1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
|
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
#if defined (HAVE_CONFIG_H)
# include "config.h"
#endif
#include "file-stat.h"
#include "oct-env.h"
#include "oct-time.h"
#include "defun.h"
#include "error.h"
#include "ov-struct.h"
#include "errwarn.h"
#if defined (HAVE_MAGICK)
#include <Magick++.h>
#include <clocale>
// In theory, it should be enough to check the class:
// Magick::ClassType
// PseudoClass:
// Image is composed of pixels which specify an index in a color palette.
// DirectClass:
// Image is composed of pixels which represent literal color values.
//
// GraphicsMagick does not really distinguishes between indexed and
// normal images. After reading a file, it decides itself the optimal
// way to store the image in memory, independently of the how the
// image was stored in the file. That's what ClassType returns. While
// it seems to match the original file most of the times, this is
// not necessarily true all the times. See
// https://sourceforge.net/mailarchive/message.php?msg_id=31180507
// In addition to the ClassType, there is also ImageType which has a
// type for indexed images (PaletteType and PaletteMatteType). However,
// they also don't represent the original image. Not only does DirectClass
// can have a PaletteType, but also does a PseudoClass have non Palette
// types.
//
// We can't do better without having format specific code which is
// what we are trying to avoid by using a library such as GM. We at
// least create workarounds for the most common problems.
//
// 1) A grayscale jpeg image can report being indexed even though the
// JPEG format has no support for indexed images. We can at least
// fix this one.
// 2) A PNG file is only an indexed image if color type orig is 3 (value comes
// from libpng)
static bool
is_indexed (const Magick::Image& img)
{
bool indexed = (img.classType () == Magick::PseudoClass);
// Our problem until now is non-indexed images, being represented as indexed
// by GM. The following attempts educated guesses to undo this optimization.
if (indexed)
{
const std::string fmt = img.magick ();
if (fmt == "JPEG")
// The JPEG format does not support indexed images, but GM sometimes
// reports grayscale JPEG as indexed. Always false for JPEG.
indexed = false;
else if (fmt == "PNG")
{
// Newer versions of GM (at least does not happens with 1.3.16) will
// store values from the underlying library as image attributes. In
// the case of PNG files, this is libpng where an indexed image will
// always have a value of 3 for "color-type-orig". This property
// always has a value in libpng so if we get nothing, we assume this
// GM version does not store them and we have to go with whatever
// GM PseudoClass says.
const std::string color_type
= const_cast<Magick::Image&> (img).attribute ("PNG:IHDR.color-type-orig");
if (! color_type.empty () && color_type != "3")
indexed = false;
}
}
return indexed;
}
// The depth from depth() is not always correct for us but seems to be the
// best value we can get. For example, a grayscale png image with 1 bit
// per channel should return a depth of 1 but instead we get 8.
// We could check channelDepth() but then, which channel has the data
// is not straightforward. So we'd have to check all
// the channels and select the highest value. But then, I also
// have a 16bit TIFF whose depth returns 16 (correct), but all of the
// channels gives 8 (wrong). No idea why, maybe a bug in GM?
// Anyway, using depth() seems that only causes problems for binary
// images, and the problem with channelDepth() is not making set them
// all to 1. So we will guess that if all channels have depth of 1,
// then we must have a binary image.
// Note that we can't use AllChannels it doesn't work for this.
// We also can't check only one from RGB, one from CMYK, and grayscale
// and transparency, we really need to check all of the channels (bug #41584).
static octave_idx_type
get_depth (Magick::Image& img)
{
octave_idx_type depth = img.depth ();
if (depth == 8
&& img.channelDepth (Magick::RedChannel) == 1
&& img.channelDepth (Magick::GreenChannel) == 1
&& img.channelDepth (Magick::BlueChannel) == 1
&& img.channelDepth (Magick::CyanChannel) == 1
&& img.channelDepth (Magick::MagentaChannel) == 1
&& img.channelDepth (Magick::YellowChannel) == 1
&& img.channelDepth (Magick::BlackChannel) == 1
&& img.channelDepth (Magick::OpacityChannel) == 1
&& img.channelDepth (Magick::GrayChannel) == 1)
depth = 1;
return depth;
}
// We need this in case one of the sides of the image being read has
// width 1. In those cases, the type will come as scalar instead of range
// since that's the behavior of the colon operator (1:1:1 will be a scalar,
// not a range).
static Range
get_region_range (const octave_value& region)
{
Range output;
if (region.is_range ())
output = region.range_value ();
else if (region.is_scalar_type ())
{
double value = region.scalar_value ();
output = Range (value, value);
}
else if (region.is_matrix_type ())
{
NDArray array = region.array_value ();
double base = array(0);
double limit = array(array.numel () - 1);
double incr = array(1) - base;
output = Range (base, limit, incr);
}
else
error ("__magick_read__: unknown datatype for Region option");
return output;
}
class
image_region
{
public:
image_region (const octave_scalar_map& options)
{
// FIXME: should we have better checking on the input map and values
// or is that expected to be done elsewhere?
const Cell pixel_region = options.getfield ("region").cell_value ();
// Subtract 1 to account for 0 indexing.
const Range rows = get_region_range (pixel_region (0));
const Range cols = get_region_range (pixel_region (1));
m_row_start = rows.base () - 1;
m_col_start = cols.base () - 1;
m_row_end = rows.max () - 1;
m_col_end = cols.max () - 1;
m_row_cache = m_row_end - m_row_start + 1;
m_col_cache = m_col_end - m_col_start + 1;
m_row_shift = m_col_cache * rows.inc ();
m_col_shift = m_col_cache * (m_row_cache + rows.inc () - 1) - cols.inc ();
m_row_out = rows.numel ();
m_col_out = cols.numel ();
}
// Default copy, move, and delete methods are all OK for this class.
image_region (const image_region&) = default;
image_region (image_region&&) = default;
image_region& operator = (const image_region&) = default;
image_region& operator = (image_region&&) = default;
~image_region (void) = default;
octave_idx_type row_start (void) const { return m_row_start; }
octave_idx_type col_start (void) const { return m_col_start; }
octave_idx_type row_end (void) const { return m_row_end; }
octave_idx_type col_end (void) const { return m_col_end; }
// Length of the area to load into the Image Pixel Cache. We use max and
// min to account for cases where last element of range is the range limit.
octave_idx_type row_cache (void) const { return m_row_cache; }
octave_idx_type col_cache (void) const { return m_col_cache; }
// How much we have to shift in the memory when doing the loops.
octave_idx_type row_shift (void) const { return m_row_shift; }
octave_idx_type col_shift (void) const { return m_col_shift; }
// The actual height and width of the output image
octave_idx_type row_out (void) const { return m_row_out; }
octave_idx_type col_out (void) const { return m_col_out; }
private:
octave_idx_type m_row_start;
octave_idx_type m_col_start;
octave_idx_type m_row_end;
octave_idx_type m_col_end;
// Length of the area to load into the Image Pixel Cache. We use max and
// min to account for cases where last element of range is the range limit.
octave_idx_type m_row_cache;
octave_idx_type m_col_cache;
// How much we have to shift in the memory when doing the loops.
octave_idx_type m_row_shift;
octave_idx_type m_col_shift;
// The actual height and width of the output image
octave_idx_type m_row_out;
octave_idx_type m_col_out;
};
static octave_value_list
read_maps (Magick::Image& img)
{
// can't call colorMapSize on const Magick::Image
const octave_idx_type mapsize = img.colorMapSize ();
Matrix cmap = Matrix (mapsize, 3); // colormap
ColumnVector amap = ColumnVector (mapsize); // alpha map
for (octave_idx_type i = 0; i < mapsize; i++)
{
const Magick::ColorRGB c = img.colorMap (i);
cmap(i,0) = c.red ();
cmap(i,1) = c.green ();
cmap(i,2) = c.blue ();
amap(i) = c.alpha ();
}
octave_value_list maps;
maps(0) = cmap;
maps(1) = amap;
return maps;
}
template <typename T>
static octave_value_list
read_indexed_images (const std::vector<Magick::Image>& imvec,
const Array<octave_idx_type>& frameidx,
const octave_idx_type& nargout,
const octave_scalar_map& options)
{
typedef typename T::element_type P;
octave_value_list retval (1);
image_region region (options);
const octave_idx_type nFrames = frameidx.numel ();
const octave_idx_type nRows = region.row_out ();
const octave_idx_type nCols = region.col_out ();
// imvec has all of the pages of a file, even the ones we are not
// interested in. We will use the first image that we will be actually
// reading to get information about the image.
const octave_idx_type def_elem = frameidx(0);
T img = T (dim_vector (nRows, nCols, 1, nFrames));
P *img_fvec = img.fortran_vec ();
const octave_idx_type row_start = region.row_start ();
const octave_idx_type col_start = region.col_start ();
const octave_idx_type row_shift = region.row_shift ();
const octave_idx_type col_shift = region.col_shift ();
const octave_idx_type row_cache = region.row_cache ();
const octave_idx_type col_cache = region.col_cache ();
// When reading PixelPackets from the Image Pixel Cache, they come in
// row major order. So we keep moving back and forth there so we can
// write the image in column major order.
