File: find.cc

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (601 lines) | stat: -rw-r--r-- 15,971 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "quit.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"

// Find at most N_TO_FIND nonzero elements in NDA.  Search forward if
// DIRECTION is 1, backward if it is -1.  NARGOUT is the number of
// output arguments.  If N_TO_FIND is -1, find all nonzero elements.

template <typename T>
octave_value_list
find_nonzero_elem_idx (const Array<T>& nda, int nargout,
                       octave_idx_type n_to_find, int direction)
{
  octave_value_list retval ((nargout == 0 ? 1 : nargout), Matrix ());

  Array<octave_idx_type> idx;
  if (n_to_find >= 0)
    idx = nda.find (n_to_find, direction == -1);
  else
    idx = nda.find ();

  // The maximum element is always at the end.
  octave_idx_type iext = (idx.isempty () ? 0 : idx.xelem (idx.numel () - 1) + 1);

  switch (nargout)
    {
    default:
    case 3:
      retval(2) = Array<T> (nda.index (idx_vector (idx)));
      OCTAVE_FALLTHROUGH;

    case 2:
      {
        Array<octave_idx_type> jdx (idx.dims ());
        octave_idx_type n = idx.numel ();
        octave_idx_type nr = nda.rows ();
        for (octave_idx_type i = 0; i < n; i++)
          {
            jdx.xelem (i) = idx.xelem (i) / nr;
            idx.xelem (i) %= nr;
          }
        iext = -1;
        retval(1) = idx_vector (jdx, -1);
      }
      OCTAVE_FALLTHROUGH;

    case 1:
    case 0:
      retval(0) = idx_vector (idx, iext);
      break;
    }

  return retval;
}

template <typename T>
octave_value_list
find_nonzero_elem_idx (const Sparse<T>& v, int nargout,
                       octave_idx_type n_to_find, int direction)
{
  nargout = std::min (nargout, 5);
  octave_value_list retval ((nargout == 0 ? 1 : nargout), Matrix ());

  octave_idx_type nr = v.rows ();
  octave_idx_type nc = v.cols ();
  octave_idx_type nz = v.nnz ();

  // Search in the default range.
  octave_idx_type start_nc = -1;
  octave_idx_type end_nc = -1;
  octave_idx_type count;

  // Search for the range to search
  if (n_to_find < 0)
    {
      start_nc = 0;
      end_nc = nc;
      n_to_find = nz;
    }
  else if (direction > 0)
    {
      for (octave_idx_type j = 0; j < nc; j++)
        {
          octave_quit ();

          if (v.cidx (j) == 0 && v.cidx (j+1) != 0)
            start_nc = j;
          if (v.cidx (j+1) >= n_to_find)
            {
              end_nc = j + 1;
              break;
            }
        }
    }
  else
    {
      for (octave_idx_type j = nc; j > 0; j--)
        {
          octave_quit ();

          if (v.cidx (j) == nz && v.cidx (j-1) != nz)
            end_nc = j;
          if (nz - v.cidx (j-1) >= n_to_find)
            {
              start_nc = j - 1;
              break;
            }
        }
    }

  count = (n_to_find > v.cidx (end_nc) - v.cidx (start_nc) ?
           v.cidx (end_nc) - v.cidx (start_nc) : n_to_find);

  octave_idx_type result_nr;
  octave_idx_type result_nc;

  // Default case is to return a column vector, however, if the original
  // argument was a row vector, then force return of a row vector.
  if (nr == 1)
    {
      result_nr = 1;
      result_nc = count;
    }
  else
    {
      result_nr = count;
      result_nc = 1;
    }

  Matrix idx (result_nr, result_nc);

  Matrix i_idx (result_nr, result_nc);
  Matrix j_idx (result_nr, result_nc);

