1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
#if defined (HAVE_CONFIG_H)
# include "config.h"
#endif
#include <list>
#include <string>
#include "DASPK.h"
#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "interpreter-private.h"
#include "ovl.h"
#include "ov-fcn.h"
#include "ov-cell.h"
#include "pager.h"
#include "parse.h"
#include "unwind-prot.h"
#include "utils.h"
#include "variables.h"
#include "DASPK-opts.cc"
// Global pointer for user defined function required by daspk.
static octave_value daspk_fcn;
// Global pointer for optional user defined jacobian function.
static octave_value daspk_jac;
// Have we warned about imaginary values returned from user function?
static bool warned_fcn_imaginary = false;
static bool warned_jac_imaginary = false;
// Is this a recursive call?
static int call_depth = 0;
ColumnVector
daspk_user_function (const ColumnVector& x, const ColumnVector& xdot,
double t, octave_idx_type& ires)
{
ColumnVector retval;
assert (x.numel () == xdot.numel ());
octave_value_list args;
args(2) = t;
args(1) = xdot;
args(0) = x;
if (daspk_fcn.is_defined ())
{
octave_value_list tmp;
try
{
tmp = octave::feval (daspk_fcn, args, 1);
}
catch (octave::execution_exception& e)
{
err_user_supplied_eval (e, "daspk");
}
int tlen = tmp.length ();
if (tlen == 0 || ! tmp(0).is_defined ())
err_user_supplied_eval ("daspk");
if (! warned_fcn_imaginary && tmp(0).iscomplex ())
{
warning ("daspk: ignoring imaginary part returned from user-supplied function");
warned_fcn_imaginary = true;
}
retval = tmp(0).vector_value ();
if (tlen > 1)
ires = tmp(1).idx_type_value ();
if (retval.isempty ())
err_user_supplied_eval ("daspk");
}
return retval;
}
Matrix
daspk_user_jacobian (const ColumnVector& x, const ColumnVector& xdot,
double t, double cj)
{
Matrix retval;
assert (x.numel () == xdot.numel ());
octave_value_list args;
args(3) = cj;
args(2) = t;
args(1) = xdot;
args(0) = x;
if (daspk_jac.is_defined ())
{
octave_value_list tmp;
try
{
tmp = octave::feval (daspk_jac, args, 1);
}
catch (octave::execution_exception& e)
{
err_user_supplied_eval (e, "daspk");
}
int tlen = tmp.length ();
if (tlen == 0 || ! tmp(0).is_defined ())
err_user_supplied_eval ("daspk");
if (! warned_jac_imaginary && tmp(0).iscomplex ())
{
warning ("daspk: ignoring imaginary part returned from user-supplied jacobian function");
warned_jac_imaginary = true;
}
retval = tmp(0).matrix_value ();
if (retval.isempty ())
err_user_supplied_eval ("daspk");
}
return retval;
}
DEFMETHOD (daspk, interp, args, nargout,
doc: /* -*- texinfo -*-
@deftypefn {} {[@var{x}, @var{xdot}, @var{istate}, @var{msg}] =} daspk (@var{fcn}, @var{x_0}, @var{xdot_0}, @var{t}, @var{t_crit})
Solve a set of differential-algebraic equations.
@code{daspk} solves the set of equations
@tex
$$ 0 = f (x, \dot{x}, t) $$
with
$$ x(t_0) = x_0, \dot{x}(t_0) = \dot{x}_0 $$
@end tex
@ifnottex
@example
0 = f (x, xdot, t)
@end example
@noindent
with
@example
x(t_0) = x_0, xdot(t_0) = xdot_0
@end example
@end ifnottex
The solution is returned in the matrices @var{x} and @var{xdot},
with each row in the result matrices corresponding to one of the
elements in the vector @var{t}. The first element of @var{t}
should be @math{t_0} and correspond to the initial state of the
system @var{x_0} and its derivative @var{xdot_0}, so that the first
row of the output @var{x} is @var{x_0} and the first row
of the output @var{xdot} is @var{xdot_0}.
The first argument, @var{fcn}, is a string, inline, or function handle
that names the function @math{f} to call to compute the vector of
residuals for the set of equations. It must have the form
@example
@var{res} = f (@var{x}, @var{xdot}, @var{t})
@end example
@noindent
in which @var{x}, @var{xdot}, and @var{res} are vectors, and @var{t} is a
scalar.