octave_idx_type idx = 0;
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
imvec[frameidx(frame)].getConstPixels (col_start, row_start,
col_cache, row_cache);
const Magick::IndexPacket *pix
= imvec[frameidx(frame)].getConstIndexes ();
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
img_fvec[idx++] = static_cast<P> (*pix);
pix += row_shift;
}
pix -= col_shift;
}
}
retval(0) = octave_value (img);
// Only bother reading the colormap if it was requested as output.
if (nargout > 1)
{
// In theory, it should be possible for each frame of an image to
// have different colormaps but for Matlab compatibility, we only
// return the colormap of the first frame. To obtain the colormaps
// of different frames, one needs can either use imfinfo or a for
// loop around imread.
const octave_value_list maps
= read_maps (const_cast<Magick::Image&> (imvec[frameidx(def_elem)]));
retval(1) = maps(0);
// only interpret alpha channel if it exists and was requested as output
if (imvec[def_elem].matte () && nargout >= 3)
{
const Matrix amap = maps(1).matrix_value ();
const double *amap_fvec = amap.fortran_vec ();
NDArray alpha (dim_vector (nRows, nCols, 1, nFrames));
double *alpha_fvec = alpha.fortran_vec ();
// GraphicsMagick stores the alpha values inverted, i.e.,
// 1 for transparent and 0 for opaque so we fix that here.
const octave_idx_type nPixels = alpha.numel ();
for (octave_idx_type pix = 0; pix < nPixels; pix++)
alpha_fvec[pix] = 1 - amap_fvec[static_cast<int> (img_fvec[3])];
retval(2) = alpha;
}
}
return retval;
}
// This function is highly repetitive, a bunch of for loops that are
// very similar to account for different image types. They are different
// enough that trying to reduce the copy and paste would decrease its
// readability too much.
template <typename T>
octave_value_list
read_images (std::vector<Magick::Image>& imvec,
const Array<octave_idx_type>& frameidx,
const octave_idx_type& nargout,
const octave_scalar_map& options)
{
typedef typename T::element_type P;
octave_value_list retval (3, Matrix ());
image_region region (options);
const octave_idx_type nFrames = frameidx.numel ();
const octave_idx_type nRows = region.row_out ();
const octave_idx_type nCols = region.col_out ();
T img;
// imvec has all of the pages of a file, even the ones we are not
// interested in. We will use the first image that we will be actually
// reading to get information about the image.
const octave_idx_type def_elem = frameidx(0);
const octave_idx_type row_start = region.row_start ();
const octave_idx_type col_start = region.col_start ();
const octave_idx_type row_shift = region.row_shift ();
const octave_idx_type col_shift = region.col_shift ();
const octave_idx_type row_cache = region.row_cache ();
const octave_idx_type col_cache = region.col_cache ();
// GraphicsMagick (GM) keeps the image values in memory using whatever
// QuantumDepth it was built with independently of the original image
// bitdepth. Basically this means that if GM was built with quantum 16
// all values are scaled in the uint16 range. If the original image
// had an 8 bit depth, we need to rescale it for that range.
// However, if the image had a bitdepth of 32, then we will be returning
// a floating point image. In this case, the values need to be rescaled
// for the range [0 1] (this is what Matlab has documented on the page
// about image types but in some cases seems to be doing something else.
// See bug #39249).
// Finally, we must do the division ourselves (set a divisor) instead of
// using quantumOperator for the cases where we will be returning floating
// point and want things in the range [0 1]. This is the same reason why
// the divisor is of type double.
// uint64_t is used in expression because default 32-bit value overflows
// when depth() is 32.
// FIXME: in the next release of GraphicsMagick, MaxRGB should be replaced
// with QuantumRange since MaxRGB is already deprecated in ImageMagick.
double divisor;
if (imvec[def_elem].depth () == 32)
divisor = std::numeric_limits<uint32_t>::max ();
else
divisor = MaxRGB / ((uint64_t (1) << imvec[def_elem].depth ()) - 1);
// FIXME: this workaround should probably be fixed in GM by creating a
// new ImageType BilevelMatteType
// Despite what GM documentation claims, opacity is not only on the types
// with Matte on the name. It is possible that an image is completely
// black (1 color), and have a second channel set for transparency (2nd
// color). Its type will be bilevel since there is no BilevelMatte. The
// only way to check for this seems to be by checking matte ().
Magick::ImageType type = imvec[def_elem].type ();
if (type == Magick::BilevelType && imvec[def_elem].matte ())
type = Magick::GrayscaleMatteType;
// FIXME: ImageType is the type being used to represent the image in memory
// by GM. The real type may be different (see among others bug #36820). For
// example, a png file where all channels are equal may report being
// grayscale or even bilevel. But we must always return the real image in
// file. In some cases, the original image attributes are stored in the
// attributes but this is undocumented. This should be fixed in GM so that
// a method such as original_type returns an actual Magick::ImageType
if (imvec[0].magick () == "PNG")
{
// These values come from libpng, not GM:
// Grayscale = 0
// Palette = 2 + 1
// RGB = 2
// RGB + Alpha = 2 + 4
// Grayscale + Alpha = 4
// We won't bother with case 3 (palette) since those should be
// read by the function to read indexed images
const std::string type_str
= imvec[0].attribute ("PNG:IHDR.color-type-orig");
if (type_str == "0")
type = Magick::GrayscaleType;
else if (type_str == "2")
type = Magick::TrueColorType;
else if (type_str == "6")
type = Magick::TrueColorMatteType;
else if (type_str == "4")
type = Magick::GrayscaleMatteType;
// Color types 0, 2, and 3 can also have alpha channel, conveyed
// via the "tRNS" chunk. For 0 and 2, it's limited to GIF-style
// binary transparency, while 3 can have any level of alpha per
// palette entry. We thus must check matte() to see if the image
// really doesn't have an alpha channel.
if (imvec[0].matte ())
{
if (type == Magick::GrayscaleType)
type = Magick::GrayscaleMatteType;
else if (type == Magick::TrueColorType)
type = Magick::TrueColorMatteType;
}
}
// If the alpha channel was not requested, treat images as if
// it doesn't exist.
if (nargout < 3)
{
switch (type)
{
case Magick::GrayscaleMatteType:
type = Magick::GrayscaleType;
break;
case Magick::PaletteMatteType:
type = Magick::PaletteType;
break;
case Magick::TrueColorMatteType:
type = Magick::TrueColorType;
break;
case Magick::ColorSeparationMatteType:
type = Magick::ColorSeparationType;
break;
default:
// Do nothing other than silencing warnings about enumeration
// values not being handled in switch.
;
}
}
const octave_idx_type color_stride = nRows * nCols;
switch (type)
{
case Magick::BilevelType: // Monochrome bi-level image
case Magick::GrayscaleType: // Grayscale image
{
img = T (dim_vector (nRows, nCols, 1, nFrames));
P *img_fvec = img.fortran_vec ();
octave_idx_type idx = 0;
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
const Magick::PixelPacket *pix
= imvec[frameidx(frame)].getConstPixels (col_start, row_start,
col_cache, row_cache);
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
img_fvec[idx++] = pix->red / divisor;
pix += row_shift;
}
pix -= col_shift;
}
}
break;
}
case Magick::GrayscaleMatteType: // Grayscale image with opacity
{
img = T (dim_vector (nRows, nCols, 1, nFrames));
T alpha (dim_vector (nRows, nCols, 1, nFrames));
P *img_fvec = img.fortran_vec ();
P *a_fvec = alpha.fortran_vec ();
octave_idx_type idx = 0;
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
const Magick::PixelPacket *pix
= imvec[frameidx(frame)].getConstPixels (col_start, row_start,
col_cache, row_cache);
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
img_fvec[idx] = pix->red / divisor;
a_fvec[idx] = (MaxRGB - pix->opacity) / divisor;
pix += row_shift;
idx++;
}
pix -= col_shift;
}
}
retval(2) = alpha;
break;
}
case Magick::PaletteType: // Indexed color (palette) image
case Magick::TrueColorType: // Truecolor image
{
img = T (dim_vector (nRows, nCols, 3, nFrames));
P *img_fvec = img.fortran_vec ();
const octave_idx_type frame_stride = color_stride * 3;
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
const Magick::PixelPacket *pix
= imvec[frameidx(frame)].getConstPixels (col_start, row_start,
col_cache, row_cache);
octave_idx_type idx = 0;
P *rbuf = img_fvec;
P *gbuf = img_fvec + color_stride;
P *bbuf = img_fvec + color_stride * 2;
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
rbuf[idx] = pix->red / divisor;
gbuf[idx] = pix->green / divisor;
bbuf[idx] = pix->blue / divisor;
pix += row_shift;
idx++;
}
pix -= col_shift;
}
img_fvec += frame_stride;
}
break;
}
case Magick::PaletteMatteType: // Indexed color image with opacity
case Magick::TrueColorMatteType: // Truecolor image with opacity
{
img = T (dim_vector (nRows, nCols, 3, nFrames));
T alpha (dim_vector (nRows, nCols, 1, nFrames));
P *img_fvec = img.fortran_vec ();
P *a_fvec = alpha.fortran_vec ();
const octave_idx_type frame_stride = color_stride * 3;
// Unlike the index for the other channels, this one won't need
// to be reset on each frame since it's a separate matrix.
