File: fftn.cc

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (161 lines) | stat: -rw-r--r-- 4,901 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2004-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "lo-mappers.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "utils.h"

// This function should be merged with Fifft.

static octave_value
do_fftn (const octave_value_list& args, const char *fcn, int type)
{
  int nargin = args.length ();

  if (nargin < 1 || nargin > 2)
    print_usage ();

  octave_value retval;
  octave_value arg = args(0);
  dim_vector dims = arg.dims ();

  for (int i = 0; i < dims.ndims (); i++)
    if (dims(i) < 0)
      return retval;

  if (nargin > 1)
    {
      Matrix val = args(1).xmatrix_value ("%s: SIZE must be a vector of length dim", fcn);

      if (val.rows () > val.columns ())
        val = val.transpose ();

      if (val.columns () != dims.ndims () || val.rows () != 1)
        error ("%s: SIZE must be a vector of length dim", fcn);

      for (int i = 0; i < dims.ndims (); i++)
        {
          if (octave::math::isnan (val(i,0)))
            error ("%s: SIZE has invalid NaN entries", fcn);
          else if (octave::math::nint_big (val(i,0)) < 0)
            error ("%s: all dimensions in SIZE must be greater than zero", fcn);
          else
            dims(i) = octave::math::nint_big(val(i,0));
        }
    }

  if (dims.all_zero ())
    {
      if (arg.is_single_type ())
        return octave_value (FloatMatrix ());
      else
        return octave_value (Matrix ());
    }

  if (arg.is_single_type ())
    {
      if (arg.isreal ())
        {
          FloatNDArray nda = arg.float_array_value ();

          nda.resize (dims, 0.0);
          retval = (type != 0 ? nda.ifourierNd () : nda.fourierNd ());
        }
      else
        {
          FloatComplexNDArray cnda = arg.float_complex_array_value ();

          cnda.resize (dims, 0.0);
          retval = (type != 0 ? cnda.ifourierNd () : cnda.fourierNd ());
        }
    }
  else
    {
      if (arg.isreal ())
        {
          NDArray nda = arg.array_value ();

          nda.resize (dims, 0.0);
          retval = (type != 0 ? nda.ifourierNd () : nda.fourierNd ());
        }
      else if (arg.iscomplex ())
        {
          ComplexNDArray cnda = arg.complex_array_value ();

          cnda.resize (dims, 0.0);
          retval = (type != 0 ? cnda.ifourierNd () : cnda.fourierNd ());
        }
      else
        err_wrong_type_arg (fcn, arg);
    }

  return retval;
}

DEFUN (fftn, args, ,
       doc: /* -*- texinfo -*-
@deftypefn  {} {} fftn (@var{A})
@deftypefnx {} {} fftn (@var{A}, @var{size})
Compute the N-dimensional discrete Fourier transform of @var{A} using
a Fast Fourier Transform (FFT) algorithm.

The optional vector argument @var{size} may be used specify the dimensions
of the array to be used.  If an element of @var{size} is smaller than the
corresponding dimension of @var{A}, then the dimension of @var{A} is
truncated prior to performing the FFT@.  Otherwise, if an element of
@var{size} is larger than the corresponding dimension then @var{A} is
resized and padded with zeros.
@seealso{ifftn, fft, fft2, fftw}
@end deftypefn */)
{
  return do_fftn (args, "fftn", 0);
}

DEFUN (ifftn, args, ,
       doc: /* -*- texinfo -*-
@deftypefn  {} {} ifftn (@var{A})
@deftypefnx {} {} ifftn (@var{A}, @var{size})
Compute the inverse N-dimensional discrete Fourier transform of @var{A}
using a Fast Fourier Transform (FFT) algorithm.

The optional vector argument @var{size} may be used specify the dimensions
of the array to be used.  If an element of @var{size} is smaller than the
corresponding dimension of @var{A}, then the dimension of @var{A} is
truncated prior to performing the inverse FFT@.  Otherwise, if an element of
@var{size} is larger than the corresponding dimension then @var{A} is
resized and padded with zeros.
@seealso{fftn, ifft, ifft2, fftw}
@end deftypefn */)
{
  return do_fftn (args, "ifftn", 1);
}