the same solution as before.
</p>
<span id="XREFfzero"></span><dl>
<dt id="index-fzero">: <em></em> <strong>fzero</strong> <em>(<var>fun</var>, <var>x0</var>)</em></dt>
<dt id="index-fzero-1">: <em></em> <strong>fzero</strong> <em>(<var>fun</var>, <var>x0</var>, <var>options</var>)</em></dt>
<dt id="index-fzero-2">: <em>[<var>x</var>, <var>fval</var>, <var>info</var>, <var>output</var>] =</em> <strong>fzero</strong> <em>(&hellip;)</em></dt>
<dd><p>Find a zero of a univariate function.
</p>
<p><var>fun</var> is a function handle, inline function, or string containing the
name of the function to evaluate.
</p>
<p><var>x0</var> should be a two-element vector specifying two points which
bracket a zero.  In other words, there must be a change in sign of the
function between <var>x0</var>(1) and <var>x0</var>(2).  More mathematically, the
following must hold
</p>
<div class="example">
<pre class="example">sign (<var>fun</var>(<var>x0</var>(1))) * sign (<var>fun</var>(<var>x0</var>(2))) &lt;= 0
</pre></div>

<p>If <var>x0</var> is a single scalar then several nearby and distant values are
probed in an attempt to obtain a valid bracketing.  If this is not
successful, the function fails.
</p>
<p><var>options</var> is a structure specifying additional options.  Currently,
<code>fzero</code> recognizes these options:
<code>&quot;Display&quot;</code>, <code>&quot;FunValCheck&quot;</code>, <code>&quot;MaxFunEvals&quot;</code>,
<code>&quot;MaxIter&quot;</code>, <code>&quot;OutputFcn&quot;</code>, and <code>&quot;TolX&quot;</code>.
</p>
<p><code>&quot;MaxFunEvals&quot;</code> proscribes the maximum number of function evaluations
before the search is halted.  The default value is <code>Inf</code>.
The value must be a positive integer.
</p>
<p><code>&quot;MaxIter&quot;</code> proscribes the maximum number of algorithm iterations
before the search is halted.  The default value is <code>Inf</code>.
The value must be a positive integer.
</p>
<p><code>&quot;TolX&quot;</code> specifies the termination tolerance for the solution <var>x</var>.
The default value is <code>eps</code>.
</p>
<p>For a description of the other options, see <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
To initialize an options structure with default values for <code>fzero</code> use
<code>options = optimset (&quot;fzero&quot;)</code>.
</p>
<p>On exit, the function returns <var>x</var>, the approximate zero point, and
<var>fval</var>, the function evaluated at <var>x</var>.
</p>
<p>The third output <var>info</var> reports whether the algorithm succeeded and
may take one of the following values:
</p>
<ul>
<li> 1
 The algorithm converged to a solution.

</li><li> 0
 Maximum number of iterations or function evaluations has been reached.

</li><li> -1
The algorithm has been terminated by a user <code>OutputFcn</code>.

</li><li> -5
The algorithm may have converged to a singular point.
</li></ul>

<p><var>output</var> is a structure containing runtime information about the
<code>fzero</code> algorithm.  Fields in the structure are:
</p>
<ul>
<li> iterations
 Number of iterations through loop.

</li><li> funcCount
 Number of function evaluations.

</li><li> algorithm
 The string <code>&quot;bisection, interpolation&quot;</code>.

</li><li> bracketx
 A two-element vector with the final bracketing of the zero along the
x-axis.

</li><li> brackety
 A two-element vector with the final bracketing of the zero along the
y-axis.
</li></ul>

<p><strong>See also:</strong> <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>, <a href="#XREFfsolve">fsolve</a>.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Minimizers.html" accesskey="n" rel="next">Minimizers</a>, Up: <a href="Nonlinear-Equations.html" accesskey="u" rel="up">Nonlinear Equations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>