1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Special Functions (GNU Octave (version 6.2.0))</title>
<meta name="description" content="Special Functions (GNU Octave (version 6.2.0))">
<meta name="keywords" content="Special Functions (GNU Octave (version 6.2.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Arithmetic.html" rel="up" title="Arithmetic">
<link href="Rational-Approximations.html" rel="next" title="Rational Approximations">
<link href="Utility-Functions.html" rel="prev" title="Utility Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<span id="Special-Functions"></span><div class="header">
<p>
Next: <a href="Rational-Approximations.html" accesskey="n" rel="next">Rational Approximations</a>, Previous: <a href="Utility-Functions.html" accesskey="p" rel="prev">Utility Functions</a>, Up: <a href="Arithmetic.html" accesskey="u" rel="up">Arithmetic</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Special-Functions-1"></span><h3 class="section">17.6 Special Functions</h3>
<span id="XREFairy"></span><dl>
<dt id="index-airy">: <em>[<var>a</var>, <var>ierr</var>] =</em> <strong>airy</strong> <em>(<var>k</var>, <var>z</var>, <var>opt</var>)</em></dt>
<dd><p>Compute Airy functions of the first and second kind, and their derivatives.
</p>
<div class="example">
<pre class="example"> K Function Scale factor (if "opt" is supplied)
--- -------- ---------------------------------------
0 Ai (Z) exp ((2/3) * Z * sqrt (Z))
1 dAi(Z)/dZ exp ((2/3) * Z * sqrt (Z))
2 Bi (Z) exp (-abs (real ((2/3) * Z * sqrt (Z))))
3 dBi(Z)/dZ exp (-abs (real ((2/3) * Z * sqrt (Z))))
</pre></div>
<p>The function call <code>airy (<var>z</var>)</code> is equivalent to
<code>airy (0, <var>z</var>)</code>.
</p>
<p>The result is the same size as <var>z</var>.
</p>
<p>If requested, <var>ierr</var> contains the following status information and
is the same size as the result.
</p>
<ol start="0">
<li> Normal return.
</li><li> Input error, return <code>NaN</code>.
</li><li> Overflow, return <code>Inf</code>.
</li><li> Loss of significance by argument reduction results in less than half
of machine accuracy.
</li><li> Loss of significance by argument reduction, output may be inaccurate.
</li><li> Error—no computation, algorithm termination condition not met,
return <code>NaN</code>.
</li></ol>
</dd></dl>
<span id="XREFbesselj"></span><dl>
<dt id="index-besselj">: <em><var>J</var> =</em> <strong>besselj</strong> <em>(<var>alpha</var>, <var>x</var>)</em></dt>
<dt id="index-besselj-1">: <em><var>J</var> =</em> <strong>besselj</strong> <em>(<var>alpha</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt id="index-besselj-2">: <em>[<var>J</var>, <var>ierr</var>] =</em> <strong>besselj</strong> <em>(…)</em></dt>
<dd><p>Compute Bessel functions of the first kind.
</p>
<p>The order of the Bessel function <var>alpha</var> must be real. The points for
evaluation <var>x</var> may be complex.
</p>
<p>If the optional argument <var>opt</var> is 1 or true, the result <var>J</var> is
multiplied by <code>exp <span class="nolinebreak">(-abs</span> (imag (<var>x</var>)))</code><!-- /@w -->.
</p>
<p>If <var>alpha</var> is a scalar, the result is the same size as <var>x</var>. If <var>x</var>
is a scalar, the result is the same size as <var>alpha</var>. If <var>alpha</var> is a
row vector and <var>x</var> is a column vector, the result is a matrix with
<code>length (<var>x</var>)</code> rows and <code>length (<var>alpha</var>)</code> columns.
Otherwise, <var>alpha</var> and <var>x</var> must conform and the result will be the same
size.
</p>
<p>If requested, <var>ierr</var> contains the following status information and is the
same size as the result.
</p>
<ol start="0">
<li> Normal return.
</li><li> Input error, return <code>NaN</code>.
</li><li> Overflow, return <code>Inf</code>.
</li><li> Loss of significance by argument reduction results in less than half of machine
accuracy.
</li><li> Loss of significance by argument reduction, output may be inaccurate.
</li><li> Error—no computation, algorithm termination condition not met, return
<code>NaN</code>.
</li></ol>
<p><strong>See also:</strong> <a href="#XREFbessely">bessely</a>, <a href="#XREFbesseli">besseli</a>, <a href="#XREFbesselk">besselk</a>, <a href="#XREFbesselh">besselh</a>.
</p></dd></dl>
<span id="XREFbessely"></span><dl>
<dt id="index-bessely">: <em><var>Y</var> =</em> <strong>bessely</strong> <em>(<var>alpha</var>, <var>x</var>)</em></dt>
<dt id="index-bessely-1">: <em><var>Y</var> =</em> <strong>bessely</strong> <em>(<var>alpha</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt id="index-bessely-2">: <em>[<var>Y</var>, <var>ierr</var>] =</em> <strong>bessely</strong> <em>(…)</em></dt>
<dd><p>Compute Bessel functions of the second kind.
</p>
<p>The order of the Bessel function <var>alpha</var> must be real. The points for
evaluation <var>x</var> may be complex.