octave_idx_type a_idx = 0;
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
const Magick::PixelPacket *pix
= imvec[frameidx(frame)].getConstPixels (col_start, row_start,
col_cache, row_cache);
octave_idx_type idx = 0;
P *rbuf = img_fvec;
P *gbuf = img_fvec + color_stride;
P *bbuf = img_fvec + color_stride * 2;
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
rbuf[idx] = pix->red / divisor;
gbuf[idx] = pix->green / divisor;
bbuf[idx] = pix->blue / divisor;
a_fvec[a_idx++] = (MaxRGB - pix->opacity) / divisor;
pix += row_shift;
idx++;
}
pix -= col_shift;
}
img_fvec += frame_stride;
}
retval(2) = alpha;
break;
}
case Magick::ColorSeparationType: // Cyan/Magenta/Yellow/Black (CMYK) image
{
img = T (dim_vector (nRows, nCols, 4, nFrames));
P *img_fvec = img.fortran_vec ();
const octave_idx_type frame_stride = color_stride * 4;
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
const Magick::PixelPacket *pix
= imvec[frameidx(frame)].getConstPixels (col_start, row_start,
col_cache, row_cache);
octave_idx_type idx = 0;
P *cbuf = img_fvec;
P *mbuf = img_fvec + color_stride;
P *ybuf = img_fvec + color_stride * 2;
P *kbuf = img_fvec + color_stride * 3;
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
cbuf[idx] = pix->red / divisor;
mbuf[idx] = pix->green / divisor;
ybuf[idx] = pix->blue / divisor;
kbuf[idx] = pix->opacity / divisor;
pix += row_shift;
idx++;
}
pix -= col_shift;
}
img_fvec += frame_stride;
}
break;
}
// Cyan, magenta, yellow, and black with alpha (opacity) channel
case Magick::ColorSeparationMatteType:
{
img = T (dim_vector (nRows, nCols, 4, nFrames));
T alpha (dim_vector (nRows, nCols, 1, nFrames));
P *img_fvec = img.fortran_vec ();
P *a_fvec = alpha.fortran_vec ();
const octave_idx_type frame_stride = color_stride * 4;
// Unlike the index for the other channels, this one won't need
// to be reset on each frame since it's a separate matrix.
octave_idx_type a_idx = 0;
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
const Magick::PixelPacket *pix
= imvec[frameidx(frame)].getConstPixels (col_start, row_start,
col_cache, row_cache);
// Note that for CMYKColorspace + matte (CMYKA), the opacity is
// stored in the associated IndexPacket.
const Magick::IndexPacket *apix
= imvec[frameidx(frame)].getConstIndexes ();
octave_idx_type idx = 0;
P *cbuf = img_fvec;
P *mbuf = img_fvec + color_stride;
P *ybuf = img_fvec + color_stride * 2;
P *kbuf = img_fvec + color_stride * 3;
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
cbuf[idx] = pix->red / divisor;
mbuf[idx] = pix->green / divisor;
ybuf[idx] = pix->blue / divisor;
kbuf[idx] = pix->opacity / divisor;
a_fvec[a_idx++] = (MaxRGB - *apix) / divisor;
pix += row_shift;
idx++;
}
pix -= col_shift;
}
img_fvec += frame_stride;
}
retval(2) = alpha;
break;
}
default:
error ("__magick_read__: unknown Magick++ image type");
}
retval(0) = img;
return retval;
}
// Read a file into vector of image objects.
void static
read_file (const std::string& filename, std::vector<Magick::Image>& imvec)
{
try
{
Magick::readImages (&imvec, filename);
}
catch (Magick::Warning& w)
{
warning ("Magick++ warning: %s", w.what ());
}
catch (Magick::Exception& e)
{
error ("Magick++ exception: %s", e.what ());
}
}
static void
maybe_initialize_magick (void)
{
static bool initialized = false;
if (! initialized)
{
// Save locale as GraphicsMagick might change this (fixed in
// GraphicsMagick since version 1.3.13 released on December 24, 2011)
const char *static_locale = setlocale (LC_ALL, nullptr);
const std::string locale = (static_locale ? static_locale : "");
const std::string program_name
= octave::sys::env::get_program_invocation_name ();
Magick::InitializeMagick (program_name.c_str ());
// Restore locale from before GraphicsMagick initialisation
setlocale (LC_ALL, locale.c_str ());
// Why should we give a warning?
// Magick does not tell us the real bitdepth of the image in file.
// The best we can have is the minimum between the bitdepth of the
// file and the quantum depth. So we never know if the file will
// actually be read correctly so we warn the user that it might
// be limited.
//
// Why we warn if < 16 instead of < 32 ?
// The reasons for < 32 is simply that it's the maximum quantum
// depth they support. However, very few people would actually
// need such support while being a major inconvenience to anyone
// else (8 bit images suddenly taking 4x more space will be
// critical for multi page images). It would also suggests that
// it covers all images which does not (it still does not support
// float point and signed integer images).
// On the other hand, 16bit images are much more common. If quantum
// depth is 8, there's a good chance that we will be limited. It
// is also the GraphicsMagick recommended setting and the default
// for ImageMagick.
if (QuantumDepth < 16)
warning_with_id ("Octave:GraphicsMagick-Quantum-Depth",
"your version of %s limits images to %d bits per pixel\n",
MagickPackageName, QuantumDepth);
initialized = true;
}
}
#endif
DEFUN (__magick_read__, args, nargout,
doc: /* -*- texinfo -*-
@deftypefn {} {[@var{img}, @var{map}, @var{alpha}] =} __magick_read__ (@var{fname}, @var{options})
Read image with GraphicsMagick or ImageMagick.
This is a private internal function not intended for direct use.
Use @code{imread} instead.
@seealso{imfinfo, imformats, imread, imwrite}
@end deftypefn */)
{
#if defined (HAVE_MAGICK)
if (args.length () != 2 || ! args(0).is_string ())
print_usage ();
maybe_initialize_magick ();
const octave_scalar_map options
= args(1).xscalar_map_value ("__magick_read__: OPTIONS must be a struct");
octave_value_list output;
std::vector<Magick::Image> imvec;
read_file (args(0).string_value (), imvec);
// Prepare an Array with the indexes for the requested frames.
const octave_idx_type nFrames = imvec.size ();
Array<octave_idx_type> frameidx;
const octave_value indexes = options.getfield ("index");
if (indexes.is_string () && indexes.string_value () == "all")
{
frameidx.resize (dim_vector (1, nFrames));
for (octave_idx_type i = 0; i < nFrames; i++)
frameidx(i) = i;
}
else
{
frameidx = indexes.xint_vector_value ("__magick_read__: invalid value for Index/Frame");
// Fix indexes from base 1 to base 0, and at the same time, make
// sure none of the indexes is outside the range of image number.
const octave_idx_type n = frameidx.numel ();
for (octave_idx_type i = 0; i < n; i++)
{
frameidx(i)--;
if (frameidx(i) < 0 || frameidx(i) > nFrames - 1)
{
// We do this check inside the loop because frameidx does not
// need to be ordered (this is a feature and even allows for
// some frames to be read multiple times).
error ("imread: index/frames specified are outside the number of images");
}
}
}
// Check that all frames have the same size. We don't do this at the same
// time we decode the image because that's done in many different places,
// to cover the different types of images which would lead to a lot of
// copy and paste.