  Array<T> val (dim_vector (result_nr, result_nc));

  if (count > 0)
    {
      // Search for elements to return.  Only search the region where there
      // are elements to be found using the count that we want to find.
      for (octave_idx_type j = start_nc, cx = 0; j < end_nc; j++)
        for (octave_idx_type i = v.cidx (j); i < v.cidx (j+1); i++)
          {
            octave_quit ();

            if (direction < 0 && i < nz - count)
              continue;
            i_idx(cx) = static_cast<double> (v.ridx (i) + 1);
            j_idx(cx) = static_cast<double> (j + 1);
            idx(cx) = j * nr + v.ridx (i) + 1;
            val(cx) = v.data(i);
            cx++;
            if (cx == count)
              break;
          }
    }
  else
    {
      // No items found.  Fixup return dimensions for Matlab compatibility.
      // The behavior to match is documented in Array.cc (Array<T>::find).
      if ((nr == 0 && nc == 0) || (nr == 1 && nc == 1))
        {
          idx.resize (0, 0);

          i_idx.resize (0, 0);
          j_idx.resize (0, 0);

          val.resize (dim_vector (0, 0));
        }
    }

  switch (nargout)
    {
    case 0:
    case 1:
      retval(0) = idx;
      break;

    case 5:
      retval(4) = nc;
      OCTAVE_FALLTHROUGH;

    case 4:
      retval(3) = nr;
      OCTAVE_FALLTHROUGH;

    case 3:
      retval(2) = val;
      OCTAVE_FALLTHROUGH;

    case 2:
      retval(1) = j_idx;
      retval(0) = i_idx;
    }

  return retval;
}

octave_value_list
find_nonzero_elem_idx (const PermMatrix& v, int nargout,
                       octave_idx_type n_to_find, int direction)
{
  // There are far fewer special cases to handle for a PermMatrix.
  nargout = std::min (nargout, 5);
  octave_value_list retval ((nargout == 0 ? 1 : nargout), Matrix ());

  octave_idx_type nr = v.rows ();
  octave_idx_type nc = v.cols ();
  octave_idx_type start_nc, count;

  // Determine the range to search.
  if (n_to_find < 0 || n_to_find >= nc)
    {
      start_nc = 0;
      count = nc;
    }
  else if (direction > 0)
    {
      start_nc = 0;
      count = n_to_find;
    }
  else
    {
      start_nc = nc - n_to_find;
      count = n_to_find;
    }

  Matrix idx (count, 1);
  Matrix i_idx (count, 1);
  Matrix j_idx (count, 1);
  // Every value is 1.
  Array<double> val (dim_vector (count, 1), 1.0);

  if (count > 0)
    {
      const Array<octave_idx_type>& p = v.col_perm_vec ();
      for (octave_idx_type k = 0; k < count; k++)
        {
          octave_quit ();

          const octave_idx_type j = start_nc + k;
          const octave_idx_type i = p(j);
          i_idx(k) = static_cast<double> (1+i);
          j_idx(k) = static_cast<double> (1+j);
          idx(k) = j * nc + i + 1;
        }
    }
  else
    {
      // FIXME: Is this case even possible?  A scalar permutation matrix seems
      // to devolve to a scalar full matrix, at least from the Octave command
      // line.  Perhaps this function could be called internally from C++ with
      // such a matrix.
      // No items found.  Fixup return dimensions for Matlab compatibility.
      // The behavior to match is documented in Array.cc (Array<T>::find).
      if ((nr == 0 && nc == 0) || (nr == 1 && nc == 1))
        {
          idx.resize (0, 0);

          i_idx.resize (0, 0);
          j_idx.resize (0, 0);

          val.resize (dim_vector (0, 0));
        }
    }

  switch (nargout)
    {
    case 0:
    case 1:
      retval(0) = idx;
      break;

    case 5:
      retval(4) = nc;
      OCTAVE_FALLTHROUGH;

    case 4:
      retval(3) = nc;
      OCTAVE_FALLTHROUGH;

    case 3:
      retval(2) = val;
      OCTAVE_FALLTHROUGH;

    case 2:
      retval(1) = j_idx;
      retval(0) = i_idx;
    }

  return retval;
}

DEFUN (find, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{idx} =} find (@var{x})
@deftypefnx {} {@var{idx} =} find (@var{x}, @var{n})
@deftypefnx {} {@var{idx} =} find (@var{x}, @var{n}, @var{direction})
@deftypefnx {} {[i, j] =} find (@dots{})
@deftypefnx {} {[i, j, v] =} find (@dots{})
Return a vector of indices of nonzero elements of a matrix, as a row if
@var{x} is a row vector or as a column otherwise.