</p>
<p>If the optional argument <var>opt</var> is 1 or true, the result <var>Y</var> is
multiplied by <code>exp <span class="nolinebreak">(-abs</span> (imag (<var>x</var>)))</code><!-- /@w -->.
</p>
<p>If <var>alpha</var> is a scalar, the result is the same size as <var>x</var>. If <var>x</var>
is a scalar, the result is the same size as <var>alpha</var>. If <var>alpha</var> is a
row vector and <var>x</var> is a column vector, the result is a matrix with
<code>length (<var>x</var>)</code> rows and <code>length (<var>alpha</var>)</code> columns.
Otherwise, <var>alpha</var> and <var>x</var> must conform and the result will be the same
size.
</p>
<p>If requested, <var>ierr</var> contains the following status information and is the
same size as the result.
</p>
<ol start="0">
<li> Normal return.
</li><li> Input error, return <code>NaN</code>.
</li><li> Overflow, return <code>Inf</code>.
</li><li> Loss of significance by argument reduction results in less than half of machine
accuracy.
</li><li> Complete loss of significance by argument reduction, return <code>NaN</code>.
</li><li> Error—no computation, algorithm termination condition not met, return
<code>NaN</code>.
</li></ol>
<p><strong>See also:</strong> <a href="#XREFbesselj">besselj</a>, <a href="#XREFbesseli">besseli</a>, <a href="#XREFbesselk">besselk</a>, <a href="#XREFbesselh">besselh</a>.
</p></dd></dl>
<span id="XREFbesseli"></span><dl>
<dt id="index-besseli">: <em><var>I</var> =</em> <strong>besseli</strong> <em>(<var>alpha</var>, <var>x</var>)</em></dt>
<dt id="index-besseli-1">: <em><var>I</var> =</em> <strong>besseli</strong> <em>(<var>alpha</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt id="index-besseli-2">: <em>[<var>I</var>, <var>ierr</var>] =</em> <strong>besseli</strong> <em>(…)</em></dt>
<dd><p>Compute modified Bessel functions of the first kind.
</p>
<p>The order of the Bessel function <var>alpha</var> must be real. The points for
evaluation <var>x</var> may be complex.
</p>
<p>If the optional argument <var>opt</var> is 1 or true, the result <var>I</var> is
multiplied by <code>exp <span class="nolinebreak">(-abs</span> (real (<var>x</var>)))</code><!-- /@w -->.
</p>
<p>If <var>alpha</var> is a scalar, the result is the same size as <var>x</var>. If <var>x</var>
is a scalar, the result is the same size as <var>alpha</var>. If <var>alpha</var> is a
row vector and <var>x</var> is a column vector, the result is a matrix with
<code>length (<var>x</var>)</code> rows and <code>length (<var>alpha</var>)</code> columns.
Otherwise, <var>alpha</var> and <var>x</var> must conform and the result will be the same
size.
</p>
<p>If requested, <var>ierr</var> contains the following status information and is the
same size as the result.
</p>
<ol start="0">
<li> Normal return.
</li><li> Input error, return <code>NaN</code>.
</li><li> Overflow, return <code>Inf</code>.
</li><li> Loss of significance by argument reduction results in less than half of machine
accuracy.
</li><li> Complete loss of significance by argument reduction, return <code>NaN</code>.
</li><li> Error—no computation, algorithm termination condition not met, return
<code>NaN</code>.
</li></ol>
<p><strong>See also:</strong> <a href="#XREFbesselk">besselk</a>, <a href="#XREFbesselj">besselj</a>, <a href="#XREFbessely">bessely</a>, <a href="#XREFbesselh">besselh</a>.
</p></dd></dl>
<span id="XREFbesselk"></span><dl>
<dt id="index-besselk">: <em><var>K</var> =</em> <strong>besselk</strong> <em>(<var>alpha</var>, <var>x</var>)</em></dt>
<dt id="index-besselk-1">: <em><var>K</var> =</em> <strong>besselk</strong> <em>(<var>alpha</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt id="index-besselk-2">: <em>[<var>K</var>, <var>ierr</var>] =</em> <strong>besselk</strong> <em>(…)</em></dt>
<dd>
<p>Compute modified Bessel functions of the second kind.
</p>
<p>The order of the Bessel function <var>alpha</var> must be real. The points for
evaluation <var>x</var> may be complex.
</p>
<p>If the optional argument <var>opt</var> is 1 or true, the result <var>K</var> is
multiplied by <code>exp (<var>x</var>)</code><!-- /@w -->.
</p>
<p>If <var>alpha</var> is a scalar, the result is the same size as <var>x</var>. If <var>x</var>
is a scalar, the result is the same size as <var>alpha</var>. If <var>alpha</var> is a
row vector and <var>x</var> is a column vector, the result is a matrix with
<code>length (<var>x</var>)</code> rows and <code>length (<var>alpha</var>)</code> columns.
Otherwise, <var>alpha</var> and <var>x</var> must conform and the result will be the same
size.
</p>
<p>If requested, <var>ierr</var> contains the following status information and is the
same size as the result.
</p>
<ol start="0">
<li> Normal return.
</li><li> Input error, return <code>NaN</code>.
</li><li> Overflow, return <code>Inf</code>.
</li><li> Loss of significance by argument reduction results in less than half of machine
accuracy.
</li><li> Complete loss of significance by argument reduction, return <code>NaN</code>.
