File: fft2.cc

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (259 lines) | stat: -rw-r--r-- 6,624 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "lo-mappers.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "utils.h"

// This function should be merged with Fifft.

static octave_value
do_fft2 (const octave_value_list& args, const char *fcn, int type)
{
  int nargin = args.length ();

  if (nargin < 1 || nargin > 3)
    print_usage ();

  octave_value retval;
  octave_value arg = args(0);
  dim_vector dims = arg.dims ();
  octave_idx_type n_rows = -1;

  if (nargin > 1)
    {
      double dval = args(1).double_value ();
      if (octave::math::isnan (dval))
        error ("%s: number of rows (N) cannot be NaN", fcn);

      n_rows = octave::math::nint_big (dval);
      if (n_rows < 0)
        error ("%s: number of rows (N) must be greater than zero", fcn);
    }

  octave_idx_type n_cols = -1;
  if (nargin > 2)
    {
      double dval = args(2).double_value ();
      if (octave::math::isnan (dval))
        error ("%s: number of columns (M) cannot be NaN", fcn);

      n_cols = octave::math::nint_big (dval);
      if (n_cols < 0)
        error ("%s: number of columns (M) must be greater than zero", fcn);
    }

  for (int i = 0; i < dims.ndims (); i++)
    if (dims(i) < 0)
      return retval;

  if (n_rows < 0)
    n_rows = dims(0);
  else
    dims(0) = n_rows;

  if (n_cols < 0)
    n_cols = dims(1);
  else
    dims(1) = n_cols;

  if (dims.all_zero () || n_rows == 0 || n_cols == 0)
    {
      if (arg.is_single_type ())
        return octave_value (FloatMatrix ());
      else
        return octave_value (Matrix ());
    }

  if (arg.is_single_type ())
    {
      if (arg.isreal ())
        {
          FloatNDArray nda = arg.float_array_value ();

          nda.resize (dims, 0.0);
          retval = (type != 0 ? nda.ifourier2d () : nda.fourier2d ());
        }
      else
        {
          FloatComplexNDArray cnda = arg.float_complex_array_value ();

          cnda.resize (dims, 0.0);
          retval = (type != 0 ? cnda.ifourier2d () : cnda.fourier2d ());
        }
    }
  else
    {
      if (arg.isreal ())
        {
          NDArray nda = arg.array_value ();

          nda.resize (dims, 0.0);
          retval = (type != 0 ? nda.ifourier2d () : nda.fourier2d ());
        }
      else if (arg.iscomplex ())
        {
          ComplexNDArray cnda = arg.complex_array_value ();

          cnda.resize (dims, 0.0);
          retval = (type != 0 ? cnda.ifourier2d () : cnda.fourier2d ());
        }
      else
        err_wrong_type_arg (fcn, arg);
    }

  return retval;
}

DEFUN (fft2, args, ,
       doc: /* -*- texinfo -*-
@deftypefn  {} {} fft2 (@var{A})
@deftypefnx {} {} fft2 (@var{A}, @var{m}, @var{n})
Compute the two-dimensional discrete Fourier transform of @var{A} using
a Fast Fourier Transform (FFT) algorithm.

The optional arguments @var{m} and @var{n} may be used specify the number of
rows and columns of @var{A} to use.  If either of these is larger than the
size of @var{A}, @var{A} is resized and padded with zeros.

If @var{A} is a multi-dimensional matrix, each two-dimensional sub-matrix
of @var{A} is treated separately.
@seealso{ifft2, fft, fftn, fftw}
@end deftypefn */)
{
  return do_fft2 (args, "fft2", 0);
}


DEFUN (ifft2, args, ,
       doc: /* -*- texinfo -*-
@deftypefn  {} {} ifft2 (@var{A})
@deftypefnx {} {} ifft2 (@var{A}, @var{m}, @var{n})
Compute the inverse two-dimensional discrete Fourier transform of @var{A}
using a Fast Fourier Transform (FFT) algorithm.

The optional arguments @var{m} and @var{n} may be used specify the number of
rows and columns of @var{A} to use.  If either of these is larger than the
size of @var{A}, @var{A} is resized and padded with zeros.

If @var{A} is a multi-dimensional matrix, each two-dimensional sub-matrix
of @var{A} is treated separately.
@seealso{fft2, ifft, ifftn, fftw}
@end deftypefn */)
{
  return do_fft2 (args, "ifft2", 1);
}

/*
## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         02 May 2000
%!testif HAVE_FFTW
%! M = 16;
%! N = 8;
%!
%! m = 5;
%! n = 3;
%!
%! x = 2*pi*(0:1:M-1)/M;
%! y = 2*pi*(0:1:N-1)/N;
%! sx = cos (m*x);
%! sy = sin (n*y);
%! s = kron (sx',sy);
%! S = fft2 (s);
%! answer = kron (fft (sx)', fft (sy));
%! assert (S, answer, 4*M*N*eps);

## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         02 May 2000
%!testif HAVE_FFTW
%! M = 12;
%! N = 7;
%!
%! m = 3;
%! n = 2;
%!
%! x = 2*pi*(0:1:M-1)/M;
%! y = 2*pi*(0:1:N-1)/N;
%!
%! sx = cos (m*x);
%! sy = cos (n*y);
%!
%! S = kron (fft (sx)', fft (sy));
%! answer = kron (sx', sy);
%! s = ifft2 (S);
%!
%! assert (s, answer, 30*eps);

## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         02 May 2000
%!testif HAVE_FFTW
%! M = 16;
%! N = 8;
%!
%! m = 5;
%! n = 3;
%!
%! x = 2*pi*(0:1:M-1)/M;
%! y = 2*pi*(0:1:N-1)/N;
%! sx = single (cos (m*x));
%! sy = single (sin (n*y));
%! s = kron (sx', sy);
%! S = fft2 (s);
%! answer = kron (fft (sx)', fft (sy));
%! assert (S, answer, 4*M*N*eps ("single"));

## Author: David Billinghurst (David.Billinghurst@riotinto.com.au)
##         Comalco Research and Technology
##         02 May 2000
%!testif HAVE_FFTW
%! M = 12;
%! N = 7;
%!
%! m = 3;
%! n = 2;
%!
%! x = single (2*pi*(0:1:M-1)/M);
%! y = single (2*pi*(0:1:N-1)/N);
%!
%! sx = cos (m*x);
%! sy = cos (n*y);
%!
%! S = kron (fft (sx)', fft (sy));
%! answer = kron (sx', sy);
%! s = ifft2 (S);
%!
%! assert (s, answer, 30*eps ("single"));
*/