To obtain a single index for each matrix element, Octave pretends that the
columns of a matrix form one long vector (like Fortran arrays are stored).
For example:

@example
@group
find (eye (2))
  @result{} [ 1; 4 ]
@end group
@end example

If two inputs are given, @var{n} indicates the maximum number of elements to
find from the beginning of the matrix or vector.

If three inputs are given, @var{direction} should be one of
@qcode{"first"} or @qcode{"last"}, requesting only the first or last
@var{n} indices, respectively.  However, the indices are always returned in
ascending order.

If two outputs are requested, @code{find} returns the row and column
indices of nonzero elements of a matrix.  For example:

@example
@group
[i, j] = find (2 * eye (2))
    @result{} i = [ 1; 2 ]
    @result{} j = [ 1; 2 ]
@end group
@end example

If three outputs are requested, @code{find} also returns a vector
containing the nonzero values.  For example:

@example
@group
[i, j, v] = find (3 * eye (2))
       @result{} i = [ 1; 2 ]
       @result{} j = [ 1; 2 ]
       @result{} v = [ 3; 3 ]
@end group
@end example

Note that this function is particularly useful for sparse matrices, as
it extracts the nonzero elements as vectors, which can then be used to
create the original matrix.  For example:

@example
@group
sz = size (a);
[i, j, v] = find (a);
b = sparse (i, j, v, sz(1), sz(2));
@end group
@end example
@seealso{nonzeros}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 1 || nargin > 3)
    print_usage ();

  // Setup the default options.
  octave_idx_type n_to_find = -1;
  if (nargin > 1)
    {
      double val = args(1).xscalar_value ("find: N must be an integer");

      if (val < 0 || (! octave::math::isinf (val)
                      && val != octave::math::fix (val)))
        error ("find: N must be a non-negative integer");
      else if (! octave::math::isinf (val))
        n_to_find = val;
    }

  // Direction to do the searching (1 == forward, -1 == reverse).
  int direction = 1;
  if (nargin > 2)
    {
      std::string s_arg = args(2).string_value ();

      if (s_arg == "first")
        direction = 1;
      else if (s_arg == "last")
        direction = -1;
      else
        error (R"(find: DIRECTION must be "first" or "last")");
    }

  octave_value_list retval;

  octave_value arg = args(0);

  if (arg.islogical ())
    {
      if (arg.issparse ())
        {
          SparseBoolMatrix v = arg.sparse_bool_matrix_value ();

          retval = find_nonzero_elem_idx (v, nargout, n_to_find, direction);
        }
      else if (nargout <= 1 && n_to_find == -1 && direction == 1)
        {
          // This case is equivalent to extracting indices from a logical
          // matrix.  Try to reuse the possibly cached index vector.

          // No need to catch index_exception, since arg is bool.
          // Out-of-range errors have already set pos, and will be
          // caught later.

          octave_value result = arg.index_vector ().unmask ();

          dim_vector dv = result.dims ();

          retval(0) = (dv.all_zero () || dv.isvector ()
                       ? result : result.reshape (dv.as_column ()));
        }
      else
        {
          boolNDArray v = arg.bool_array_value ();

          retval = find_nonzero_elem_idx (v, nargout, n_to_find, direction);
        }
    }
  else if (arg.isinteger ())
    {
#define DO_INT_BRANCH(INTT)                                             \
      else if (arg.is_ ## INTT ## _type ())                             \
        {                                                               \
          INTT ## NDArray v = arg.INTT ## _array_value ();              \
                                                                        \
          retval = find_nonzero_elem_idx (v, nargout, n_to_find, direction); \
        }

      if (false)
        ;
      DO_INT_BRANCH (int8)
      DO_INT_BRANCH (int16)
      DO_INT_BRANCH (int32)
      DO_INT_BRANCH (int64)
      DO_INT_BRANCH (uint8)
      DO_INT_BRANCH (uint16)
      DO_INT_BRANCH (uint32)
      DO_INT_BRANCH (uint64)
      else
        panic_impossible ();
    }
  else if (arg.issparse ())
    {
      if (arg.isreal ())
        {
          SparseMatrix v = arg.sparse_matrix_value ();