</li><li> Error—no computation, algorithm termination condition not met, return
<code>NaN</code>.
</li></ol>
<p><strong>See also:</strong> <a href="#XREFbesseli">besseli</a>, <a href="#XREFbesselj">besselj</a>, <a href="#XREFbessely">bessely</a>, <a href="#XREFbesselh">besselh</a>.
</p></dd></dl>
<span id="XREFbesselh"></span><dl>
<dt id="index-besselh">: <em><var>H</var> =</em> <strong>besselh</strong> <em>(<var>alpha</var>, <var>x</var>)</em></dt>
<dt id="index-besselh-1">: <em><var>H</var> =</em> <strong>besselh</strong> <em>(<var>alpha</var>, <var>k</var>, <var>x</var>)</em></dt>
<dt id="index-besselh-2">: <em><var>H</var> =</em> <strong>besselh</strong> <em>(<var>alpha</var>, <var>k</var>, <var>x</var>, <var>opt</var>)</em></dt>
<dt id="index-besselh-3">: <em>[<var>H</var>, <var>ierr</var>] =</em> <strong>besselh</strong> <em>(…)</em></dt>
<dd><p>Compute Bessel functions of the third kind (Hankel functions).
</p>
<p>The order of the Bessel function <var>alpha</var> must be real. The kind of Hankel
function is specified by <var>k</var> and may be either first (<var>k</var> = 1) or
second (<var>k</var> = 2). The default is Hankel functions of the first kind. The
points for evaluation <var>x</var> may be complex.
</p>
<p>If the optional argument <var>opt</var> is 1 or true, the result is multiplied
by <code>exp (-I*<var>x</var>)</code> for <var>k</var> = 1 or <code>exp (I*<var>x</var>)</code> for
<var>k</var> = 2.
</p>
<p>If <var>alpha</var> is a scalar, the result is the same size as <var>x</var>. If <var>x</var>
is a scalar, the result is the same size as <var>alpha</var>. If <var>alpha</var> is a
row vector and <var>x</var> is a column vector, the result is a matrix with
<code>length (<var>x</var>)</code> rows and <code>length (<var>alpha</var>)</code> columns.
Otherwise, <var>alpha</var> and <var>x</var> must conform and the result will be the same
size.
</p>
<p>If requested, <var>ierr</var> contains the following status information and is the
same size as the result.
</p>
<ol start="0">
<li> Normal return.
</li><li> Input error, return <code>NaN</code>.
</li><li> Overflow, return <code>Inf</code>.
</li><li> Loss of significance by argument reduction results in less than half of machine
accuracy.
</li><li> Complete loss of significance by argument reduction, return <code>NaN</code>.
</li><li> Error—no computation, algorithm termination condition not met, return
<code>NaN</code>.
</li></ol>
<p><strong>See also:</strong> <a href="#XREFbesselj">besselj</a>, <a href="#XREFbessely">bessely</a>, <a href="#XREFbesseli">besseli</a>, <a href="#XREFbesselk">besselk</a>.
</p></dd></dl>
<span id="XREFbeta"></span><dl>
<dt id="index-beta">: <em></em> <strong>beta</strong> <em>(<var>a</var>, <var>b</var>)</em></dt>
<dd><p>Compute the Beta function for real inputs <var>a</var> and <var>b</var>.
</p>
<p>The Beta function definition is
</p>
<div class="example">
<pre class="example">beta (a, b) = gamma (a) * gamma (b) / gamma (a + b).
</pre></div>
<p>The Beta function can grow quite large and it is often more useful to work
with the logarithm of the output rather than the function directly.
See <a href="#XREFbetaln">betaln</a>, for computing the logarithm of the Beta function
in an efficient manner.
</p>
<p><strong>See also:</strong> <a href="#XREFbetaln">betaln</a>, <a href="#XREFbetainc">betainc</a>, <a href="#XREFbetaincinv">betaincinv</a>.
</p></dd></dl>
<span id="XREFbetainc"></span><dl>
<dt id="index-betainc">: <em></em> <strong>betainc</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dt id="index-betainc-1">: <em></em> <strong>betainc</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>, <var>tail</var>)</em></dt>
<dd><p>Compute the incomplete beta function.
</p>
<p>This is defined as
</p>
<div class="example">
<pre class="example"> x
/
|
I_x (a, b) = | t^(a-1) (1-t)^(b-1) dt
|
/
0
</pre></div>
<p>with real <var>x</var> in the range [0,1]. The inputs <var>a</var> and <var>b</var> must
be real and strictly positive (> 0). If one of the inputs is not a scalar
then the other inputs must be scalar or of compatible dimensions.
</p>
<p>By default, <var>tail</var> is <code>"lower"</code> and the incomplete beta function
integrated from 0 to <var>x</var> is computed. If <var>tail</var> is <code>"upper"</code>
then the complementary function integrated from <var>x</var> to 1 is calculated.
The two choices are related by
</p>
<p>betainc (<var>x</var>, <var>a</var>, <var>b</var>, <code>"upper"</code>) =
1 - betainc (<var>x</var>, <var>a</var>, <var>b</var>, <code>"lower"</code>).
</p>
<p><code>betainc</code> uses a more sophisticated algorithm than subtraction to
get numerically accurate results when the <code>"lower"</code> value is small.
