File: gsvd.cc

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (499 lines) | stat: -rw-r--r-- 16,597 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1997-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#ifdef HAVE_CONFIG_H
#  include <config.h>
#endif

#include "dMatrix.h"
#include "CMatrix.h"
#include "dDiagMatrix.h"
#include "gsvd.h"

#include "defun.h"
#include "defun-int.h"
#include "error.h"
#include "errwarn.h"
#include "utils.h"
#include "ovl.h"
#include "ov.h"


template <typename T>
static typename octave::math::gsvd<T>::Type
gsvd_type (int nargout)
{
  return ((nargout == 0 || nargout == 1)
          ? octave::math::gsvd<T>::Type::sigma_only
          : (nargout > 5) ? octave::math::gsvd<T>::Type::std
                          : octave::math::gsvd<T>::Type::economy);
}

// Named like this to avoid conflicts with the gsvd class.
template <typename T>
static octave_value_list
do_gsvd (const T& A, const T& B, const octave_idx_type nargout,
         bool is_single = false)
{
  octave::math::gsvd<T> result (A, B, gsvd_type<T> (nargout));

  octave_value_list retval (nargout);
  if (nargout < 2)
    {
      if (is_single)
        {
          FloatDiagMatrix sigA = result.singular_values_A ();
          FloatDiagMatrix sigB = result.singular_values_B ();
          for (int i = sigA.rows () - 1; i >= 0; i--)
            sigA.dgxelem(i) /= sigB.dgxelem(i);
          retval(0) = sigA.diag ();
        }
      else
        {
          DiagMatrix sigA = result.singular_values_A ();
          DiagMatrix sigB = result.singular_values_B ();
          for (int i = sigA.rows () - 1; i >= 0; i--)
            sigA.dgxelem(i) /= sigB.dgxelem(i);
          retval(0) = sigA.diag ();
        }
    }
  else
    {
      retval(0) = result.left_singular_matrix_A ();
      retval(1) = result.left_singular_matrix_B ();
      if (nargout > 2)
        retval(2) = result.right_singular_matrix ();
      if (nargout > 3)
        retval(3) = result.singular_values_A ();
      if (nargout > 4)
        retval(4) = result.singular_values_B ();
      if (nargout > 5)
        retval(5) = result.R_matrix ();
    }
  return retval;
}

DEFUN (gsvd, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{S} =} gsvd (@var{A}, @var{B})
@deftypefnx {} {[@var{U}, @var{V}, @var{X}, @var{C}, @var{S}] =} gsvd (@var{A}, @var{B})
@deftypefnx {} {[@var{U}, @var{V}, @var{X}, @var{C}, @var{S}] =} gsvd (@var{A}, @var{B}, 0)
Compute the generalized singular value decomposition of (@var{A}, @var{B}).

The generalized singular value decomposition is defined by the following
relations:

@tex
$$ A = U C X^\dagger $$
$$ B = V S X^\dagger $$
$$ C^\dagger C + S^\dagger S = eye (columns (A)) $$
@end tex
@ifnottex

@example
@group
A = U*C*X'
B = V*S*X'
C'*C + S'*S = eye (columns (A))
@end group
@end example

@end ifnottex

The function @code{gsvd} normally returns just the vector of generalized
singular values
@tex
$$ \sqrt{{{diag (C^\dagger C)} \over {diag (S^\dagger S)}}} $$
@end tex
@ifnottex
@code{sqrt (diag (C'*C) ./ diag (S'*S))}.
@end ifnottex
If asked for five return values, it also computes
@tex
$U$, $V$, $X$, and $C$.
@end tex
@ifnottex
U, V, X, and C.
@end ifnottex

If the optional third input is present, @code{gsvd} constructs the
"economy-sized" decomposition where the number of columns of @var{U}, @var{V}
and the number of rows of @var{C}, @var{S} is less than or equal to the number
of columns of @var{A}.  This option is not yet implemented.

Programming Note: the code is a wrapper to the corresponding @sc{lapack} dggsvd
and zggsvd routines.