{
const unsigned int nRows = imvec[frameidx(0)].rows ();
const unsigned int nCols = imvec[frameidx(0)].columns ();
const octave_idx_type n = frameidx.numel ();
for (octave_idx_type frame = 0; frame < n; frame++)
{
if (nRows != imvec[frameidx(frame)].rows ()
|| nCols != imvec[frameidx(frame)].columns ())
{
error ("imread: all frames must have the same size but frame "
"%" OCTAVE_IDX_TYPE_FORMAT " is different",
frameidx(frame) +1);
}
}
}
const octave_idx_type depth = get_depth (imvec[frameidx(0)]);
if (is_indexed (imvec[frameidx(0)]))
{
if (depth <= 1)
output = read_indexed_images<boolNDArray> (imvec, frameidx,
nargout, options);
else if (depth <= 8)
output = read_indexed_images<uint8NDArray> (imvec, frameidx,
nargout, options);
else if (depth <= 16)
output = read_indexed_images<uint16NDArray> (imvec, frameidx,
nargout, options);
else
error ("imread: indexed images with depths greater than 16-bit are not supported");
}
else
{
if (depth <= 1)
output = read_images<boolNDArray> (imvec, frameidx, nargout, options);
else if (depth <= 8)
output = read_images<uint8NDArray> (imvec, frameidx, nargout, options);
else if (depth <= 16)
output = read_images<uint16NDArray> (imvec, frameidx, nargout, options);
else if (depth <= 32)
output = read_images<FloatNDArray> (imvec, frameidx, nargout, options);
else
error ("imread: reading of images with %" OCTAVE_IDX_TYPE_FORMAT
"-bit depth is not supported", depth);
}
return output;
#else
octave_unused_parameter (args);
octave_unused_parameter (nargout);
err_disabled_feature ("imread", "Image IO");
#endif
}
/*
## No test needed for internal helper function.
%!assert (1)
*/
#if defined (HAVE_MAGICK)
template <typename T>
static uint32NDArray
img_float2uint (const T& img)
{
typedef typename T::element_type P;
uint32NDArray out (img.dims ());
octave_uint32 *out_fvec = out.fortran_vec ();
const P *img_fvec = img.fortran_vec ();
const octave_uint32 max = octave_uint32::max ();
const octave_idx_type numel = img.numel ();
for (octave_idx_type idx = 0; idx < numel; idx++)
out_fvec[idx] = img_fvec[idx] * max;
return out;
}
// Gets the bitdepth to be used for an Octave class, i.e, returns 8 for
// uint8, 16 for uint16, and 32 for uint32
template <typename T>
static octave_idx_type
bitdepth_from_class ()
{
typedef typename T::element_type P;
const octave_idx_type bitdepth
= sizeof (P) * std::numeric_limits<unsigned char>::digits;
return bitdepth;
}
static Magick::Image
init_enconde_image (const octave_idx_type& nCols, const octave_idx_type& nRows,
const octave_idx_type& bitdepth,
const Magick::ImageType& type,
const Magick::ClassType& klass)
{
Magick::Image img (Magick::Geometry (nCols, nRows), "black");
// Ensure that there are no other references to this image.
img.modifyImage ();
img.classType (klass);
img.type (type);
// FIXME: for some reason, setting bitdepth doesn't seem to work for
// indexed images.
img.depth (bitdepth);
switch (type)
{
case Magick::GrayscaleMatteType:
case Magick::TrueColorMatteType:
case Magick::ColorSeparationMatteType:
case Magick::PaletteMatteType:
img.matte (true);
break;
default:
img.matte (false);
}
return img;
}
template <typename T>
static void
encode_indexed_images (std::vector<Magick::Image>& imvec,
const T& img,
const Matrix& cmap)
{
typedef typename T::element_type P;
const octave_idx_type nFrames = (img.ndims () < 4 ? 1 : img.dims ()(3));
const octave_idx_type nRows = img.rows ();
const octave_idx_type nCols = img.columns ();
const octave_idx_type cmap_size = cmap.rows ();
const octave_idx_type bitdepth = bitdepth_from_class<T> ();
// There is no colormap object, we need to build a new one for each frame,
// even if it's always the same. We can least get a vector for the Colors.
std::vector<Magick::ColorRGB> colormap;
{
const double *cmap_fvec = cmap.fortran_vec ();
const octave_idx_type G_offset = cmap_size;
const octave_idx_type B_offset = cmap_size * 2;
for (octave_idx_type map_idx = 0; map_idx < cmap_size; map_idx++)
colormap.push_back (Magick::ColorRGB (cmap_fvec[map_idx],
cmap_fvec[map_idx + G_offset],
cmap_fvec[map_idx + B_offset]));
}
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
Magick::Image m_img = init_enconde_image (nCols, nRows, bitdepth,
Magick::PaletteType,
Magick::PseudoClass);
// Insert colormap.
m_img.colorMapSize (cmap_size);
for (octave_idx_type map_idx = 0; map_idx < cmap_size; map_idx++)
m_img.colorMap (map_idx, colormap[map_idx]);
// Why are we also setting the pixel values instead of only the
// index values? We don't know if a file format supports indexed
// images. If we only set the indexes and then try to save the
// image as JPEG for example, the indexed values get discarded,
// there is no conversion from the indexes, it's the initial values
// that get used. An alternative would be to only set the pixel
// values (no indexes), then set the image as PseudoClass and GM
// would create a colormap for us. However, we wouldn't have control
// over the order of that colormap. And that's why we set both.
Magick::PixelPacket *pix = m_img.getPixels (0, 0, nCols, nRows);
Magick::IndexPacket *ind = m_img.getIndexes ();
const P *img_fvec = img.fortran_vec ();
octave_idx_type GM_idx = 0;
for (octave_idx_type column = 0; column < nCols; column++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
ind[GM_idx] = double (*img_fvec);
pix[GM_idx] = m_img.colorMap (double (*img_fvec));
img_fvec++;
GM_idx += nCols;
}
GM_idx -= nCols * nRows - 1;
}
// Save changes to underlying image.
m_img.syncPixels ();
imvec.push_back (m_img);
}
}
static void
encode_bool_image (std::vector<Magick::Image>& imvec, const boolNDArray& img)
{
const octave_idx_type nFrames = (img.ndims () < 4 ? 1 : img.dims ()(3));
const octave_idx_type nRows = img.rows ();
const octave_idx_type nCols = img.columns ();
// The initialized image will be black, this is for the other pixels
const Magick::Color white ("white");
const bool *img_fvec = img.fortran_vec ();
octave_idx_type img_idx = 0;
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
// For some reason, we can't set the type to Magick::BilevelType or
// the output image will be black, changing to white has no effect.
// However, this will still work fine and a binary image will be
// saved because we are setting the bitdepth to 1.
Magick::Image m_img = init_enconde_image (nCols, nRows, 1,
Magick::GrayscaleType,
Magick::DirectClass);
Magick::PixelPacket *pix = m_img.getPixels (0, 0, nCols, nRows);
octave_idx_type GM_idx = 0;
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
if (img_fvec[img_idx])
pix[GM_idx] = white;
img_idx++;
GM_idx += nCols;
}
GM_idx -= nCols * nRows - 1;
}
// Save changes to underlying image.
m_img.syncPixels ();
// While we could not set it to Bilevel at the start, we can do it
// here otherwise some coders won't save it as binary.
m_img.type (Magick::BilevelType);
imvec.push_back (m_img);
}
}
template <typename T>
static void
encode_uint_image (std::vector<Magick::Image>& imvec,
const T& img, const T& alpha)
{
typedef typename T::element_type P;
const octave_idx_type channels = (img.ndims () < 3 ? 1 : img.dims ()(2));
const octave_idx_type nFrames = (img.ndims () < 4 ? 1 : img.dims ()(3));
const octave_idx_type nRows = img.rows ();
const octave_idx_type nCols = img.columns ();
const octave_idx_type bitdepth = bitdepth_from_class<T> ();
Magick::ImageType type;
const bool has_alpha = ! alpha.isempty ();
switch (channels)
{
case 1:
if (has_alpha)
type = Magick::GrayscaleMatteType;
else
type = Magick::GrayscaleType;
break;
case 3:
if (has_alpha)
type = Magick::TrueColorMatteType;
else
type = Magick::TrueColorType;
break;
case 4:
if (has_alpha)
type = Magick::ColorSeparationMatteType;
else
type = Magick::ColorSeparationType;
break;
default:
// __imwrite should have already filtered this cases
error ("__magick_write__: wrong size on 3rd dimension");
}
// We will be passing the values as integers with depth as specified
// by QuantumDepth (maximum value specified by MaxRGB). This is independent
// of the actual depth of the image. GM will then convert the values but
// while in memory, it always keeps the values as specified by QuantumDepth.