</p>
<p>Reference: A. Cuyt, V. Brevik Petersen, B. Verdonk, H. Waadeland,
W.B. Jones, <cite>Handbook of Continued Fractions for Special Functions</cite>,
ch. 18.
</p>
<p><strong>See also:</strong> <a href="#XREFbeta">beta</a>, <a href="#XREFbetaincinv">betaincinv</a>, <a href="#XREFbetaln">betaln</a>.
</p></dd></dl>
<span id="XREFbetaincinv"></span><dl>
<dt id="index-betaincinv">: <em></em> <strong>betaincinv</strong> <em>(<var>y</var>, <var>a</var>, <var>b</var>)</em></dt>
<dt id="index-betaincinv-1">: <em></em> <strong>betaincinv</strong> <em>(<var>y</var>, <var>a</var>, <var>b</var>, "lower")</em></dt>
<dt id="index-betaincinv-2">: <em></em> <strong>betaincinv</strong> <em>(<var>y</var>, <var>a</var>, <var>b</var>, "upper")</em></dt>
<dd><p>Compute the inverse of the normalized incomplete beta function.
</p>
<p>The normalized incomplete beta function is defined as
</p>
<div class="example">
<pre class="example"> x
/
|
I_x (a, b) = | t^(a-1) (1-t)^(b-1) dt
|
/
0
</pre></div>
<p>If two inputs are scalar, then <code>betaincinv (<var>y</var>, <var>a</var>, <var>b</var>)</code>
is returned for each of the other inputs.
</p>
<p>If two or more inputs are not scalar, the sizes of them must agree, and
<code>betaincinv</code> is applied element-by-element.
</p>
<p>The variable <var>y</var> must be in the interval [0,1], while <var>a</var> and
<var>b</var> must be real and strictly positive.
</p>
<p>By default, <var>tail</var> is <code>"lower"</code> and the inverse of the incomplete
beta function integrated from 0 to <var>x</var> is computed. If <var>tail</var> is
<code>"upper"</code> then the complementary function integrated from <var>x</var> to 1
is inverted.
</p>
<p>The function is computed by standard Newton’s method, by solving
</p>
<div class="example">
<pre class="example"><var>y</var> - betainc (<var>x</var>, <var>a</var>, <var>b</var>) = 0
</pre></div>
<p><strong>See also:</strong> <a href="#XREFbetainc">betainc</a>, <a href="#XREFbeta">beta</a>, <a href="#XREFbetaln">betaln</a>.
</p></dd></dl>
<span id="XREFbetaln"></span><dl>
<dt id="index-betaln">: <em></em> <strong>betaln</strong> <em>(<var>a</var>, <var>b</var>)</em></dt>
<dd><p>Compute the natural logarithm of the Beta function for real inputs <var>a</var>
and <var>b</var>.
</p>
<p><code>betaln</code> is defined as
</p>
<div class="example">
<pre class="example">betaln (a, b) = log (beta (a, b))
</pre></div>
<p>and is calculated in a way to reduce the occurrence of underflow.
</p>
<p>The Beta function can grow quite large and it is often more useful to work
with the logarithm of the output rather than the function directly.
</p>
<p><strong>See also:</strong> <a href="#XREFbeta">beta</a>, <a href="#XREFbetainc">betainc</a>, <a href="#XREFbetaincinv">betaincinv</a>, <a href="#XREFgammaln">gammaln</a>.
</p></dd></dl>
<span id="XREFbincoeff"></span><dl>
<dt id="index-bincoeff">: <em></em> <strong>bincoeff</strong> <em>(<var>n</var>, <var>k</var>)</em></dt>
<dd><p>Return the binomial coefficient of <var>n</var> and <var>k</var>.
</p>
<p>The binomial coefficient is defined as
</p>
<div class="example">
<pre class="example"> / \
| n | n (n-1) (n-2) … (n-k+1)
| | = -------------------------
| k | k!
\ /
</pre></div>
<p>For example:
</p>
<div class="example">
<pre class="example">bincoeff (5, 2)
⇒ 10
</pre></div>
<p>In most cases, the <code>nchoosek</code> function is faster for small
scalar integer arguments. It also warns about loss of precision for
big arguments.
</p>
<p><strong>See also:</strong> <a href="Basic-Statistical-Functions.html#XREFnchoosek">nchoosek</a>.
</p></dd></dl>
<span id="XREFcommutation_005fmatrix"></span><dl>
<dt id="index-commutation_005fmatrix">: <em></em> <strong>commutation_matrix</strong> <em>(<var>m</var>, <var>n</var>)</em></dt>
<dd><p>Return the commutation matrix
K(m,n)
which is the unique
<var>m</var>*<var>n</var> by <var>m</var>*<var>n</var>
matrix such that
<em>K(m,n) * vec(A) = vec(A')</em>
for all
<em>m</em> by <em>n</em>
matrices
<em>A</em>.
</p>
<p>If only one argument <var>m</var> is given,
<em>K(m,m)</em>
is returned.
</p>
<p>See Magnus and Neudecker (1988), <cite>Matrix Differential
Calculus with Applications in Statistics and Econometrics</cite>.
