File: fft.cc

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (313 lines) | stat: -rw-r--r-- 8,846 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "lo-mappers.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "utils.h"

static octave_value
do_fft (const octave_value_list& args, const char *fcn, int type)
{
  int nargin = args.length ();

  if (nargin < 1 || nargin > 3)
    print_usage ();

  octave_value retval;
  octave_value arg = args(0);
  octave_idx_type n_points = -1;
  dim_vector dims = arg.dims ();
  int ndims = dims.ndims ();
  int dim = -1;

  if (nargin > 1)
    {
      if (! args(1).isempty ())
        {
          double dval = args(1).double_value ();
          if (octave::math::isnan (dval))
            error ("%s: number of points (N) cannot be NaN", fcn);

          n_points = octave::math::nint_big (dval);
          if (n_points < 0)
            error ("%s: number of points (N) must be greater than zero", fcn);
        }
    }

  if (nargin > 2)
    {
      double dval = args(2).double_value ();
      if (octave::math::isnan (dval))
        error ("%s: DIM cannot be NaN", fcn);
      else if (dval < 1 || dval > ndims)
        error ("%s: DIM must be a valid dimension along which to perform FFT",
               fcn);
      else
        // to be safe, cast it back to int since dim is an int
        dim = octave::math::nint (dval) - 1;
    }

  // FIXME: This seems strange and unnecessary (10/21/16).
  // How would you ever arrive at an octave_value object without correct dims?
  // We certainly don't make this check every other place in Octave.
  for (octave_idx_type i = 0; i < ndims; i++)
    if (dims(i) < 0)
      return retval;

  if (dim < 0)
    {
      dim = dims.first_non_singleton ();

      // And if the first argument is scalar?
      if (dim == ndims)
        dim = 1;
    }

  if (n_points < 0)
    n_points = dims(dim);
  else
    dims(dim) = n_points;

  if (n_points == 0 || dims.any_zero ())
    {
      if (arg.is_single_type ())
        return octave_value (FloatNDArray (dims));
      else
        return octave_value (NDArray (dims));
    }

  if (n_points == 1)
    {
      octave_value_list idx (ndims);
      for (octave_idx_type i = 0; i < ndims; i++)
        idx(i) = idx_vector::colon;
      idx(dim) = idx_vector (static_cast<octave_idx_type> (0));

      return arg.do_index_op (idx);
    }

  if (arg.is_single_type ())
    {
      if (arg.isreal ())
        {
          FloatNDArray nda = arg.float_array_value ();

          nda.resize (dims, 0.0);
          retval = (type != 0 ? nda.ifourier (dim) : nda.fourier (dim));
        }
      else
        {
          FloatComplexNDArray cnda = arg.float_complex_array_value ();

          cnda.resize (dims, 0.0);
          retval = (type != 0 ? cnda.ifourier (dim) : cnda.fourier (dim));
        }
    }
  else
    {
      if (arg.isreal ())
        {
          NDArray nda = arg.array_value ();

          nda.resize (dims, 0.0);
          retval = (type != 0 ? nda.ifourier (dim) : nda.fourier (dim));
        }
      else if (arg.iscomplex ())
        {
          ComplexNDArray cnda = arg.complex_array_value ();

          cnda.resize (dims, 0.0);
          retval = (type != 0 ? cnda.ifourier (dim) : cnda.fourier (dim));
        }
      else
        err_wrong_type_arg (fcn, arg);
    }

  return retval;
}

/*
%!testif HAVE_FFTW
%! assert (fft ([]), [])
%!testif HAVE_FFTW
%! assert (fft (zeros (10,0)), zeros (10,0))
%!testif HAVE_FFTW
%! assert (fft (zeros (0,10)), zeros (0,10))
%!testif HAVE_FFTW
%! assert (fft (0), 0)
%!testif HAVE_FFTW
%! assert (fft (1), 1)
%!testif HAVE_FFTW
%! assert (fft (ones (2,2)), [2,2; 0,0])
%!testif HAVE_FFTW
%! assert (fft (eye (2,2)), [1,1; 1,-1])