// From GM documentation:
// Color arguments are must be scaled to fit the Quantum size according to
// the range of MaxRGB
const double divisor = static_cast<double> ((uint64_t (1) << bitdepth) - 1)
/ MaxRGB;
const P *img_fvec = img.fortran_vec ();
const P *a_fvec = alpha.fortran_vec ();
switch (type)
{
case Magick::GrayscaleType:
{
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
Magick::Image m_img = init_enconde_image (nCols, nRows, bitdepth,
type,
Magick::DirectClass);
Magick::PixelPacket *pix = m_img.getPixels (0, 0, nCols, nRows);
octave_idx_type GM_idx = 0;
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
const double grey = octave::math::round (double (*img_fvec) / divisor);
Magick::Color c (grey, grey, grey);
pix[GM_idx] = c;
img_fvec++;
GM_idx += nCols;
}
GM_idx -= nCols * nRows - 1;
}
// Save changes to underlying image.
m_img.syncPixels ();
imvec.push_back (m_img);
}
break;
}
case Magick::GrayscaleMatteType:
{
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
Magick::Image m_img = init_enconde_image (nCols, nRows, bitdepth,
type,
Magick::DirectClass);
Magick::PixelPacket *pix = m_img.getPixels (0, 0, nCols, nRows);
octave_idx_type GM_idx = 0;
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
double grey = octave::math::round (double (*img_fvec) / divisor);
Magick::Color c (grey, grey, grey,
MaxRGB - octave::math::round (double (*a_fvec) / divisor));
pix[GM_idx] = c;
img_fvec++;
a_fvec++;
GM_idx += nCols;
}
GM_idx -= nCols * nRows - 1;
}
// Save changes to underlying image.
m_img.syncPixels ();
imvec.push_back (m_img);
}
break;
}
case Magick::TrueColorType:
{
// The fortran_vec offset for the green and blue channels
const octave_idx_type G_offset = nCols * nRows;
const octave_idx_type B_offset = nCols * nRows * 2;
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
Magick::Image m_img = init_enconde_image (nCols, nRows, bitdepth,
type,
Magick::DirectClass);
Magick::PixelPacket *pix = m_img.getPixels (0, 0, nCols, nRows);
octave_idx_type GM_idx = 0;
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
Magick::Color c (octave::math::round (double (*img_fvec) / divisor),
octave::math::round (double (img_fvec[G_offset]) / divisor),
octave::math::round (double (img_fvec[B_offset]) / divisor));
pix[GM_idx] = c;
img_fvec++;
GM_idx += nCols;
}
GM_idx -= nCols * nRows - 1;
}
// Save changes to underlying image.
m_img.syncPixels ();
imvec.push_back (m_img);
img_fvec += B_offset;
}
break;
}
case Magick::TrueColorMatteType:
{
// The fortran_vec offset for the green and blue channels
const octave_idx_type G_offset = nCols * nRows;
const octave_idx_type B_offset = nCols * nRows * 2;
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
Magick::Image m_img = init_enconde_image (nCols, nRows, bitdepth,
type,
Magick::DirectClass);
Magick::PixelPacket *pix = m_img.getPixels (0, 0, nCols, nRows);
octave_idx_type GM_idx = 0;
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
Magick::Color c (octave::math::round (double (*img_fvec) / divisor),
octave::math::round (double (img_fvec[G_offset]) / divisor),
octave::math::round (double (img_fvec[B_offset]) / divisor),
MaxRGB - octave::math::round (double (*a_fvec) / divisor));
pix[GM_idx] = c;
img_fvec++;
a_fvec++;
GM_idx += nCols;
}
GM_idx -= nCols * nRows - 1;
}
// Save changes to underlying image.
m_img.syncPixels ();
imvec.push_back (m_img);
img_fvec += B_offset;
}
break;
}
case Magick::ColorSeparationType:
{
// The fortran_vec offset for the Magenta, Yellow, and blacK channels
const octave_idx_type M_offset = nCols * nRows;
const octave_idx_type Y_offset = nCols * nRows * 2;
const octave_idx_type K_offset = nCols * nRows * 3;
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
Magick::Image m_img = init_enconde_image (nCols, nRows, bitdepth,
type,
Magick::DirectClass);
Magick::PixelPacket *pix = m_img.getPixels (0, 0, nCols, nRows);
octave_idx_type GM_idx = 0;
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
Magick::Color c (octave::math::round (double (*img_fvec) / divisor),
octave::math::round (double (img_fvec[M_offset]) / divisor),
octave::math::round (double (img_fvec[Y_offset]) / divisor),
octave::math::round (double (img_fvec[K_offset]) / divisor));
pix[GM_idx] = c;
img_fvec++;
GM_idx += nCols;
}
GM_idx -= nCols * nRows - 1;
}
// Save changes to underlying image.
m_img.syncPixels ();
imvec.push_back (m_img);
img_fvec += K_offset;
}
break;
}
case Magick::ColorSeparationMatteType:
{
// The fortran_vec offset for the Magenta, Yellow, and blacK channels
const octave_idx_type M_offset = nCols * nRows;
const octave_idx_type Y_offset = nCols * nRows * 2;
const octave_idx_type K_offset = nCols * nRows * 3;
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
Magick::Image m_img = init_enconde_image (nCols, nRows, bitdepth,
type,
Magick::DirectClass);
Magick::PixelPacket *pix = m_img.getPixels (0, 0, nCols, nRows);
Magick::IndexPacket *ind = m_img.getIndexes ();
octave_idx_type GM_idx = 0;
for (octave_idx_type col = 0; col < nCols; col++)
{
for (octave_idx_type row = 0; row < nRows; row++)
{
Magick::Color c (octave::math::round (double (*img_fvec) / divisor),
octave::math::round (double (img_fvec[M_offset]) / divisor),
octave::math::round (double (img_fvec[Y_offset]) / divisor),
octave::math::round (double (img_fvec[K_offset]) / divisor));
pix[GM_idx] = c;
ind[GM_idx] = MaxRGB - octave::math::round (double (*a_fvec) / divisor);
img_fvec++;
a_fvec++;
GM_idx += nCols;
}
GM_idx -= nCols * nRows - 1;
}
// Save changes to underlying image.
m_img.syncPixels ();
imvec.push_back (m_img);
img_fvec += K_offset;
}
break;
}
default:
error ("__magick_write__: unrecognized Magick::ImageType");
}
return;
}
// Meant to be shared with both imfinfo and imwrite.
static std::map<octave_idx_type, std::string>
init_disposal_methods ()
{
// GIF Specifications:
//
// Disposal Method - Indicates the way in which the graphic is to
// be treated after being displayed.
//
// 0 - No disposal specified. The decoder is
// not required to take any action.
// 1 - Do not dispose. The graphic is to be left
// in place.
// 2 - Restore to background color. The area used by the
// graphic must be restored to the background color.
// 3 - Restore to previous. The decoder is required to
// restore the area overwritten by the graphic with
// what was there prior to rendering the graphic.
// 4-7 - To be defined.
static std::map<octave_idx_type, std::string> methods;
if (methods.empty ())
{
methods[0] = "doNotSpecify";
methods[1] = "leaveInPlace";
methods[2] = "restoreBG";
methods[3] = "restorePrevious";
}
return methods;
}
static std::map<std::string, octave_idx_type>
init_reverse_disposal_methods ()
{
static std::map<std::string, octave_idx_type> methods;
if (methods.empty ())
{
methods["donotspecify"] = 0;
methods["leaveinplace"] = 1;
methods["restorebg"] = 2;
methods["restoreprevious"] = 3;
}
return methods;
}
void static
write_file (const std::string& filename,
const std::string& ext,
std::vector<Magick::Image>& imvec)
{
try
{
Magick::writeImages (imvec.begin (), imvec.end (), ext + ':' + filename);
}
catch (Magick::Warning& w)
{
warning ("Magick++ warning: %s", w.what ());
}
catch (Magick::ErrorCoder& e)
{
warning ("Magick++ coder error: %s", e.what ());
}
catch (Magick::Exception& e)
{
error ("Magick++ exception: %s", e.what ());
}
}
#endif
DEFUN (__magick_write__, args, ,
doc: /* -*- texinfo -*-
@deftypefn {} {} __magick_write__ (@var{fname}, @var{fmt}, @var{img}, @var{map}, @var{options})
Write image with GraphicsMagick or ImageMagick.
This is a private internal function not intended for direct use.
Use @code{imwrite} instead.
@seealso{imfinfo, imformats, imread, imwrite}
@end deftypefn */)
{
#if defined (HAVE_MAGICK)
if (args.length () != 5 || ! args(0).is_string () || ! args(1).is_string ())
print_usage ();
maybe_initialize_magick ();
const std::string filename = args(0).string_value ();
const std::string ext = args(1).string_value ();
const octave_scalar_map options
= args(4).xscalar_map_value ("__magick_write__: OPTIONS must be a struct");
const octave_value img = args(2);
const Matrix cmap = args(3).xmatrix_value ("__magick_write__: invalid MAP");
std::vector<Magick::Image> imvec;
if (cmap.isempty ())
{
const octave_value alpha = options.getfield ("alpha");
if (img.islogical ())
encode_bool_image (imvec, img.bool_array_value ());
else if (img.is_uint8_type ())
encode_uint_image<uint8NDArray> (imvec, img.uint8_array_value (),
alpha.uint8_array_value ());
else if (img.is_uint16_type ())
encode_uint_image<uint16NDArray> (imvec, img.uint16_array_value (),
alpha.uint16_array_value ());
else if (img.is_uint32_type ())
encode_uint_image<uint32NDArray> (imvec, img.uint32_array_value (),
alpha.uint32_array_value ());
else if (img.isfloat ())
{
// For image formats that support floating point values, we write
// the actual values. For those who don't, we only use the values
// on the range [0 1] and save integer values.