</p></dd></dl>
<span id="XREFcosint"></span><dl>
<dt id="index-cosint">: <em></em> <strong>cosint</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the cosine integral function:
</p>
<div class="example">
<pre class="example"> +oo
/
Ci (x) = - | (cos (t)) / t dt
/
x
</pre></div>
<p>An equivalent definition is
</p>
<div class="example">
<pre class="example"> x
/
| cos (t) - 1
Ci (x) = gamma + log (x) + | ------------- dt
| t
/
0
</pre></div>
<p>Reference:
</p>
<p>M. Abramowitz and I.A. Stegun,
<cite>Handbook of Mathematical Functions</cite>, 1964.
</p>
<p><strong>See also:</strong> <a href="#XREFsinint">sinint</a>, <a href="#XREFexpint">expint</a>, <a href="Trigonometry.html#XREFcos">cos</a>.
</p>
</dd></dl>
<span id="XREFduplication_005fmatrix"></span><dl>
<dt id="index-duplication_005fmatrix">: <em></em> <strong>duplication_matrix</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return the duplication matrix
<em>Dn</em>
which is the unique
<em>n^2</em> by <em>n*(n+1)/2</em>
matrix such that
<em>Dn vech (A) = vec (A)</em>
for all symmetric
<em>n</em> by <em>n</em>
matrices
<em>A</em>.
</p>
<p>See Magnus and Neudecker (1988), <cite>Matrix Differential
Calculus with Applications in Statistics and Econometrics</cite>.
</p></dd></dl>
<span id="XREFdawson"></span><dl>
<dt id="index-dawson">: <em></em> <strong>dawson</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the Dawson (scaled imaginary error) function.
</p>
<p>The Dawson function is defined as
</p>
<div class="example">
<pre class="example">(sqrt (pi) / 2) * exp (-z^2) * erfi (z)
</pre></div>
<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFerfinv">erfinv</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>
<span id="XREFellipj"></span><dl>
<dt id="index-ellipj">: <em>[<var>sn</var>, <var>cn</var>, <var>dn</var>, <var>err</var>] =</em> <strong>ellipj</strong> <em>(<var>u</var>, <var>m</var>)</em></dt>
<dt id="index-ellipj-1">: <em>[<var>sn</var>, <var>cn</var>, <var>dn</var>, <var>err</var>] =</em> <strong>ellipj</strong> <em>(<var>u</var>, <var>m</var>, <var>tol</var>)</em></dt>
<dd><p>Compute the Jacobi elliptic functions <var>sn</var>, <var>cn</var>, and <var>dn</var>
of complex argument <var>u</var> and real parameter <var>m</var>.
</p>
<p>If <var>m</var> is a scalar, the results are the same size as <var>u</var>.
If <var>u</var> is a scalar, the results are the same size as <var>m</var>.
If <var>u</var> is a column vector and <var>m</var> is a row vector, the
results are matrices with <code>length (<var>u</var>)</code> rows and
<code>length (<var>m</var>)</code> columns. Otherwise, <var>u</var> and
<var>m</var> must conform in size and the results will be the same size as the
inputs.
</p>
<p>The value of <var>u</var> may be complex.
The value of <var>m</var> must be 0 ≤ <var>m</var> ≤ 1.
</p>
<p>The optional input <var>tol</var> is currently ignored (<small>MATLAB</small> uses this to
allow faster, less accurate approximation).
</p>
<p>If requested, <var>err</var> contains the following status information
and is the same size as the result.
</p>
<ol start="0">
<li> Normal return.
</li><li> Error—no computation, algorithm termination condition not met,
return <code>NaN</code>.
</li></ol>
<p>Reference: Milton Abramowitz and Irene A Stegun,
<cite>Handbook of Mathematical Functions</cite>, Chapter 16 (Sections 16.4, 16.13,
and 16.15), Dover, 1965.
</p>
<p><strong>See also:</strong> <a href="#XREFellipke">ellipke</a>.
</p></dd></dl>
<span id="XREFellipke"></span><dl>
<dt id="index-ellipke">: <em><var>k</var> =</em> <strong>ellipke</strong> <em>(<var>m</var>)</em></dt>
<dt id="index-ellipke-1">: <em><var>k</var> =</em> <strong>ellipke</strong> <em>(<var>m</var>, <var>tol</var>)</em></dt>
<dt id="index-ellipke-2">: <em>[<var>k</var>, <var>e</var>] =</em> <strong>ellipke</strong> <em>(…)</em></dt>
<dd><p>Compute complete elliptic integrals of the first K(<var>m</var>) and second
E(<var>m</var>) kind.
</p>
<p><var>m</var> must be a scalar or real array with -Inf ≤ <var>m</var> ≤ 1.
</p>
<p>The optional input <var>tol</var> controls the stopping tolerance of the
algorithm and defaults to <code>eps (class (<var>m</var>))</code>. The tolerance can
be increased to compute a faster, less accurate approximation.
</p>
<p>When called with one output only elliptic integrals of the first kind are
returned.
</p>
<p>Mathematical Note:
</p>
<p>Elliptic integrals of the first kind are defined as
</p>
<div class="example">
<pre class="example"> 1
/ dt
K (m) = | ------------------------------
/ sqrt ((1 - t^2)*(1 - m*t^2))
0
</pre></div>
<p>Elliptic integrals of the second kind are defined as
</p>
<div class="example">
<pre class="example"> 1
/ sqrt (1 - m*t^2)
E (m) = | ------------------ dt
/ sqrt (1 - t^2)
0
</pre></div>
<p>Reference: Milton Abramowitz and Irene A. Stegun,
<cite>Handbook of Mathematical Functions</cite>, Chapter 17, Dover, 1965.