%!testif HAVE_FFTW
%! assert (fft (single ([])), single ([]))
%!testif HAVE_FFTW
%! assert (fft (zeros (10,0,"single")), zeros (10,0,"single"))
%!testif HAVE_FFTW
%! assert (fft (zeros (0,10,"single")), zeros (0,10,"single"))
%!testif HAVE_FFTW
%! assert (fft (single (0)), single (0))
%!testif HAVE_FFTW
%! assert (fft (single (1)), single (1))
%!testif HAVE_FFTW
%! assert (fft (ones (2,2,"single")), single ([2,2; 0,0]))
%!testif HAVE_FFTW
%! assert (fft (eye (2,2,"single")), single ([1,1; 1,-1]))

%!error (fft ())
*/


DEFUN (fft, args, ,
       doc: /* -*- texinfo -*-
@deftypefn  {} {} fft (@var{x})
@deftypefnx {} {} fft (@var{x}, @var{n})
@deftypefnx {} {} fft (@var{x}, @var{n}, @var{dim})
Compute the discrete Fourier transform of @var{x} using
a Fast Fourier Transform (FFT) algorithm.

The FFT is calculated along the first non-singleton dimension of the
array.  Thus if @var{x} is a matrix, @code{fft (@var{x})} computes the
FFT for each column of @var{x}.

If called with two arguments, @var{n} is expected to be an integer
specifying the number of elements of @var{x} to use, or an empty
matrix to specify that its value should be ignored.  If @var{n} is
larger than the dimension along which the FFT is calculated, then
@var{x} is resized and padded with zeros.  Otherwise, if @var{n} is
smaller than the dimension along which the FFT is calculated, then
@var{x} is truncated.

If called with three arguments, @var{dim} is an integer specifying the
dimension of the matrix along which the FFT is performed.
@seealso{ifft, fft2, fftn, fftw}
@end deftypefn */)
{
  return do_fft (args, "fft", 0);
}


DEFUN (ifft, args, ,
       doc: /* -*- texinfo -*-
@deftypefn  {} {} ifft (@var{x})
@deftypefnx {} {} ifft (@var{x}, @var{n})
@deftypefnx {} {} ifft (@var{x}, @var{n}, @var{dim})
Compute the inverse discrete Fourier transform of @var{x}
using a Fast Fourier Transform (FFT) algorithm.

The inverse FFT is calculated along the first non-singleton dimension
of the array.  Thus if @var{x} is a matrix, @code{fft (@var{x})} computes
the inverse FFT for each column of @var{x}.

If called with two arguments, @var{n} is expected to be an integer
specifying the number of elements of @var{x} to use, or an empty
matrix to specify that its value should be ignored.  If @var{n} is
larger than the dimension along which the inverse FFT is calculated, then
@var{x} is resized and padded with zeros.  Otherwise, if @var{n} is
smaller than the dimension along which the inverse FFT is calculated,
then @var{x} is truncated.

If called with three arguments, @var{dim} is an integer specifying the
dimension of the matrix along which the inverse FFT is performed.
@seealso{fft, ifft2, ifftn, fftw}
@end deftypefn */)
{
  return do_fft (args, "ifft", 1);
}

/*
## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         02 May 2000
%!testif HAVE_FFTW
%! N = 64;
%! n = 4;
%! t = 2*pi*(0:1:N-1)/N;
%! s = cos (n*t);
%! S = fft (s);
%!
%! answer = zeros (size (t));
%! answer(n+1) = N/2;
%! answer(N-n+1) = N/2;
%!
%! assert (S, answer, 4*N*eps);

## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         02 May 2000
%!testif HAVE_FFTW
%! N = 64;
%! n = 7;
%! t = 2*pi*(0:1:N-1)/N;
%! s = cos (n*t);
%!
%! S = zeros (size (t));
%! S(n+1) = N/2;
%! S(N-n+1) = N/2;
%!
%! assert (ifft (S), s, 4*N*eps);

## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         02 May 2000
%!testif HAVE_FFTW
%! N = 64;
%! n = 4;
%! t = single (2*pi*(0:1:N-1)/N);
%! s = cos (n*t);
%! S = fft (s);
%!
%! answer = zeros (size (t), "single");
%! answer(n+1) = N/2;
%! answer(N-n+1) = N/2;
%!
%! assert (S, answer, 4*N*eps ("single"));

## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         02 May 2000
%!testif HAVE_FFTW
%! N = 64;
%! n = 7;
%! t = 2*pi*(0:1:N-1)/N;
%! s = cos (n*t);
%!
%! S = zeros (size (t), "single");
%! S(n+1) = N/2;
%! S(N-n+1) = N/2;
%!
%! assert (ifft (S), s, 4*N*eps ("single"));
*/