@seealso{svd}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 2 || nargin > 3)
    print_usage ();
  else if (nargin == 3)
    warning ("gsvd: economy-sized decomposition is not yet implemented, returning full decomposition");

  octave_value_list retval;

  octave_value argA = args(0);
  octave_value argB = args(1);

  octave_idx_type nr = argA.rows ();
  octave_idx_type nc = argA.columns ();

  octave_idx_type np = argB.columns ();

  // FIXME: This "special" case should be handled in the gsvd class, not here
  if (nr == 0 || nc == 0)
    {
      retval = octave_value_list (nargout);
      if (nargout < 2)  // S = gsvd (A, B)
        {
          if (argA.is_single_type () || argB.is_single_type ())
            retval(0) = FloatMatrix (0, 1);
          else
            retval(0) = Matrix (0, 1);
        }
      else  // [U, V, X, C, S, R] = gsvd (A, B)
        {
          if (argA.is_single_type () || argB.is_single_type ())
            {
              retval(0) = octave::float_identity_matrix (nc, nc);
              retval(1) = octave::float_identity_matrix (nc, nc);
              if (nargout > 2)
                retval(2) = octave::float_identity_matrix (nr, nr);
              if (nargout > 3)
                retval(3) = FloatMatrix (nr, nc);
              if (nargout > 4)
                retval(4) = octave::float_identity_matrix (nr, nr);
              if (nargout > 5)
                retval(5) = octave::float_identity_matrix (nr, nr);
            }
          else
            {
              retval(0) = octave::identity_matrix (nc, nc);
              retval(1) = octave::identity_matrix (nc, nc);
              if (nargout > 2)
                retval(2) = octave::identity_matrix (nr, nr);
              if (nargout > 3)
                retval(3) = Matrix (nr, nc);
              if (nargout > 4)
                retval(4) = octave::identity_matrix (nr, nr);
              if (nargout > 5)
                retval(5) = octave::identity_matrix (nr, nr);
            }
        }
    }
  else
    {
      if (nc != np)
        print_usage ();

      if (argA.is_single_type () || argB.is_single_type ())
        {
          if (argA.isreal () && argB.isreal ())
            {
              FloatMatrix tmpA = argA.xfloat_matrix_value ("gsvd: A must be a real or complex matrix");
              FloatMatrix tmpB = argB.xfloat_matrix_value ("gsvd: B must be a real or complex matrix");

              if (tmpA.any_element_is_inf_or_nan ())
                error ("gsvd: A cannot have Inf or NaN values");
              if (tmpB.any_element_is_inf_or_nan ())
                error ("gsvd: B cannot have Inf or NaN values");

              retval = do_gsvd (tmpA, tmpB, nargout, true);
            }
          else if (argA.iscomplex () || argB.iscomplex ())
            {
              FloatComplexMatrix ctmpA = argA.xfloat_complex_matrix_value ("gsvd: A must be a real or complex matrix");
              FloatComplexMatrix ctmpB = argB.xfloat_complex_matrix_value ("gsvd: B must be a real or complex matrix");

              if (ctmpA.any_element_is_inf_or_nan ())
                error ("gsvd: A cannot have Inf or NaN values");
              if (ctmpB.any_element_is_inf_or_nan ())
                error ("gsvd: B cannot have Inf or NaN values");

              retval = do_gsvd (ctmpA, ctmpB, nargout, true);
            }
          else
            error ("gsvd: A and B must be real or complex matrices");
        }
      else
        {
          if (argA.isreal () && argB.isreal ())
            {
              Matrix tmpA = argA.xmatrix_value ("gsvd: A must be a real or complex matrix");
              Matrix tmpB = argB.xmatrix_value ("gsvd: B must be a real or complex matrix");

              if (tmpA.any_element_is_inf_or_nan ())
                error ("gsvd: A cannot have Inf or NaN values");
              if (tmpB.any_element_is_inf_or_nan ())
                error ("gsvd: B cannot have Inf or NaN values");

              retval = do_gsvd (tmpA, tmpB, nargout);
            }
          else if (argA.iscomplex () || argB.iscomplex ())
            {
              ComplexMatrix ctmpA = argA.xcomplex_matrix_value ("gsvd: A must be a real or complex matrix");
              ComplexMatrix ctmpB = argB.xcomplex_matrix_value ("gsvd: B must be a real or complex matrix");