</p>
<p><strong>See also:</strong> <a href="#XREFellipj">ellipj</a>.
</p></dd></dl>
<span id="XREFerf"></span><dl>
<dt id="index-erf">: <em></em> <strong>erf</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the error function.
</p>
<p>The error function is defined as
</p>
<div class="example">
<pre class="example"> z
2 /
erf (z) = --------- * | e^(-t^2) dt
sqrt (pi) /
t=0
</pre></div>
<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfinv">erfinv</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>
<span id="XREFerfc"></span><dl>
<dt id="index-erfc">: <em></em> <strong>erfc</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the complementary error function.
</p>
<p>The complementary error function is defined as
<code>1 <span class="nolinebreak">-</span> erf (<var>z</var>)</code><!-- /@w -->.
</p>
<p><strong>See also:</strong> <a href="#XREFerfcinv">erfcinv</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfinv">erfinv</a>.
</p></dd></dl>
<span id="XREFerfcx"></span><dl>
<dt id="index-erfcx">: <em></em> <strong>erfcx</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the scaled complementary error function.
</p>
<p>The scaled complementary error function is defined as
</p>
<div class="example">
<pre class="example">exp (z^2) * erfc (z)
</pre></div>
<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfinv">erfinv</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>
<span id="XREFerfi"></span><dl>
<dt id="index-erfi">: <em></em> <strong>erfi</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the imaginary error function.
</p>
<p>The imaginary error function is defined as
</p>
<div class="example">
<pre class="example">-i * erf (i*z)
</pre></div>
<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfinv">erfinv</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>
<span id="XREFerfinv"></span><dl>
<dt id="index-erfinv">: <em></em> <strong>erfinv</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the inverse error function.
</p>
<p>The inverse error function is defined such that
</p>
<div class="example">
<pre class="example">erf (<var>y</var>) == <var>x</var>
</pre></div>
<p><strong>See also:</strong> <a href="#XREFerf">erf</a>, <a href="#XREFerfc">erfc</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfcinv">erfcinv</a>.
</p></dd></dl>
<span id="XREFerfcinv"></span><dl>
<dt id="index-erfcinv">: <em></em> <strong>erfcinv</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the inverse complementary error function.
</p>
<p>The inverse complementary error function is defined such that
</p>
<div class="example">
<pre class="example">erfc (<var>y</var>) == <var>x</var>
</pre></div>
<p><strong>See also:</strong> <a href="#XREFerfc">erfc</a>, <a href="#XREFerf">erf</a>, <a href="#XREFerfcx">erfcx</a>, <a href="#XREFerfi">erfi</a>, <a href="#XREFdawson">dawson</a>, <a href="#XREFerfinv">erfinv</a>.
</p></dd></dl>
<span id="XREFexpint"></span><dl>
<dt id="index-expint">: <em></em> <strong>expint</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the exponential integral.
</p>
<p>The exponential integral is defined as:
</p>
<div class="example">
<pre class="example"> +oo
/
| exp (-t)
E_1 (x) = | -------- dt
| t
/
x
</pre></div>
<p>Note: For compatibility, this function uses the <small>MATLAB</small> definition
of the exponential integral. Most other sources refer to this particular
value as <em>E_1 (x)</em>, and the exponential integral as
</p>
<div class="example">
<pre class="example"> +oo
/
| exp (-t)
Ei (x) = - | -------- dt
| t
/
-x
</pre></div>
<p>The two definitions are related, for positive real values of <var>x</var>, by
<code><span class="nolinebreak">E_1</span> <span class="nolinebreak">(-x)</span> = <span class="nolinebreak">-Ei</span> (x) <span class="nolinebreak">-</span> i*pi</code><!-- /@w -->.
</p>
<p>References:
</p>
<p>M. Abramowitz and I.A. Stegun,
<cite>Handbook of Mathematical Functions</cite>, 1964.
</p>
<p>N. Bleistein and R.A. Handelsman,
<cite>Asymptotic expansions of integrals</cite>, 1986.
</p>
<p><strong>See also:</strong> <a href="#XREFcosint">cosint</a>, <a href="#XREFsinint">sinint</a>, <a href="Exponents-and-Logarithms.html#XREFexp">exp</a>.
</p></dd></dl>
<span id="XREFgamma"></span><dl>
<dt id="index-gamma">: <em></em> <strong>gamma</strong> <em>(<var>z</var>)</em></dt>
<dd><p>Compute the Gamma function.
</p>
<p>The Gamma function is defined as
</p>
<div class="example">
<pre class="example"> infinity
/
gamma (z) = | t^(z-1) exp (-t) dt.
/
t=0
</pre></div>
<p>Programming Note: The gamma function can grow quite large even for small
input values. In many cases it may be preferable to use the natural
logarithm of the gamma function (<code>gammaln</code>) in calculations to minimize
loss of precision. The final result is then
<code>exp (<var>result_using_gammaln</var>).</code>
</p>
<p><strong>See also:</strong> <a href="#XREFgammainc">gammainc</a>, <a href="#XREFgammaln">gammaln</a>, <a href="Utility-Functions.html#XREFfactorial">factorial</a>.