// But here, even for formats that would support floating point
// values, GM seems unable to do that so we at least make them uint32.
uint32NDArray clip_img;
uint32NDArray clip_alpha;
if (img.is_single_type ())
{
clip_img = img_float2uint<FloatNDArray>
(img.float_array_value ());
clip_alpha = img_float2uint<FloatNDArray>
(alpha.float_array_value ());
}
else
{
clip_img = img_float2uint<NDArray> (img.array_value ());
clip_alpha = img_float2uint<NDArray> (alpha.array_value ());
}
encode_uint_image<uint32NDArray> (imvec, clip_img, clip_alpha);
}
else
error ("__magick_write__: image type not supported");
}
else
{
// We should not get floating point indexed images here because we
// converted them in __imwrite__.m. We should probably do it here
// but it would look much messier.
if (img.is_uint8_type ())
encode_indexed_images<uint8NDArray> (imvec, img.uint8_array_value (),
cmap);
else if (img.is_uint16_type ())
encode_indexed_images<uint16NDArray> (imvec, img.uint16_array_value (),
cmap);
else
error ("__magick_write__: indexed image must be uint8, uint16 or float.");
}
static std::map<std::string, octave_idx_type> disposal_methods
= init_reverse_disposal_methods ();
const octave_idx_type nFrames = imvec.size ();
const octave_idx_type quality = options.getfield ("quality").int_value ();
const ColumnVector delaytime
= options.getfield ("delaytime").column_vector_value ();
const Array<std::string> disposalmethod
= options.getfield ("disposalmethod").cellstr_value ();
for (octave_idx_type i = 0; i < nFrames; i++)
{
imvec[i].quality (quality);
imvec[i].animationDelay (delaytime(i));
imvec[i].gifDisposeMethod (disposal_methods[disposalmethod(i)]);
}
// If writemode is set to append, read the image and append to it. Even
// if set to append, make sure that something was read at all.
const std::string writemode = options.getfield ("writemode").string_value ();
if (writemode == "append" && octave::sys::file_stat (filename).exists ())
{
std::vector<Magick::Image> ini_imvec;
read_file (filename, ini_imvec);
if (ini_imvec.size () > 0)
{
ini_imvec.insert (ini_imvec.end (), imvec.begin (), imvec.end ());
ini_imvec.swap (imvec);
}
}
// FIXME: LoopCount or animationIterations
// How it should work:
//
// This value is only set for the first image in the sequence. Trying
// to set this value with the append mode should have no effect, the
// value used with the first image is the one that counts (that would
// also be Matlab compatible). Thus, the right way to do this would be
// to have an else block on the condition above, and set this only
// when creating a new file. Since Matlab does not interpret a 4D
// matrix as sequence of images to write, its users need to use a for
// loop and set LoopCount only on the first iteration (it actually
// throws warnings otherwise)
//
// Why is this not done the right way:
//
// When GM saves a single image, it discards the value if there is only
// a single image and sets it to "no loop". Since our default is an
// infinite loop, if the user tries to do it the Matlab way (setting
// LoopCount only on the first image) that value will go nowhere.
// See https://sourceforge.net/p/graphicsmagick/bugs/248/
// Because of this, we document to set LoopCount on every iteration
// (in Matlab will cause a lot of warnings), or pass a 4D matrix with
// all frames (won't work in Matlab at all).
// Note that this only needs to be set on the first frame
imvec[0].animationIterations (options.getfield ("loopcount").uint_value ());
const std::string compression
= options.getfield ("compression").string_value ();
#define COMPRESS_MAGICK_IMAGE_VECTOR(GM_TYPE) \
for (std::vector<Magick::Image>::size_type i = 0; i < imvec.size (); i++) \
imvec[i].compressType (GM_TYPE)
if (compression == "none")
COMPRESS_MAGICK_IMAGE_VECTOR (Magick::NoCompression);
else if (compression == "bzip")
COMPRESS_MAGICK_IMAGE_VECTOR (Magick::BZipCompression);
else if (compression == "fax3")
COMPRESS_MAGICK_IMAGE_VECTOR (Magick::FaxCompression);
else if (compression == "fax4")
COMPRESS_MAGICK_IMAGE_VECTOR (Magick::Group4Compression);
else if (compression == "jpeg")
COMPRESS_MAGICK_IMAGE_VECTOR (Magick::JPEGCompression);
else if (compression == "lzw")
COMPRESS_MAGICK_IMAGE_VECTOR (Magick::LZWCompression);
else if (compression == "rle")
COMPRESS_MAGICK_IMAGE_VECTOR (Magick::RLECompression);
else if (compression == "deflate")
COMPRESS_MAGICK_IMAGE_VECTOR (Magick::ZipCompression);
#undef COMPRESS_MAGICK_IMAGE_VECTOR
write_file (filename, ext, imvec);
return ovl ();
#else
octave_unused_parameter (args);
err_disabled_feature ("imwrite", "Image IO");
#endif
}
/*
## No test needed for internal helper function.
%!assert (1)
*/
// Gets the minimum information from images such as its size and format. Much
// faster than using imfinfo, which slows down a lot since. Note than without
// this, we need to read the image once for imfinfo to set defaults (which is
// done in Octave language), and then again for the actual reading.
DEFUN (__magick_ping__, args, ,
doc: /* -*- texinfo -*-
@deftypefn {} {} __magick_ping__ (@var{fname}, @var{idx})
Ping image information with GraphicsMagick or ImageMagick.
This is a private internal function not intended for direct use.
@seealso{imfinfo}
@end deftypefn */)
{
#if defined (HAVE_MAGICK)
if (args.length () < 1 || ! args(0).is_string ())
print_usage ();
maybe_initialize_magick ();
const std::string filename = args(0).string_value ();
int idx;
if (args.length () > 1)
idx = args(1).int_value () -1;
else
idx = 0;
Magick::Image img;
img.subImage (idx); // start ping from this image (in case of multi-page)
img.subRange (1); // ping only one of them
try
{
img.ping (filename);
}
catch (Magick::Warning& w)
{
warning ("Magick++ warning: %s", w.what ());
}
catch (Magick::Exception& e)
{
error ("Magick++ exception: %s", e.what ());
}
static const char *fields[] = {"rows", "columns", "format", nullptr};
octave_scalar_map ping = octave_scalar_map (string_vector (fields));
ping.setfield ("rows", octave_value (img.rows ()));
ping.setfield ("columns", octave_value (img.columns ()));
ping.setfield ("format", octave_value (img.magick ()));
return ovl (ping);
#else
octave_unused_parameter (args);
err_disabled_feature ("imfinfo", "Image IO");
#endif
}
#if defined (HAVE_MAGICK)
static octave_value
magick_to_octave_value (const Magick::CompressionType& magick)
{
switch (magick)
{
case Magick::NoCompression:
return octave_value ("none");
case Magick::BZipCompression:
return octave_value ("bzip");
case Magick::FaxCompression:
return octave_value ("fax3");
case Magick::Group4Compression:
return octave_value ("fax4");
case Magick::JPEGCompression:
return octave_value ("jpeg");
case Magick::LZWCompression:
return octave_value ("lzw");
case Magick::RLECompression:
// This is named "rle" for the HDF, but the same thing is named
// "ccitt" and "PackBits" for binary and non-binary images in TIFF.
return octave_value ("rle");
case Magick::ZipCompression:
return octave_value ("deflate");
// The following are present only in recent versions of GraphicsMagick.
// At the moment the only use of this would be to have imfinfo report
// the compression method. In the future, someone could implement
// the Compression option for imwrite in which case a macro in
// configure.ac will have to check for their presence of this.
// See bug #39913
// case Magick::LZMACompression:
// return octave_value ("lzma");
// case Magick::JPEG2000Compression:
// return octave_value ("jpeg2000");
// case Magick::JBIG1Compression:
// return octave_value ("jbig1");
// case Magick::JBIG2Compression:
// return octave_value ("jbig2");
default:
return octave_value ("undefined");
}
}
static octave_value
magick_to_octave_value (const Magick::EndianType& magick)
{
switch (magick)
{
case Magick::LSBEndian:
return octave_value ("little-endian");
case Magick::MSBEndian:
return octave_value ("big-endian");
default:
return octave_value ("undefined");
}
}
static octave_value
magick_to_octave_value (const Magick::OrientationType& magick)
{
switch (magick)
{
// Values come from the TIFF6 spec
case Magick::TopLeftOrientation:
return octave_value (1);
case Magick::TopRightOrientation:
return octave_value (2);
case Magick::BottomRightOrientation:
return octave_value (3);
case Magick::BottomLeftOrientation:
return octave_value (4);
case Magick::LeftTopOrientation:
return octave_value (5);
case Magick::RightTopOrientation:
return octave_value (6);
case Magick::RightBottomOrientation:
return octave_value (7);
case Magick::LeftBottomOrientation:
return octave_value (8);
default:
return octave_value (1);
}
}
static octave_value
magick_to_octave_value (const Magick::ResolutionType& magick)
{
switch (magick)
{
case Magick::PixelsPerInchResolution:
return octave_value ("Inch");
case Magick::PixelsPerCentimeterResolution:
return octave_value ("Centimeter");
default:
return octave_value ("undefined");
}
}
static bool
is_valid_exif (const std::string& val)
{
// Sometimes GM will return the string "unknown" instead of empty
// for an empty value.
