1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
#if defined (HAVE_CONFIG_H)
# include "config.h"
#endif
#include "dMatrix.h"
#include "fMatrix.h"
#include "CMatrix.h"
#include "fCMatrix.h"
#include "dSparse.h"
#include "CSparse.h"
#include "dDiagMatrix.h"
#include "fDiagMatrix.h"
#include "CDiagMatrix.h"
#include "fCDiagMatrix.h"
#include "PermMatrix.h"
#include "mx-inlines.cc"
#include "quit.h"
#include "defun.h"
#include "error.h"
#include "ovl.h"
template <typename R, typename T>
static MArray<T>
kron (const MArray<R>& a, const MArray<T>& b)
{
assert (a.ndims () == 2);
assert (b.ndims () == 2);
octave_idx_type nra = a.rows ();
octave_idx_type nrb = b.rows ();
octave_idx_type nca = a.cols ();
octave_idx_type ncb = b.cols ();
MArray<T> c (dim_vector (nra*nrb, nca*ncb));
T *cv = c.fortran_vec ();
for (octave_idx_type ja = 0; ja < nca; ja++)
{
octave_quit ();
for (octave_idx_type jb = 0; jb < ncb; jb++)
{
for (octave_idx_type ia = 0; ia < nra; ia++)
{
mx_inline_mul (nrb, cv, a(ia, ja), b.data () + nrb*jb);
cv += nrb;
}
}
}
return c;
}
template <typename R, typename T>
static MArray<T>
kron (const MDiagArray2<R>& a, const MArray<T>& b)
{
assert (b.ndims () == 2);
octave_idx_type nra = a.rows ();
octave_idx_type nrb = b.rows ();
octave_idx_type dla = a.diag_length ();
octave_idx_type nca = a.cols ();
octave_idx_type ncb = b.cols ();
MArray<T> c (dim_vector (nra*nrb, nca*ncb), T ());
for (octave_idx_type ja = 0; ja < dla; ja++)
{
octave_quit ();
for (octave_idx_type jb = 0; jb < ncb; jb++)
{
mx_inline_mul (nrb, &c.xelem (ja*nrb, ja*ncb + jb), a.dgelem (ja),
b.data () + nrb*jb);
}
}
return c;
}
template <typename T>
static MSparse<T>
kron (const MSparse<T>& A, const MSparse<T>& B)
{
octave_idx_type idx = 0;
MSparse<T> C (A.rows () * B.rows (), A.columns () * B.columns (),
A.nnz () * B.nnz ());
C.cidx (0) = 0;
for (octave_idx_type Aj = 0; Aj < A.columns (); Aj++)
{
octave_quit ();
for (octave_idx_type Bj = 0; Bj < B.columns (); Bj++)
{
for (octave_idx_type Ai = A.cidx (Aj); Ai < A.cidx (Aj+1); Ai++)
{
octave_idx_type Ci = A.ridx (Ai) * B.rows ();
const T v = A.data (Ai);
for (octave_idx_type Bi = B.cidx (Bj); Bi < B.cidx (Bj+1); Bi++)
{
C.data (idx) = v * B.data (Bi);
C.ridx (idx++) = Ci + B.ridx (Bi);
}
}
C.cidx (Aj * B.columns () + Bj + 1) = idx;
}
}
return C;
}
static PermMatrix
kron (const PermMatrix& a, const PermMatrix& b)
{
octave_idx_type na = a.rows ();
octave_idx_type nb = b.rows ();
const Array<octave_idx_type>& pa = a.col_perm_vec ();
const Array<octave_idx_type>& pb = b.col_perm_vec ();
Array<octave_idx_type> res_perm (dim_vector (na * nb, 1));
octave_idx_type rescol = 0;
for (octave_idx_type i = 0; i < na; i++)
{
octave_idx_type a_add = pa(i) * nb;
for (octave_idx_type j = 0; j < nb; j++)
res_perm.xelem (rescol++) = a_add + pb(j);
}
return PermMatrix (res_perm, true);
}
template <typename MTA, typename MTB>
octave_value
do_kron (const octave_value& a, const octave_value& b)
{
MTA am = octave_value_extract<MTA> (a);
MTB bm = octave_value_extract<MTB> (b);
return octave_value (kron (am, bm));
}
octave_value
dispatch_kron (const octave_value& a, const octave_value& b)
{
octave_value retval;
if (a.is_perm_matrix () && b.is_perm_matrix ())
retval = do_kron<PermMatrix, PermMatrix> (a, b);
else if (a.issparse () || b.issparse ())
{
if (a.iscomplex () || b.iscomplex ())
retval = do_kron<SparseComplexMatrix, SparseComplexMatrix> (a, b);
else
retval = do_kron<SparseMatrix, SparseMatrix> (a, b);
}
else if (a.is_diag_matrix ())
{
if (b.is_diag_matrix () && a.rows () == a.columns ()
&& b.rows () == b.columns ())
{
// We have two diagonal matrices, the product of those will be
// another diagonal matrix. To do that efficiently, extract
// the diagonals as vectors and compute the product. That
// will be another vector, which we then use to construct a
// diagonal matrix object. Note that this will fail if our
// digaonal matrix object is modified to allow the nonzero
// values to be stored off of the principal diagonal (i.e., if
// diag ([1,2], 3) is modified to return a diagonal matrix
// object instead of a full matrix object).