</p></dd></dl>
<span id="XREFgammainc"></span><dl>
<dt id="index-gammainc">: <em></em> <strong>gammainc</strong> <em>(<var>x</var>, <var>a</var>)</em></dt>
<dt id="index-gammainc-1">: <em></em> <strong>gammainc</strong> <em>(<var>x</var>, <var>a</var>, <var>tail</var>)</em></dt>
<dd><p>Compute the normalized incomplete gamma function.
</p>
<p>This is defined as
</p>
<div class="example">
<pre class="example"> x
1 /
gammainc (x, a) = --------- | exp (-t) t^(a-1) dt
gamma (a) /
t=0
</pre></div>
<p>with the limiting value of 1 as <var>x</var> approaches infinity.
The standard notation is <em>P(a,x)</em>, e.g., Abramowitz and
Stegun (6.5.1).
</p>
<p>If <var>a</var> is scalar, then <code>gammainc (<var>x</var>, <var>a</var>)</code> is returned
for each element of <var>x</var> and vice versa.
</p>
<p>If neither <var>x</var> nor <var>a</var> is scalar then the sizes of <var>x</var> and
<var>a</var> must agree, and <code>gammainc</code> is applied element-by-element.
The elements of <var>a</var> must be non-negative.
</p>
<p>By default, <var>tail</var> is <code>"lower"</code> and the incomplete gamma function
integrated from 0 to <var>x</var> is computed. If <var>tail</var> is <code>"upper"</code>
then the complementary function integrated from <var>x</var> to infinity is
calculated.
</p>
<p>If <var>tail</var> is <code>"scaledlower"</code>, then the lower incomplete gamma
function is multiplied by
<em>gamma(a+1)*exp(x)/(x^a)</em>.
If <var>tail</var> is <code>"scaledupper"</code>, then the upper incomplete gamma
function is multiplied by the same quantity.
</p>
<p>References:
</p>
<p>M. Abramowitz and I.A. Stegun,
<cite>Handbook of mathematical functions</cite>,
Dover publications, Inc., 1972.
</p>
<p>W. Gautschi,
<cite>A computational procedure for incomplete gamma functions</cite>,
ACM Trans. Math Software, pp. 466–481, Vol 5, No. 4, 2012.
</p>
<p>W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
<cite>Numerical Recipes in Fortran 77</cite>, ch. 6.2, Vol 1, 1992.
</p>
<p><strong>See also:</strong> <a href="#XREFgamma">gamma</a>, <a href="#XREFgammaincinv">gammaincinv</a>, <a href="#XREFgammaln">gammaln</a>.
</p></dd></dl>
<span id="XREFgammaincinv"></span><dl>
<dt id="index-gammaincinv">: <em></em> <strong>gammaincinv</strong> <em>(<var>y</var>, <var>a</var>)</em></dt>
<dt id="index-gammaincinv-1">: <em></em> <strong>gammaincinv</strong> <em>(<var>y</var>, <var>a</var>, <var>tail</var>)</em></dt>
<dd><p>Compute the inverse of the normalized incomplete gamma function.
</p>
<p>The normalized incomplete gamma function is defined as
</p>
<div class="example">
<pre class="example"> x
1 /
gammainc (x, a) = --------- | exp (-t) t^(a-1) dt
gamma (a) /
t=0
</pre></div>
<p>and <code>gammaincinv (gammainc (<var>x</var>, <var>a</var>), <var>a</var>) = <var>x</var></code>
for each non-negative value of <var>x</var>. If <var>a</var> is scalar then
<code>gammaincinv (<var>y</var>, <var>a</var>)</code> is returned for each element of
<var>y</var> and vice versa.
</p>
<p>If neither <var>y</var> nor <var>a</var> is scalar then the sizes of <var>y</var> and
<var>a</var> must agree, and <code>gammaincinv</code> is applied element-by-element.
The variable <var>y</var> must be in the interval <em>[0,1]</em> while <var>a</var> must
be real and positive.
</p>
<p>By default, <var>tail</var> is <code>"lower"</code> and the inverse of the incomplete
gamma function integrated from 0 to <var>x</var> is computed. If <var>tail</var> is
<code>"upper"</code>, then the complementary function integrated from <var>x</var> to
infinity is inverted.
</p>
<p>The function is computed with Newton’s method by solving
</p>
<div class="example">
<pre class="example"><var>y</var> - gammainc (<var>x</var>, <var>a</var>) = 0
</pre></div>
<p>Reference: A. Gil, J. Segura, and N. M. Temme, <cite>Efficient and
accurate algorithms for the computation and inversion of the incomplete
gamma function ratios</cite>, SIAM J. Sci. Computing, pp.
A2965–A2981, Vol 34, 2012.
</p>
<p><strong>See also:</strong> <a href="#XREFgammainc">gammainc</a>, <a href="#XREFgamma">gamma</a>, <a href="#XREFgammaln">gammaln</a>.
</p></dd></dl>
<span id="XREFlegendre"></span><dl>
<dt id="index-legendre">: <em><var>l</var> =</em> <strong>legendre</strong> <em>(<var>n</var>, <var>x</var>)</em></dt>
<dt id="index-legendre-1">: <em><var>l</var> =</em> <strong>legendre</strong> <em>(<var>n</var>, <var>x</var>, <var>normalization</var>)</em></dt>
<dd><p>Compute the associated Legendre function of degree <var>n</var> and order
<var>m</var> = 0 … <var>n</var>.
