1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Vector Rotation Matrices (GNU Octave (version 6.2.0))</title>
<meta name="description" content="Vector Rotation Matrices (GNU Octave (version 6.2.0))">
<meta name="keywords" content="Vector Rotation Matrices (GNU Octave (version 6.2.0))">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Geometry.html" rel="up" title="Geometry">
<link href="Signal-Processing.html" rel="next" title="Signal Processing">
<link href="Interpolation-on-Scattered-Data.html" rel="prev" title="Interpolation on Scattered Data">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<span id="Vector-Rotation-Matrices"></span><div class="header">
<p>
Previous: <a href="Interpolation-on-Scattered-Data.html" accesskey="p" rel="prev">Interpolation on Scattered Data</a>, Up: <a href="Geometry.html" accesskey="u" rel="up">Geometry</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<span id="Vector-Rotation-Matrices-1"></span><h3 class="section">30.5 Vector Rotation Matrices</h3>
<p>Also included in Octave’s geometry functions are primitive functions to enable
vector rotations in 3-dimensional space. Separate functions are provided for
rotation about each of the principle axes, <var>x</var>, <var>y</var>, and <var>z</var>.
According to Euler’s rotation theorem, any arbitrary rotation, <var>R</var>, of any
vector, <var>p</var>, can be expressed as a product of the three principle
rotations:
</p>
<div class="example">
<pre class="example">p' = Rp = Rz*Ry*Rx*p
</pre></div>
<span id="XREFrotx"></span><dl>
<dt id="index-rotx">: <em><var>T</var> =</em> <strong>rotx</strong> <em>(<var>angle</var>)</em></dt>
<dd>
<p><code>rotx</code> returns the 3x3 transformation matrix corresponding to an active
rotation of the vector about the x-axis by the specified <var>angle</var>, given
in degrees, where a positive angle corresponds to a counterclockwise
rotation when viewing the y-z plane from the positive x side.
</p>
<p>The form of the transformation matrix is:
</p>
<div class="example">
<pre class="example"> | 1 0 0 |
T = | 0 cos(<var>angle</var>) -sin(<var>angle</var>) |
| 0 sin(<var>angle</var>) cos(<var>angle</var>) |
</pre></div>
<p>This rotation matrix is intended to be used as a left-multiplying matrix
when acting on a column vector, using the notation <var>v</var> = <var>T</var><var>u</var>.
For example, a vector, <var>u</var>, pointing along the positive y-axis, rotated
90-degrees about the x-axis, will result in a vector pointing along the
positive z-axis:
</p>
<div class="example">
<pre class="example">>> u = [0 1 0]'
u =
0
1
0
>> T = rotx (90)
T =
1.00000 0.00000 0.00000
0.00000 0.00000 -1.00000
0.00000 1.00000 0.00000
>> v = T*u
v =
0.00000
0.00000
1.00000
</pre></div>
<p><strong>See also:</strong> <a href="#XREFroty">roty</a>, <a href="#XREFrotz">rotz</a>.
</p></dd></dl>
<span id="XREFroty"></span><dl>
<dt id="index-roty">: <em><var>T</var> =</em> <strong>roty</strong> <em>(<var>angle</var>)</em></dt>
<dd>
<p><code>roty</code> returns the 3x3 transformation matrix corresponding to an active
rotation of a vector about the y-axis by the specified <var>angle</var>, given in
degrees, where a positive angle corresponds to a counterclockwise
rotation when viewing the z-x plane from the positive y side.
</p>
<p>The form of the transformation matrix is:
</p>
<div class="example">
<pre class="example"> | cos(<var>angle</var>) 0 sin(<var>angle</var>) |
T = | 0 1 0 |
| -sin(<var>angle</var>) 0 cos(<var>angle</var>) |
</pre></div>
<p>This rotation matrix is intended to be used as a left-multiplying matrix
when acting on a column vector, using the notation <var>v</var> = <var>T</var><var>u</var>.
For example, a vector, <var>u</var>, pointing along the positive z-axis, rotated
90-degrees about the y-axis, will result in a vector pointing along the
positive x-axis:
</p>
<div class="example">
<pre class="example"> >> u = [0 0 1]'
u =
0
0
1
>> T = roty (90)
T =
0.00000 0.00000 1.00000
0.00000 1.00000 0.00000
-1.00000 0.00000 0.00000
>> v = T*u
v =
1.00000
0.00000
0.00000
</pre></div>
<p><strong>See also:</strong> <a href="#XREFrotx">rotx</a>, <a href="#XREFrotz">rotz</a>.
</p></dd></dl>
<span id="XREFrotz"></span><dl>
<dt id="index-rotz">: <em><var>T</var> =</em> <strong>rotz</strong> <em>(<var>angle</var>)</em></dt>
<dd>
<p><code>rotz</code> returns the 3x3 transformation matrix corresponding to an active
rotation of a vector about the z-axis by the specified <var>angle</var>, given in
degrees, where a positive angle corresponds to a counterclockwise
rotation when viewing the x-y plane from the positive z side.
</p>
<p>The form of the transformation matrix is:
</p>
<div class="example">
<pre class="example"> | cos(<var>angle</var>) -sin(<var>angle</var>) 0 |
T = | sin(<var>angle</var>) cos(<var>angle</var>) 0 |
| 0 0 1 |
</pre></div>
<p>This rotation matrix is intended to be used as a left-multiplying matrix
when acting on a column vector, using the notation <var>v</var> = <var>T</var><var>u</var>.
For example, a vector, <var>u</var>, pointing along the positive x-axis, rotated
90-degrees about the z-axis, will result in a vector pointing along the
positive y-axis:
</p>
<div class="example">
<pre class="example"> >> u = [1 0 0]'
u =
1
0
0
>> T = rotz (90)
T =
0.00000 -1.00000 0.00000
1.00000 0.00000 0.00000
0.00000 0.00000 1.00000
>> v = T*u
v =
0.00000
1.00000
0.00000
</pre></div>
<p><strong>See also:</strong> <a href="#XREFrotx">rotx</a>, <a href="#XREFroty">roty</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Previous: <a href="Interpolation-on-Scattered-Data.html" accesskey="p" rel="prev">Interpolation on Scattered Data</a>, Up: <a href="Geometry.html" accesskey="u" rel="up">Geometry</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|