1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
#if defined (HAVE_CONFIG_H)
# include "config.h"
#endif
#include "hess.h"
#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
DEFUN (hess, args, nargout,
doc: /* -*- texinfo -*-
@deftypefn {} {@var{H} =} hess (@var{A})
@deftypefnx {} {[@var{P}, @var{H}] =} hess (@var{A})
@cindex Hessenberg decomposition
Compute the Hessenberg decomposition of the matrix @var{A}.
The Hessenberg decomposition is
@tex
$$
A = PHP^T
$$
where $P$ is a square unitary matrix ($P^TP = I$), and $H$
is upper Hessenberg ($H_{i,j} = 0, \forall i > j+1$).
@end tex
@ifnottex
@code{@var{P} * @var{H} * @var{P}' = @var{A}} where @var{P} is a square
unitary matrix (@code{@var{P}' * @var{P} = I}, using complex-conjugate
transposition) and @var{H} is upper Hessenberg
(@code{@var{H}(i, j) = 0 forall i > j+1)}.
@end ifnottex
The Hessenberg decomposition is usually used as the first step in an
eigenvalue computation, but has other applications as well
(see @nospell{Golub, Nash, and Van Loan},
IEEE Transactions on Automatic Control, 1979).
@seealso{eig, chol, lu, qr, qz, schur, svd}
@end deftypefn */)
{
if (args.length () != 1)
print_usage ();
octave_value arg = args(0);
if (arg.isempty ())
return octave_value_list (2, Matrix ());
if (arg.rows () != arg.columns ())
err_square_matrix_required ("hess", "A");
octave_value_list retval;
if (arg.is_single_type ())
{
if (arg.isreal ())
{
FloatMatrix tmp = arg.float_matrix_value ();
octave::math::hess<FloatMatrix> result (tmp);
if (nargout <= 1)
retval = ovl (result.hess_matrix ());
else
retval = ovl (result.unitary_hess_matrix (),
result.hess_matrix ());
}
else if (arg.iscomplex ())
{
FloatComplexMatrix ctmp = arg.float_complex_matrix_value ();
octave::math::hess<FloatComplexMatrix> result (ctmp);
if (nargout <= 1)
retval = ovl (result.hess_matrix ());
else
retval = ovl (result.unitary_hess_matrix (),
result.hess_matrix ());
}
}
else
{
if (arg.isreal ())
{
Matrix tmp = arg.matrix_value ();
octave::math::hess<Matrix> result (tmp);
if (nargout <= 1)
retval = ovl (result.hess_matrix ());
else
retval = ovl (result.unitary_hess_matrix (),
result.hess_matrix ());
}
else if (arg.iscomplex ())
{
ComplexMatrix ctmp = arg.complex_matrix_value ();
octave::math::hess<ComplexMatrix> result (ctmp);
if (nargout <= 1)
retval = ovl (result.hess_matrix ());
else
retval = ovl (result.unitary_hess_matrix (),
result.hess_matrix ());
}
else
err_wrong_type_arg ("hess", arg);
}
return retval;
}
/*
%!test
%! a = [1, 2, 3; 5, 4, 6; 8, 7, 9];
%! [p, h] = hess (a);
%! assert (p * h * p', a, sqrt (eps));
%!test
%! a = single ([1, 2, 3; 5, 4, 6; 8, 7, 9]);
%! [p, h] = hess (a);
%! assert (p * h * p', a, sqrt (eps ("single")));
%!error hess ()
%!error hess ([1, 2; 3, 4], 2)
%!error <must be a square matrix> hess ([1, 2; 3, 4; 5, 6])
*/
|