octave_value tmp = dispatch_kron (a.diag (), b.diag ());
retval = tmp.diag ();
}
else if (a.is_single_type () || b.is_single_type ())
{
if (a.iscomplex ())
retval = do_kron<FloatComplexDiagMatrix, FloatComplexMatrix> (a, b);
else if (b.iscomplex ())
retval = do_kron<FloatDiagMatrix, FloatComplexMatrix> (a, b);
else
retval = do_kron<FloatDiagMatrix, FloatMatrix> (a, b);
}
else
{
if (a.iscomplex ())
retval = do_kron<ComplexDiagMatrix, ComplexMatrix> (a, b);
else if (b.iscomplex ())
retval = do_kron<DiagMatrix, ComplexMatrix> (a, b);
else
retval = do_kron<DiagMatrix, Matrix> (a, b);
}
}
else if (a.is_single_type () || b.is_single_type ())
{
if (a.iscomplex ())
retval = do_kron<FloatComplexMatrix, FloatComplexMatrix> (a, b);
else if (b.iscomplex ())
retval = do_kron<FloatMatrix, FloatComplexMatrix> (a, b);
else
retval = do_kron<FloatMatrix, FloatMatrix> (a, b);
}
else
{
if (a.iscomplex ())
retval = do_kron<ComplexMatrix, ComplexMatrix> (a, b);
else if (b.iscomplex ())
retval = do_kron<Matrix, ComplexMatrix> (a, b);
else
retval = do_kron<Matrix, Matrix> (a, b);
}
return retval;
}
DEFUN (kron, args, ,
doc: /* -*- texinfo -*-
@deftypefn {} {} kron (@var{A}, @var{B})
@deftypefnx {} {} kron (@var{A1}, @var{A2}, @dots{})
Form the Kronecker product of two or more matrices.
This is defined block by block as
@example
x = [ a(i,j)*b ]
@end example
For example:
@example
@group
kron (1:4, ones (3, 1))
@result{} 1 2 3 4
1 2 3 4
1 2 3 4
@end group
@end example
If there are more than two input arguments @var{A1}, @var{A2}, @dots{},
@var{An} the Kronecker product is computed as
@example
kron (kron (@var{A1}, @var{A2}), @dots{}, @var{An})
@end example
@noindent
Since the Kronecker product is associative, this is well-defined.
@end deftypefn */)
{
int nargin = args.length ();
if (nargin < 2)
print_usage ();
octave_value retval;
octave_value a = args(0);
octave_value b = args(1);
retval = dispatch_kron (a, b);
for (octave_idx_type i = 2; i < nargin; i++)
retval = dispatch_kron (retval, args(i));
return retval;
}
/*
%!test
%! x = ones (2);
%! assert (kron (x, x), ones (4));
%!shared x, y, z, p1, p2, d1, d2
%! x = [1, 2];
%! y = [-1, -2];
%! z = [1, 2, 3, 4; 1, 2, 3, 4; 1, 2, 3, 4];
%! p1 = eye (3)([2, 3, 1], :); ## Permutation matrix
%! p2 = [0 1 0; 0 0 1; 1 0 0]; ## Non-permutation equivalent
%! d1 = diag ([1 2 3]); ## Diag type matrix
%! d2 = [1 0 0; 0 2 0; 0 0 3]; ## Non-diag equivalent
%!assert (kron (1:4, ones (3, 1)), z)
%!assert (kron (single (1:4), ones (3, 1)), single (z))
%!assert (kron (sparse (1:4), ones (3, 1)), sparse (z))
%!assert (kron (complex (1:4), ones (3, 1)), z)
%!assert (kron (complex (single(1:4)), ones (3, 1)), single(z))
%!assert (kron (x, y, z), kron (kron (x, y), z))
%!assert (kron (x, y, z), kron (x, kron (y, z)))
%!assert (kron (p1, p1), kron (p2, p2))
%!assert (kron (p1, p2), kron (p2, p1))
%!assert (kron (d1, d1), kron (d2, d2))
%!assert (kron (d1, d2), kron (d2, d1))
%!assert (kron (diag ([1, 2]), diag ([3, 4])), diag ([3, 4, 6, 8]))
## Test for two diag matrices.
## See the comments above in dispatch_kron for this case.
%!test
%! expected = zeros (16, 16);
%! expected (1, 11) = 3;
%! expected (2, 12) = 4;
%! expected (5, 15) = 6;
%! expected (6, 16) = 8;
%! assert (kron (diag ([1, 2], 2), diag ([3, 4], 2)), expected);
*/
|