return (! val.empty () && val != "unknown");
}
static void
fill_exif (octave_scalar_map& map, Magick::Image& img,
const std::string& key)
{
const std::string attr = img.attribute ("EXIF:" + key);
if (is_valid_exif (attr))
map.setfield (key, octave_value (attr));
return;
}
static void
fill_exif_ints (octave_scalar_map& map, Magick::Image& img,
const std::string& key)
{
const std::string attr = img.attribute ("EXIF:" + key);
if (is_valid_exif (attr))
{
// string of the type "float,float,float....."
float number;
ColumnVector values (std::count (attr.begin (), attr.end (), ',') +1);
std::string sub;
std::istringstream sstream (attr);
octave_idx_type n = 0;
while (std::getline (sstream, sub, char (',')))
{
sscanf (sub.c_str (), "%f", &number);
values(n++) = number;
}
map.setfield (key, octave_value (values));
}
return;
}
static void
fill_exif_floats (octave_scalar_map& map, Magick::Image& img,
const std::string& key)
{
const std::string attr = img.attribute ("EXIF:" + key);
if (is_valid_exif (attr))
{
// string of the type "int/int,int/int,int/int....."
int numerator;
int denominator;
ColumnVector values (std::count (attr.begin (), attr.end (), ',') +1);
std::string sub;
std::istringstream sstream (attr);
octave_idx_type n = 0;
while (std::getline (sstream, sub, ','))
{
sscanf (sub.c_str (), "%i/%i", &numerator, &denominator);
values(n++) = double (numerator) / double (denominator);
}
map.setfield (key, octave_value (values));
}
return;
}
#endif
DEFUN (__magick_finfo__, args, ,
doc: /* -*- texinfo -*-
@deftypefn {} {} __magick_finfo__ (@var{fname})
Read image information with GraphicsMagick or ImageMagick.
This is a private internal function not intended for direct use.
Use @code{imfinfo} instead.
@seealso{imfinfo, imformats, imread, imwrite}
@end deftypefn */)
{
#if defined (HAVE_MAGICK)
if (args.length () < 1 || ! args(0).is_string ())
print_usage ();
maybe_initialize_magick ();
const std::string filename = args(0).string_value ();
std::vector<Magick::Image> imvec;
read_file (filename, imvec);
const octave_idx_type nFrames = imvec.size ();
const std::string format = imvec[0].magick ();
// Here's how this function works. We need to return a struct array, one
// struct for each image in the file (remember, there are image
// that allow for multiple images in the same file). Now, Matlab seems
// to have format specific code so the fields on the struct are different
// for each format. It only has a small subset that is common to all
// of them, the others are undocumented. Because we try to abstract from
// the formats we always return the same list of fields (note that with
// GM we support more than 88 formats. That's way more than Matlab, and
// I don't want to write specific code for each of them).
//
// So what we do is we create an octave_scalar_map, fill it with the
// information for that image, and then insert it into an octave_map.
// Because in the same file, different images may have values for
// different fields, we can't create a field only if there's a value.
// Bad things happen if we merge octave_scalar_maps with different
// fields from the others (suppose for example a TIFF file with 4 images,
// where only the third image has a colormap.
static const char *fields[] =
{
// These are fields that must always appear for Matlab.
"Filename",
"FileModDate",
"FileSize",
"Format",
"FormatVersion",
"Width",
"Height",
"BitDepth",
"ColorType",
// These are format specific or not existent in Matlab. The most
// annoying thing is that Matlab may have different names for the
// same thing in different formats.
"DelayTime",
"DisposalMethod",
"LoopCount",
"ByteOrder",
"Gamma",
"Chromaticities",
"Comment",
"Quality",
"Compression", // same as CompressionType
"Colormap", // same as ColorTable (in PNG)
"Orientation",
"ResolutionUnit",
"XResolution",
"YResolution",
"Software", // sometimes is an Exif tag
"Make", // actually an Exif tag
"Model", // actually an Exif tag
"DateTime", // actually an Exif tag
"ImageDescription", // actually an Exif tag
"Artist", // actually an Exif tag
"Copyright", // actually an Exif tag
"DigitalCamera",
"GPSInfo",
// Notes for the future: GM allows one to get many attributes, and even has
// attribute() to obtain arbitrary ones, that may exist in only some
// cases. The following is a list of some methods and into what possible
// Matlab compatible values they may be converted.
//
// colorSpace() -> PhotometricInterpretation
// backgroundColor() -> BackgroundColor
// interlaceType() -> Interlaced, InterlaceType, and PlanarConfiguration
// label() -> Title
nullptr
};
// The one we will return at the end
octave_map info (dim_vector (nFrames, 1), string_vector (fields));
// Some of the fields in the struct are about file information and will be
// the same for all images in the file. So we create a template, fill in
// those values, and make a copy of the template for each image.
octave_scalar_map template_info = (string_vector (fields));
template_info.setfield ("Format", octave_value (format));
// We can't actually get FormatVersion but even Matlab sometimes can't.
template_info.setfield ("FormatVersion", octave_value (""));
const octave::sys::file_stat fs (filename);
if (! fs)
error ("imfinfo: error reading '%s': %s", filename.c_str (),
fs.error ().c_str ());
const octave::sys::localtime mtime (fs.mtime ());
const std::string filetime = mtime.strftime ("%e-%b-%Y %H:%M:%S");
template_info.setfield ("Filename", octave_value (filename));
template_info.setfield ("FileModDate", octave_value (filetime));
template_info.setfield ("FileSize", octave_value (fs.size ()));
for (octave_idx_type frame = 0; frame < nFrames; frame++)
{
octave_quit ();
octave_scalar_map info_frame (template_info);
const Magick::Image img = imvec[frame];
info_frame.setfield ("Width", octave_value (img.columns ()));
info_frame.setfield ("Height", octave_value (img.rows ()));
info_frame.setfield ("BitDepth",
octave_value (get_depth (const_cast<Magick::Image&> (img))));
// Stuff related to colormap, image class and type
// Because GM is too smart for us... Read the comments in is_indexed()
{
std::string color_type;
Matrix cmap;
if (is_indexed (img))
{
color_type = "indexed";
cmap = read_maps (const_cast<Magick::Image&> (img))(0).matrix_value ();
}
else
{
switch (img.type ())
{
case Magick::BilevelType:
case Magick::GrayscaleType:
case Magick::GrayscaleMatteType:
color_type = "grayscale";
break;
case Magick::TrueColorType:
case Magick::TrueColorMatteType:
color_type = "truecolor";
break;
case Magick::PaletteType:
case Magick::PaletteMatteType:
// we should never get here or is_indexed needs to be fixed
color_type = "indexed";
break;
case Magick::ColorSeparationType:
case Magick::ColorSeparationMatteType:
color_type = "CMYK";
break;
default:
color_type = "undefined";
}
}
info_frame.setfield ("ColorType", octave_value (color_type));
info_frame.setfield ("Colormap", octave_value (cmap));
}
{
// Not all images have chroma values. In such cases, they'll
// be all zeros. So rather than send a matrix of zeros, we will
// check for that, and send an empty vector instead.
RowVector chromaticities (8);
double *chroma_fvec = chromaticities.fortran_vec ();
img.chromaWhitePoint (&chroma_fvec[0], &chroma_fvec[1]);
img.chromaRedPrimary (&chroma_fvec[2], &chroma_fvec[3]);
img.chromaGreenPrimary (&chroma_fvec[4], &chroma_fvec[5]);
img.chromaBluePrimary (&chroma_fvec[6], &chroma_fvec[7]);
if (chromaticities.nnz () == 0)
chromaticities = RowVector (0);
info_frame.setfield ("Chromaticities", octave_value (chromaticities));
}
info_frame.setfield ("Gamma", octave_value (img.gamma ()));
info_frame.setfield ("XResolution", octave_value (img.xResolution ()));
info_frame.setfield ("YResolution", octave_value (img.yResolution ()));
info_frame.setfield ("DelayTime", octave_value (img.animationDelay ()));
info_frame.setfield ("LoopCount",
octave_value (img.animationIterations ()));
info_frame.setfield ("Quality", octave_value (img.quality ()));
info_frame.setfield ("Comment", octave_value (img.comment ()));
info_frame.setfield ("Compression",
magick_to_octave_value (img.compressType ()));
info_frame.setfield ("Orientation",
magick_to_octave_value (img.orientation ()));
info_frame.setfield ("ResolutionUnit",
magick_to_octave_value (img.resolutionUnits ()));
info_frame.setfield ("ByteOrder",
magick_to_octave_value (img.endian ()));
// It is not possible to know if there's an Exif field so we just
// check for the Exif Version value. If it does exists, then we
// bother about looking for specific fields.
{
Magick::Image& cimg = const_cast<Magick::Image&> (img);
// These will be in Exif tags but must appear as fields in the
// base struct array, not as another struct in one of its fields.