              if (ctmpA.any_element_is_inf_or_nan ())
                error ("gsvd: A cannot have Inf or NaN values");
              if (ctmpB.any_element_is_inf_or_nan ())
                error ("gsvd: B cannot have Inf or NaN values");

              retval = do_gsvd (ctmpA, ctmpB, nargout);
            }
          else
            error ("gsvd: A and B must be real or complex matrices");
        }
    }

  return retval;
}

/*

## Basic test of decomposition
%!test <48807>
%! A = reshape (1:15,5,3);
%! B = magic (3);
%! [U,V,X,C,S] = gsvd (A,B);
%! assert (U*C*X', A, 50*eps);
%! assert (V*S*X', B, 50*eps);
%! S0 = gsvd (A, B);
%! S1 = svd (A / B);
%! assert (S0, S1, 10*eps);

## a few tests for gsvd.m
%!shared A, A0, B, B0, U, V, C, S, X, R, D1, D2
%! A0 = randn (5, 3);
%! B0 = diag ([1 2 4]);
%! A = A0;
%! B = B0;

## A (5x3) and B (3x3) are full rank
%!test <48807>
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros (5, 3);  D1(1:3, 1:3) = C;
%! D2 = S;
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (3, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*R) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*R) <= 1e-6);

## A: 5x3 full rank, B: 3x3 rank deficient
%!test <48807>
%! B(2, 2) = 0;
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros (5, 3);  D1(1, 1) = 1;  D1(2:3, 2:3) = C;
%! D2 = [zeros(2, 1) S; zeros(1, 3)];
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (2, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*R) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*R) <= 1e-6);

## A: 5x3 rank deficient, B: 3x3 full rank
%!test <48807>
%! B = B0;
%! A(:, 3) = 2*A(:, 1) - A(:, 2);
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros(5, 3);  D1(1:3, 1:3) = C;
%! D2 = S;
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (3, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*R) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*R) <= 1e-6);

## A and B are both rank deficient
%!test <48807>
%! B(:, 3) = 2*B(:, 1) - B(:, 2);
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros(5, 2);  D1(1:2, 1:2) = C;
%! D2 = [S; zeros(1, 2)];
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (2, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*[zeros(2, 1) R]) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*[zeros(2, 1) R]) <= 1e-6);

## A (now 3x5) and B (now 5x5) are full rank
%!test <48807>
%! A = A0.';
%! B0 = diag ([1 2 4 8 16]);
%! B = B0;
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = [C zeros(3,2)];
%! D2 = [S zeros(3,2); zeros(2, 3) eye(2)];
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (3, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*R) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*R) <= 1e-6);

## A: 3x5 full rank, B: 5x5 rank deficient
%!test <48807>
%! B(2, 2) = 0;
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros(3, 5); D1(1, 1) = 1; D1(2:3, 2:3) = C;
%! D2 = zeros(5, 5); D2(1:2, 2:3) = S; D2(3:4, 4:5) = eye (2);
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (2, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*R) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*R) <= 1e-6);

## A: 3x5 rank deficient, B: 5x5 full rank
%!test <48807>
%! B = B0;
%! A(3, :) = 2*A(1, :) - A(2, :);
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros (3, 5);  D1(1:3, 1:3) = C;
%! D2 = zeros (5, 5);  D2(1:3, 1:3) = S;  D2(4:5, 4:5) = eye (2);
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (3, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*R) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*R) <= 1e-6);

## A and B are both rank deficient
%!test <48807>
%! A = A0.'; B = B0.';
%! A(:, 3) = 2*A(:, 1) - A(:, 2);
%! B(:, 3) = 2*B(:, 1) - B(:, 2);
%! [U, V, X, C, S, R]=gsvd (A, B);
%! D1 = zeros(3, 4); D1(1:3, 1:3) = C;
%! D2 = eye (4); D2(1:3, 1:3) = S; D2(5,:) = 0;
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (3, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*[zeros(4, 1) R]) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*[zeros(4, 1) R]) <= 1e-6);

## A: 5x3 complex full rank, B: 3x3 complex full rank
%!test <48807>
%! A0 = A0 + j*randn (5, 3);
%! B0 = diag ([1 2 4]) + j*diag ([4 -2 -1]);
%! A = A0;
%! B = B0;
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros(5, 3);  D1(1:3, 1:3) = C;
%! D2 = S;
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (3, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*R) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*R) <= 1e-6);

