File: hess.cc

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (153 lines) | stat: -rw-r--r-- 4,339 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "hess.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"

DEFUN (hess, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{H} =} hess (@var{A})
@deftypefnx {} {[@var{P}, @var{H}] =} hess (@var{A})
@cindex Hessenberg decomposition
Compute the Hessenberg decomposition of the matrix @var{A}.

The Hessenberg decomposition is
@tex
$$
A = PHP^T
$$
where $P$ is a square unitary matrix ($P^TP = I$), and $H$
is upper Hessenberg ($H_{i,j} = 0, \forall i > j+1$).
@end tex
@ifnottex
@code{@var{P} * @var{H} * @var{P}' = @var{A}} where @var{P} is a square
unitary matrix (@code{@var{P}' * @var{P} = I}, using complex-conjugate
transposition) and @var{H} is upper Hessenberg
(@code{@var{H}(i, j) = 0 forall i > j+1)}.
@end ifnottex

The Hessenberg decomposition is usually used as the first step in an
eigenvalue computation, but has other applications as well
(see @nospell{Golub, Nash, and Van Loan},
IEEE Transactions on Automatic Control, 1979).
@seealso{eig, chol, lu, qr, qz, schur, svd}
@end deftypefn */)
{
  if (args.length () != 1)
    print_usage ();

  octave_value arg = args(0);

  if (arg.isempty ())
    return octave_value_list (2, Matrix ());

  if (arg.rows () != arg.columns ())
    err_square_matrix_required ("hess", "A");

  octave_value_list retval;

  if (arg.is_single_type ())
    {
      if (arg.isreal ())
        {
          FloatMatrix tmp = arg.float_matrix_value ();

          octave::math::hess<FloatMatrix> result (tmp);

          if (nargout <= 1)
            retval = ovl (result.hess_matrix ());
          else
            retval = ovl (result.unitary_hess_matrix (),
                          result.hess_matrix ());
        }
      else if (arg.iscomplex ())
        {
          FloatComplexMatrix ctmp = arg.float_complex_matrix_value ();

          octave::math::hess<FloatComplexMatrix> result (ctmp);

          if (nargout <= 1)
            retval = ovl (result.hess_matrix ());
          else
            retval = ovl (result.unitary_hess_matrix (),
                          result.hess_matrix ());
        }
    }
  else
    {
      if (arg.isreal ())
        {
          Matrix tmp = arg.matrix_value ();

          octave::math::hess<Matrix> result (tmp);

          if (nargout <= 1)
            retval = ovl (result.hess_matrix ());
          else
            retval = ovl (result.unitary_hess_matrix (),
                          result.hess_matrix ());
        }
      else if (arg.iscomplex ())
        {
          ComplexMatrix ctmp = arg.complex_matrix_value ();

          octave::math::hess<ComplexMatrix> result (ctmp);

          if (nargout <= 1)
            retval = ovl (result.hess_matrix ());
          else
            retval = ovl (result.unitary_hess_matrix (),
                          result.hess_matrix ());
        }
      else
        err_wrong_type_arg ("hess", arg);
    }

  return retval;
}

/*
%!test
%! a = [1, 2, 3; 5, 4, 6; 8, 7, 9];
%! [p, h] = hess (a);
%! assert (p * h * p', a, sqrt (eps));

%!test
%! a = single ([1, 2, 3; 5, 4, 6; 8, 7, 9]);
%! [p, h] = hess (a);
%! assert (p * h * p', a, sqrt (eps ("single")));

%!error hess ()
%!error hess ([1, 2; 3, 4], 2)
%!error <must be a square matrix> hess ([1, 2; 3, 4; 5, 6])
*/