// This is likely because they belong to the Baseline TIFF specs
// and may appear out of the Exif tag. So first we check if it
// exists outside the Exif tag.
// See Section 4.6.4, table 4, page 28 of Exif specs version 2.3
// (CIPA DC- 008-Translation- 2010)
static const char *base_exif_str_fields[] =
{
"DateTime",
"ImageDescription",
"Make",
"Model",
"Software",
"Artist",
"Copyright",
nullptr,
};
static const string_vector base_exif_str (base_exif_str_fields);
static const octave_idx_type n_base_exif_str = base_exif_str.numel ();
for (octave_idx_type field = 0; field < n_base_exif_str; field++)
{
info_frame.setfield (base_exif_str[field],
octave_value (cimg.attribute (base_exif_str[field])));
fill_exif (info_frame, cimg, base_exif_str[field]);
}
octave_scalar_map camera;
octave_scalar_map gps;
if (! cimg.attribute ("EXIF:ExifVersion").empty ())
{
// See Section 4.6.5, table 7 and 8, over pages page 42 to 43
// of Exif specs version 2.3 (CIPA DC- 008-Translation- 2010)
// Listed on the Exif specs as being of type ASCII.
static const char *exif_str_fields[] =
{
"RelatedSoundFile",
"DateTimeOriginal",
"DateTimeDigitized",
"SubSecTime",
"DateTimeOriginal",
"SubSecTimeOriginal",
"SubSecTimeDigitized",
"ImageUniqueID",
"CameraOwnerName",
"BodySerialNumber",
"LensMake",
"LensModel",
"LensSerialNumber",
"SpectralSensitivity",
// These last two are of type undefined but most likely will
// be strings. Even if they're not GM returns a string anyway.
"UserComment",
"MakerComment",
nullptr
};
static const string_vector exif_str (exif_str_fields);
static const octave_idx_type n_exif_str = exif_str.numel ();
for (octave_idx_type field = 0; field < n_exif_str; field++)
fill_exif (camera, cimg, exif_str[field]);
// Listed on the Exif specs as being of type SHORT or LONG.
static const char *exif_int_fields[] =
{
"ColorSpace",
"ExifImageWidth", // PixelXDimension (CPixelXDimension in Matlab)
"ExifImageHeight", // PixelYDimension (CPixelYDimension in Matlab)
"PhotographicSensitivity",
"StandardOutputSensitivity",
"RecommendedExposureIndex",
"ISOSpeed",
"ISOSpeedLatitudeyyy",
"ISOSpeedLatitudezzz",
"FocalPlaneResolutionUnit",
"FocalLengthIn35mmFilm",
// Listed as SHORT or LONG but with more than 1 count.
"SubjectArea",
"SubjectLocation",
// While the following are an integer, their value have a meaning
// that must be represented as a string for Matlab compatibility.
// For example, a 3 on ExposureProgram, would return
// "Aperture priority" as defined on the Exif specs.
"ExposureProgram",
"SensitivityType",
"MeteringMode",
"LightSource",
"Flash",
"SensingMethod",
"FileSource",
"CustomRendered",
"ExposureMode",
"WhiteBalance",
"SceneCaptureType",
"GainControl",
"Contrast",
"Saturation",
"Sharpness",
"SubjectDistanceRange",
nullptr
};
static const string_vector exif_int (exif_int_fields);
static const octave_idx_type n_exif_int = exif_int.numel ();
for (octave_idx_type field = 0; field < n_exif_int; field++)
fill_exif_ints (camera, cimg, exif_int[field]);
// Listed as RATIONAL or SRATIONAL
static const char *exif_float_fields[] =
{
"Gamma",
"CompressedBitsPerPixel",
"ExposureTime",
"FNumber",
"ShutterSpeedValue", // SRATIONAL
"ApertureValue",
"BrightnessValue", // SRATIONAL
"ExposureBiasValue", // SRATIONAL
"MaxApertureValue",
"SubjectDistance",
"FocalLength",
"FlashEnergy",
"FocalPlaneXResolution",
"FocalPlaneYResolution",
"ExposureIndex",
"DigitalZoomRatio",
// Listed as RATIONAL or SRATIONAL with more than 1 count.
"LensSpecification",
nullptr
};
static const string_vector exif_float (exif_float_fields);
static const octave_idx_type n_exif_float = exif_float.numel ();
for (octave_idx_type field = 0; field < n_exif_float; field++)
fill_exif_floats (camera, cimg, exif_float[field]);
// Inside a Exif field, it is possible that there is also a
// GPS field. This is not the same as ExifVersion but seems
// to be how we have to check for it.
if (cimg.attribute ("EXIF:GPSInfo") != "unknown")
{
// The story here is the same as with Exif.
// See Section 4.6.6, table 15 on page 68 of Exif specs
// version 2.3 (CIPA DC- 008-Translation- 2010)
static const char *gps_str_fields[] =
{
"GPSLatitudeRef",
"GPSLongitudeRef",
"GPSAltitudeRef",
"GPSSatellites",
"GPSStatus",
"GPSMeasureMode",
"GPSSpeedRef",
"GPSTrackRef",
"GPSImgDirectionRef",
"GPSMapDatum",
"GPSDestLatitudeRef",
"GPSDestLongitudeRef",
"GPSDestBearingRef",
"GPSDestDistanceRef",
"GPSDateStamp",
nullptr
};
static const string_vector gps_str (gps_str_fields);
static const octave_idx_type n_gps_str = gps_str.numel ();
for (octave_idx_type field = 0; field < n_gps_str; field++)
fill_exif (gps, cimg, gps_str[field]);
static const char *gps_int_fields[] =
{
"GPSDifferential",
nullptr
};
static const string_vector gps_int (gps_int_fields);
static const octave_idx_type n_gps_int = gps_int.numel ();
for (octave_idx_type field = 0; field < n_gps_int; field++)
fill_exif_ints (gps, cimg, gps_int[field]);
static const char *gps_float_fields[] =
{
"GPSAltitude",
"GPSDOP",
"GPSSpeed",
"GPSTrack",
"GPSImgDirection",
"GPSDestBearing",
"GPSDestDistance",
"GPSHPositioningError",
// Listed as RATIONAL or SRATIONAL with more than 1 count.
"GPSLatitude",
"GPSLongitude",
"GPSTimeStamp",
"GPSDestLatitude",
"GPSDestLongitude",
nullptr
};
static const string_vector gps_float (gps_float_fields);
static const octave_idx_type n_gps_float = gps_float.numel ();
for (octave_idx_type field = 0; field < n_gps_float; field++)
fill_exif_floats (gps, cimg, gps_float[field]);
}
}
info_frame.setfield ("DigitalCamera", octave_value (camera));
info_frame.setfield ("GPSInfo", octave_value (gps));
}
info.fast_elem_insert (frame, info_frame);
}
if (format == "GIF")
{
static std::map<octave_idx_type, std::string> disposal_methods
= init_disposal_methods ();
string_vector methods (nFrames);
for (octave_idx_type frame = 0; frame < nFrames; frame++)
methods[frame] = disposal_methods[imvec[frame].gifDisposeMethod ()];
info.setfield ("DisposalMethod", Cell (methods));
}
else
info.setfield ("DisposalMethod",
Cell (dim_vector (nFrames, 1), octave_value ("")));
return ovl (info);
#else
octave_unused_parameter (args);
err_disabled_feature ("imfinfo", "Image IO");
#endif
}
/*
## No test needed for internal helper function.
%!assert (1)
*/
DEFUN (__magick_formats__, args, ,
doc: /* -*- texinfo -*-
@deftypefn {} {} __magick_imformats__ (@var{formats})
Fill formats info with GraphicsMagick CoderInfo.
@seealso{imfinfo, imformats, imread, imwrite}
@end deftypefn */)
{
if (args.length () != 1 || ! args(0).isstruct ())
print_usage ();
octave_map formats = args(0).map_value ();
#if defined (HAVE_MAGICK)
maybe_initialize_magick ();
for (octave_idx_type idx = 0; idx < formats.numel (); idx++)
{
try
{
octave_scalar_map fmt = formats.checkelem (idx);
Magick::CoderInfo coder (fmt.getfield ("coder").string_value ());
fmt.setfield ("description", octave_value (coder.description ()));
fmt.setfield ("multipage", coder.isMultiFrame () ? true : false);
// default for read and write is a function handle. If we can't
// read or write them, them set it to an empty value
if (! coder.isReadable ())
fmt.setfield ("read", Matrix ());
if (! coder.isWritable ())
fmt.setfield ("write", Matrix ());
formats.fast_elem_insert (idx, fmt);
}
catch (Magick::Exception& e)
{
// Exception here are missing formats. So we remove the format
// from the structure and reduce idx.
formats.delete_elements (idx);
idx--;
}
}
#else
formats = octave_map (dim_vector (1, 0), formats.fieldnames ());
#endif
return ovl (formats);
}
/*
## No test needed for internal helper function.
%!assert (1)
*/
|