</p>
<p>The value <var>n</var> must be a real non-negative integer.
</p>
<p><var>x</var> is a vector with real-valued elements in the range [-1, 1].
</p>
<p>The optional argument <var>normalization</var> may be one of <code>"unnorm"</code>,
<code>"sch"</code>, or <code>"norm"</code>. The default if no normalization is given
is <code>"unnorm"</code>.
</p>
<p>When the optional argument <var>normalization</var> is <code>"unnorm"</code>, compute
the associated Legendre function of degree <var>n</var> and order <var>m</var> and
return all values for <var>m</var> = 0 … <var>n</var>. The return value has one
dimension more than <var>x</var>.
</p>
<p>The associated Legendre function of degree <var>n</var> and order <var>m</var>:
</p>
<div class="example">
<pre class="example"> m m 2 m/2 d^m
P(x) = (-1) * (1-x ) * ---- P(x)
n dx^m n
</pre></div>
<p>with Legendre polynomial of degree <var>n</var>:
</p>
<div class="example">
<pre class="example"> 1 d^n 2 n
P(x) = ------ [----(x - 1) ]
n 2^n n! dx^n
</pre></div>
<p><code>legendre (3, [-1.0, -0.9, -0.8])</code> returns the matrix:
</p>
<div class="example">
<pre class="example"> x | -1.0 | -0.9 | -0.8
------------------------------------
m=0 | -1.00000 | -0.47250 | -0.08000
m=1 | 0.00000 | -1.99420 | -1.98000
m=2 | 0.00000 | -2.56500 | -4.32000
m=3 | 0.00000 | -1.24229 | -3.24000
</pre></div>
<p>When the optional argument <var>normalization</var> is <code>"sch"</code>, compute
the Schmidt semi-normalized associated Legendre function. The Schmidt
semi-normalized associated Legendre function is related to the unnormalized
Legendre functions by the following:
</p>
<p>For Legendre functions of degree <var>n</var> and order 0:
</p>
<div class="example">
<pre class="example"> 0 0
SP(x) = P(x)
n n
</pre></div>
<p>For Legendre functions of degree n and order m:
</p>
<div class="example">
<pre class="example"> m m m 2(n-m)! 0.5
SP(x) = P(x) * (-1) * [-------]
n n (n+m)!
</pre></div>
<p>When the optional argument <var>normalization</var> is <code>"norm"</code>, compute
the fully normalized associated Legendre function. The fully normalized
associated Legendre function is related to the unnormalized associated
Legendre functions by the following:
</p>
<p>For Legendre functions of degree <var>n</var> and order <var>m</var>
</p>
<div class="example">
<pre class="example"> m m m (n+0.5)(n-m)! 0.5
NP(x) = P(x) * (-1) * [-------------]
n n (n+m)!
</pre></div>
</dd></dl>
<span id="XREFgammaln"></span><span id="XREFlgamma"></span><dl>
<dt id="index-gammaln">: <em></em> <strong>gammaln</strong> <em>(<var>x</var>)</em></dt>
<dt id="index-lgamma">: <em></em> <strong>lgamma</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the natural logarithm of the gamma function of <var>x</var>.
</p>
<p><strong>See also:</strong> <a href="#XREFgamma">gamma</a>, <a href="#XREFgammainc">gammainc</a>.
</p></dd></dl>
<span id="XREFpsi"></span><dl>
<dt id="index-psi">: <em></em> <strong>psi</strong> <em>(<var>z</var>)</em></dt>
<dt id="index-psi-1">: <em></em> <strong>psi</strong> <em>(<var>k</var>, <var>z</var>)</em></dt>
<dd><p>Compute the psi (polygamma) function.
</p>
<p>The polygamma functions are the <var>k</var>th derivative of the logarithm
of the gamma function. If unspecified, <var>k</var> defaults to zero. A value
of zero computes the digamma function, a value of 1, the trigamma function,
and so on.
</p>
<p>The digamma function is defined:
</p>
<div class="example">
<pre class="example">psi (z) = d (log (gamma (z))) / dx
</pre></div>
<p>When computing the digamma function (when <var>k</var> equals zero), <var>z</var>
can have any value real or complex value. However, for polygamma functions
(<var>k</var> higher than 0), <var>z</var> must be real and non-negative.
</p>
<p><strong>See also:</strong> <a href="#XREFgamma">gamma</a>, <a href="#XREFgammainc">gammainc</a>, <a href="#XREFgammaln">gammaln</a>.
</p></dd></dl>
<span id="XREFsinint"></span><dl>
<dt id="index-sinint">: <em></em> <strong>sinint</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the sine integral function:
</p>
<div class="example">
<pre class="example"> x
/
Si (x) = | sin (t) / t dt
/
0
</pre></div>
<p>Reference:
M. Abramowitz and I.A. Stegun,
<cite>Handbook of Mathematical Functions</cite>, 1964.
</p>
<p><strong>See also:</strong> <a href="#XREFcosint">cosint</a>, <a href="#XREFexpint">expint</a>, <a href="Trigonometry.html#XREFsin">sin</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Rational-Approximations.html" accesskey="n" rel="next">Rational Approximations</a>, Previous: <a href="Utility-Functions.html" accesskey="p" rel="prev">Utility Functions</a>, Up: <a href="Arithmetic.html" accesskey="u" rel="up">Arithmetic</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|