File: amd.cc

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (202 lines) | stat: -rw-r--r-- 6,036 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2008-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

// This is the octave interface to amd, which bore the copyright given
// in the help of the functions.

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <cstdlib>

#include "CSparse.h"
#include "Sparse.h"
#include "dMatrix.h"
#include "oct-locbuf.h"
#include "oct-sparse.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "oct-map.h"
#include "ov.h"
#include "ovl.h"
#include "parse.h"

DEFUN (amd, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{p} =} amd (@var{S})
@deftypefnx {} {@var{p} =} amd (@var{S}, @var{opts})

Return the approximate minimum degree permutation of a matrix.

This is a permutation such that the Cholesky@tie{}factorization of
@code{@var{S} (@var{p}, @var{p})} tends to be sparser than the
Cholesky@tie{}factorization of @var{S} itself.  @code{amd} is typically
faster than @code{symamd} but serves a similar purpose.

The optional parameter @var{opts} is a structure that controls the behavior
of @code{amd}.  The fields of the structure are

@table @asis
@item @var{opts}.dense
Determines what @code{amd} considers to be a dense row or column of the
input matrix.  Rows or columns with more than @code{max (16, (dense *
sqrt (@var{n})))} entries, where @var{n} is the order of the matrix @var{S},
are ignored by @code{amd} during the calculation of the permutation.
The value of dense must be a positive scalar and the default value is 10.0

@item @var{opts}.aggressive
If this value is a nonzero scalar, then @code{amd} performs aggressive
absorption.  The default is not to perform aggressive absorption.
@end table

The author of the code itself is Timothy A. Davis
(see @url{http://faculty.cse.tamu.edu/davis/suitesparse.html}).
@seealso{symamd, colamd}
@end deftypefn */)
{
#if defined (HAVE_AMD)

  int nargin = args.length ();

  if (nargin < 1 || nargin > 2)
    print_usage ();

  octave_idx_type n_row, n_col;
  const octave::suitesparse_integer *ridx, *cidx;
  SparseMatrix sm;
  SparseComplexMatrix scm;

  if (args(0).issparse ())
    {
      if (args(0).iscomplex ())
        {
          scm = args(0).sparse_complex_matrix_value ();
          n_row = scm.rows ();
          n_col = scm.cols ();
          ridx = octave::to_suitesparse_intptr (scm.xridx ());
          cidx = octave::to_suitesparse_intptr (scm.xcidx ());
        }
      else
        {
          sm = args(0).sparse_matrix_value ();
          n_row = sm.rows ();
          n_col = sm.cols ();
          ridx = octave::to_suitesparse_intptr (sm.xridx ());
          cidx = octave::to_suitesparse_intptr (sm.xcidx ());
        }
    }
  else
    {
      if (args(0).iscomplex ())
        sm = SparseMatrix (real (args(0).complex_matrix_value ()));
      else
        sm = SparseMatrix (args(0).matrix_value ());

      n_row = sm.rows ();
      n_col = sm.cols ();
      ridx = octave::to_suitesparse_intptr (sm.xridx ());
      cidx = octave::to_suitesparse_intptr (sm.xcidx ());
    }

  if (n_row != n_col)
    err_square_matrix_required ("amd", "S");

  OCTAVE_LOCAL_BUFFER (double, Control, AMD_CONTROL);
  AMD_NAME (_defaults) (Control);
  if (nargin > 1)
    {
      octave_scalar_map arg1 = args(1).xscalar_map_value ("amd: OPTS argument must be a scalar structure");

      octave_value tmp;

      tmp = arg1.getfield ("dense");
      if (tmp.is_defined ())
        Control[AMD_DENSE] = tmp.double_value ();

      tmp = arg1.getfield ("aggressive");
      if (tmp.is_defined ())
        Control[AMD_AGGRESSIVE] = tmp.double_value ();
    }

  OCTAVE_LOCAL_BUFFER (octave::suitesparse_integer, P, n_col);
  Matrix xinfo (AMD_INFO, 1);
  double *Info = xinfo.fortran_vec ();

  // FIXME: how can we manage the memory allocation of amd
  //        in a cleaner manner?
  SUITESPARSE_ASSIGN_FPTR (malloc_func, amd_malloc, malloc);
  SUITESPARSE_ASSIGN_FPTR (free_func, amd_free, free);
  SUITESPARSE_ASSIGN_FPTR (calloc_func, amd_calloc, calloc);
  SUITESPARSE_ASSIGN_FPTR (realloc_func, amd_realloc, realloc);
  SUITESPARSE_ASSIGN_FPTR (printf_func, amd_printf, printf);

  octave_idx_type result = AMD_NAME (_order) (n_col, cidx, ridx, P, Control,
                                              Info);

  if (result == AMD_OUT_OF_MEMORY)
    error ("amd: out of memory");
  else if (result == AMD_INVALID)
    error ("amd: matrix S is corrupted");

  Matrix Pout (1, n_col);
  for (octave_idx_type i = 0; i < n_col; i++)
    Pout.xelem (i) = P[i] + 1;

  if (nargout > 1)
    return ovl (Pout, xinfo);
  else
    return ovl (Pout);

#else

  octave_unused_parameter (args);
  octave_unused_parameter (nargout);

  err_disabled_feature ("amd", "AMD");

#endif
}

/*
%!shared A, A2, opts
%! A = ones (20, 30);
%! A2 = ones (30, 30);

%!testif HAVE_AMD
%! assert(amd (A2), [1:30]);
%! opts.dense = 25;
%! assert(amd (A2, opts), [1:30]);
%! opts.aggressive = 1;
%! assert(amd (A2, opts), [1:30]);

%!testif HAVE_AMD
%! assert (amd ([]), zeros (1,0))

%!error <S must be a square matrix|was unavailable or disabled> amd (A)
%!error amd (A2, 2)
*/