          retval = find_nonzero_elem_idx (v, nargout, n_to_find, direction);
        }
      else if (arg.iscomplex ())
        {
          SparseComplexMatrix v = arg.sparse_complex_matrix_value ();

          retval = find_nonzero_elem_idx (v, nargout, n_to_find, direction);
        }
      else
        err_wrong_type_arg ("find", arg);
    }
  else if (arg.is_perm_matrix ())
    {
      PermMatrix P = arg.perm_matrix_value ();

      retval = find_nonzero_elem_idx (P, nargout, n_to_find, direction);
    }
  else if (arg.is_string ())
    {
      charNDArray chnda = arg.char_array_value ();

      retval = find_nonzero_elem_idx (chnda, nargout, n_to_find, direction);
    }
  else if (arg.is_single_type ())
    {
      if (arg.isreal ())
        {
          FloatNDArray nda = arg.float_array_value ();

          retval = find_nonzero_elem_idx (nda, nargout, n_to_find, direction);
        }
      else if (arg.iscomplex ())
        {
          FloatComplexNDArray cnda = arg.float_complex_array_value ();

          retval = find_nonzero_elem_idx (cnda, nargout, n_to_find, direction);
        }
    }
  else if (arg.isreal ())
    {
      NDArray nda = arg.array_value ();

      retval = find_nonzero_elem_idx (nda, nargout, n_to_find, direction);
    }
  else if (arg.iscomplex ())
    {
      ComplexNDArray cnda = arg.complex_array_value ();

      retval = find_nonzero_elem_idx (cnda, nargout, n_to_find, direction);
    }
  else
    err_wrong_type_arg ("find", arg);

  return retval;
}

/*
%!assert (find (char ([0, 97])), 2)
%!assert (find ([1, 0, 1, 0, 1]), [1, 3, 5])
%!assert (find ([1; 0; 3; 0; 1]), [1; 3; 5])
%!assert (find ([0, 0, 2; 0, 3, 0; -1, 0, 0]), [3; 5; 7])

%!assert <*53603> (find (ones (1,1,2) > 0), [1;2])
%!assert <*53603> (find (ones (1,1,1,3) > 0), [1;2;3])

%!test
%! [i, j, v] = find ([0, 0, 2; 0, 3, 0; -1, 0, 0]);
%!
%! assert (i, [3; 2; 1]);
%! assert (j, [1; 2; 3]);
%! assert (v, [-1; 3; 2]);

%!assert (find (single ([1, 0, 1, 0, 1])), [1, 3, 5])
%!assert (find (single ([1; 0; 3; 0; 1])), [1; 3; 5])
%!assert (find (single ([0, 0, 2; 0, 3, 0; -1, 0, 0])), [3; 5; 7])

%!test
%! [i, j, v] = find (single ([0, 0, 2; 0, 3, 0; -1, 0, 0]));
%!
%! assert (i, [3; 2; 1]);
%! assert (j, [1; 2; 3]);
%! assert (v, single ([-1; 3; 2]));

%!test
%! pcol = [5 1 4 3 2];
%! P = eye (5) (:, pcol);
%! [i, j, v] = find (P);
%! [ifull, jfull, vfull] = find (full (P));
%! assert (i, ifull);
%! assert (j, jfull);
%! assert (all (v == 1));

%!test
%! prow = [5 1 4 3 2];
%! P = eye (5) (prow, :);
%! [i, j, v] = find (P);
%! [ifull, jfull, vfull] = find (full (P));
%! assert (i, ifull);
%! assert (j, jfull);
%! assert (all (v == 1));

%!assert <*53655> (find (false), zeros (0, 0))
%!assert <*53655> (find ([false, false]), zeros (1, 0))
%!assert <*53655> (find ([false; false]), zeros (0, 1))
%!assert <*53655> (find ([false, false; false, false]), zeros (0, 1))

%!assert (find ([2 0 1 0 5 0], 1), 1)
%!assert (find ([2 0 1 0 5 0], 2, "last"), [3, 5])

%!assert (find ([2 0 1 0 5 0], Inf), [1, 3, 5])
%!assert (find ([2 0 1 0 5 0], Inf, "last"), [1, 3, 5])

%!error find ()
*/