If @var{fcn} is a two-element string array or a two-element cell array
of strings, inline functions, or function handles, the first element names
the function @math{f} described above, and the second element names a
function to compute the modified Jacobian
@tex
$$
J = {\partial f \over \partial x}
+ c {\partial f \over \partial \dot{x}}
$$
@end tex
@ifnottex
@example
@group
df df
jac = -- + c ------
dx d xdot
@end group
@end example
@end ifnottex
The modified Jacobian function must have the form
@example
@group
@var{jac} = j (@var{x}, @var{xdot}, @var{t}, @var{c})
@end group
@end example
The second and third arguments to @code{daspk} specify the initial
condition of the states and their derivatives, and the fourth argument
specifies a vector of output times at which the solution is desired,
including the time corresponding to the initial condition.
The set of initial states and derivatives are not strictly required to
be consistent. If they are not consistent, you must use the
@code{daspk_options} function to provide additional information so
that @code{daspk} can compute a consistent starting point.
The fifth argument is optional, and may be used to specify a set of
times that the DAE solver should not integrate past. It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.
After a successful computation, the value of @var{istate} will be
greater than zero (consistent with the Fortran version of @sc{daspk}).
If the computation is not successful, the value of @var{istate} will be
less than zero and @var{msg} will contain additional information.
You can use the function @code{daspk_options} to set optional
parameters for @code{daspk}.
@seealso{dassl}
@end deftypefn */)
{
int nargin = args.length ();
if (nargin < 4 || nargin > 5)
print_usage ();
warned_fcn_imaginary = false;
warned_jac_imaginary = false;
octave_value_list retval (4);
octave::unwind_protect frame;
frame.protect_var (call_depth);
call_depth++;
if (call_depth > 1)
error ("daspk: invalid recursive call");
std::string fcn_name, fname, jac_name, jname;
daspk_fcn = octave_value ();
daspk_jac = octave_value ();
octave_value f_arg = args(0);
std::list<std::string> fcn_param_names ({"x", "xdot", "t"});
std::list<std::string> jac_param_names ({"x", "xdot", "t", "cj"});
if (f_arg.iscell ())
{
Cell c = f_arg.cell_value ();
if (c.numel () == 1)
f_arg = c(0);
else if (c.numel () == 2)
{
daspk_fcn = octave::get_function_handle (interp, c(0),
fcn_param_names);
if (daspk_fcn.is_defined ())
{
daspk_jac = octave::get_function_handle (interp, c(1),
jac_param_names);
if (daspk_jac.is_undefined ())
daspk_fcn = octave_value ();
}
}
else
error ("daspk: incorrect number of elements in cell array");
}
if (daspk_fcn.is_undefined () && ! f_arg.iscell ())
{
if (f_arg.is_function_handle () || f_arg.is_inline_function ())
daspk_fcn = f_arg;
else
{
switch (f_arg.rows ())
{
case 1:
daspk_fcn = octave::get_function_handle (interp, f_arg,
fcn_param_names);
break;
case 2:
{
string_vector tmp = f_arg.string_vector_value ();
daspk_fcn = octave::get_function_handle (interp, tmp(0),
fcn_param_names);
if (daspk_fcn.is_defined ())
{
daspk_jac = octave::get_function_handle (interp, tmp(1),
jac_param_names);
if (daspk_jac.is_undefined ())
daspk_fcn = octave_value ();
}
}
break;
default:
error ("daspk: first arg should be a string or 2-element string array");
}
}
}
if (daspk_fcn.is_undefined ())
error ("daspk: FCN argument is not a valid function name or handle");
ColumnVector state = args(1).xvector_value ("daspk: initial state X_0 must be a vector");
ColumnVector deriv = args(2).xvector_value ("daspk: initial derivatives XDOT_0 must be a vector");
ColumnVector out_times = args(3).xvector_value ("daspk: output time variable T must be a vector");
ColumnVector crit_times;
int crit_times_set = 0;
if (nargin > 4)
{
crit_times = args(4).xvector_value ("daspk: list of critical times T_CRIT must be a vector");
crit_times_set = 1;
}
if (state.numel () != deriv.numel ())
error ("daspk: X_0 and XDOT_0 must have the same size");
double tzero = out_times (0);
DAEFunc func (daspk_user_function);
if (daspk_jac.is_defined ())
func.set_jacobian_function (daspk_user_jacobian);
DASPK dae (state, deriv, tzero, func);
dae.set_options (daspk_opts);
Matrix output;
Matrix deriv_output;
if (crit_times_set)
output = dae.integrate (out_times, deriv_output, crit_times);
else
output = dae.integrate (out_times, deriv_output);
std::string msg = dae.error_message ();
if (dae.integration_ok ())
{
retval(0) = output;
retval(1) = deriv_output;
}
else
{
if (nargout < 3)
error ("daspk: %s", msg.c_str ());
retval(0) = Matrix ();
retval(1) = Matrix ();
}
retval(2) = static_cast<double> (dae.integration_state ());
retval(3) = msg;
return retval;
}
|