## A: 5x3 complex full rank, B: 3x3 complex rank deficient
%!test <48807>
%! B(2, 2) = 0;
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros(5, 3);  D1(1, 1) = 1;  D1(2:3, 2:3) = C;
%! D2 = [zeros(2, 1) S; zeros(1, 3)];
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (2, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*R) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*R) <= 1e-6);

## A: 5x3 complex rank deficient, B: 3x3 complex full rank
%!test <48807>
%! B = B0;
%! A(:, 3) = 2*A(:, 1) - A(:, 2);
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros(5, 3);  D1(1:3, 1:3) = C;
%! D2 = S;
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (3, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*R) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*R) <= 1e-6);

## A (5x3) and B (3x3) are both complex rank deficient
%!test <48807>
%! B(:, 3) = 2*B(:, 1) - B(:, 2);
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros(5, 2);  D1(1:2, 1:2) = C;
%! D2 = [S; zeros(1, 2)];
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (2, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*[zeros(2, 1) R]) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*[zeros(2, 1) R]) <= 1e-6);

## A (now 3x5) complex and B (now 5x5) complex are full rank
## now, A is 3x5
%!test <48807>
%! A = A0.';
%! B0 = diag ([1 2 4 8 16]) + j*diag ([-5 4 -3 2 -1]);
%! B = B0;
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = [C zeros(3,2)];
%! D2 = [S zeros(3,2); zeros(2, 3) eye(2)];
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (3, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*R) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*R) <= 1e-6);

## A: 3x5 complex full rank, B: 5x5 complex rank deficient
%!test <48807>
%! B(2, 2) = 0;
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros(3, 5);  D1(1, 1) = 1;  D1(2:3, 2:3) = C;
%! D2 = zeros(5,5);  D2(1:2, 2:3) = S;  D2(3:4, 4:5) = eye (2);
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (2, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*R) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*R) <= 1e-6);

## A: 3x5 complex rank deficient, B: 5x5 complex full rank
%!test <48807>
%! B = B0;
%! A(3, :) = 2*A(1, :) - A(2, :);
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros(3, 5);  D1(1:3, 1:3) = C;
%! D2 = zeros(5,5);  D2(1:3, 1:3) = S;  D2(4:5, 4:5) = eye (2);
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (3, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*R) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*R) <= 1e-6);

## A and B are both complex rank deficient
%!test <48807>
%! A = A0.';
%! B = B0.';
%! A(:, 3) = 2*A(:, 1) - A(:, 2);
%! B(:, 3) = 2*B(:, 1) - B(:, 2);
%! [U, V, X, C, S, R] = gsvd (A, B);
%! D1 = zeros(3, 4);  D1(1:3, 1:3) = C;
%! D2 = eye (4);  D2(1:3, 1:3) = S;  D2(5,:) = 0;
%! assert (norm (diag (C).^2 + diag (S).^2 - ones (3, 1)) <= 1e-6);
%! assert (norm ((U'*A*X) - D1*[zeros(4, 1) R]) <= 1e-6);
%! assert (norm ((V'*B*X) - D2*[zeros(4, 1) R]) <= 1e-6);

## Test that single inputs produce single outputs
%!test
%! s = gsvd (single (ones (0,1)), B);
%! assert (class (s), "single");
%! s = gsvd (single (ones (1,0)), B);
%! assert (class (s), "single");
%! s = gsvd (single (ones (1,0)), B);
%! [U,V,X,C,S,R] = gsvd (single ([]), B);
%! assert (class (U), "single");
%! assert (class (V), "single");
%! assert (class (X), "single");
%! assert (class (C), "single");
%! assert (class (S), "single");
%! assert (class (R), "single");
%!
%! s = gsvd (single (A), B);
%! assert (class (s), "single");
%! [U,V,X,C,S,R] = gsvd (single (A), B);
%! assert (class (U), "single");
%! assert (class (V), "single");
%! assert (class (X), "single");
%! assert (class (C), "single");
%! assert (class (S), "single");
%! assert (class (R), "single");

*/