File: ls-mat4.cc

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (566 lines) | stat: -rw-r--r-- 16,420 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <iomanip>
#include <istream>
#include <ostream>
#include <string>

#include "byte-swap.h"
#include "dMatrix.h"
#include "dSparse.h"
#include "data-conv.h"
#include "file-ops.h"
#include "glob-match.h"
#include "lo-mappers.h"
#include "mach-info.h"
#include "oct-env.h"
#include "oct-locbuf.h"
#include "oct-time.h"
#include "quit.h"

#include "ls-mat4.h"
#include "Cell.h"
#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "load-save.h"
#include "oct-map.h"
#include "ov-cell.h"
#include "ovl.h"
#include "pager.h"
#include "sysdep.h"
#include "utils.h"
#include "variables.h"
#include "version.h"


// Read LEN elements of data from IS in the format specified by
// PRECISION, placing the result in DATA.  If SWAP is TRUE, swap
// the bytes of each element before copying to DATA.  FLT_FMT
// specifies the format of the data if we are reading floating point
// numbers.

static void
read_mat_binary_data (std::istream& is, double *data, int precision,
                      int len, bool swap,
                      octave::mach_info::float_format flt_fmt)
{
  switch (precision)
    {
    case 0:
      read_doubles (is, data, LS_DOUBLE, len, swap, flt_fmt);
      break;

    case 1:
      read_doubles (is, data, LS_FLOAT, len, swap, flt_fmt);
      break;

    case 2:
      read_doubles (is, data, LS_INT, len, swap, flt_fmt);
      break;

    case 3:
      read_doubles (is, data, LS_SHORT, len, swap, flt_fmt);
      break;

    case 4:
      read_doubles (is, data, LS_U_SHORT, len, swap, flt_fmt);
      break;

    case 5:
      read_doubles (is, data, LS_U_CHAR, len, swap, flt_fmt);
      break;

    default:
      break;
    }
}

int
read_mat_file_header (std::istream& is, bool& swap, int32_t& mopt,
                      int32_t& nr, int32_t& nc,
                      int32_t& imag, int32_t& len,
                      int quiet)
{
  swap = false;

  // We expect to fail here, at the beginning of a record, so not
  // being able to read another mopt value should not result in an
  // error.

  is.read (reinterpret_cast<char *> (&mopt), 4);
  if (! is)
    return 1;

  if (! is.read (reinterpret_cast<char *> (&nr), 4))
    return -1;

  if (! is.read (reinterpret_cast<char *> (&nc), 4))
    return -1;

  if (! is.read (reinterpret_cast<char *> (&imag), 4))
    return -1;

  if (! is.read (reinterpret_cast<char *> (&len), 4))
    return -1;

// If mopt is nonzero and the byte order is swapped, mopt will be
// bigger than we expect, so we swap bytes.
//
// If mopt is zero, it means the file was written on a little endian machine,
// and we only need to swap if we are running on a big endian machine.
//
// Gag me.

  if (octave::mach_info::words_big_endian () && mopt == 0)
    swap = true;

  // mopt is signed, therefore byte swap may result in negative value.

  if (mopt > 9999 || mopt < 0)
    swap = true;

  if (swap)
    {
      swap_bytes<4> (&mopt);
      swap_bytes<4> (&nr);
      swap_bytes<4> (&nc);
      swap_bytes<4> (&imag);
      swap_bytes<4> (&len);
    }

  if (mopt > 9999 || mopt < 0 || imag > 1 || imag < 0)
    {
      if (! quiet)
        error ("load: can't read binary file");

      return -1;
    }

  return 0;
}

// We don't just use a cast here, because we need to be able to detect
// possible errors.

octave::mach_info::float_format
mopt_digit_to_float_format (int mach)
{
  octave::mach_info::float_format flt_fmt = octave::mach_info::flt_fmt_unknown;

  switch (mach)
    {
    case 0:
      flt_fmt = octave::mach_info::flt_fmt_ieee_little_endian;
      break;

    case 1:
      flt_fmt = octave::mach_info::flt_fmt_ieee_big_endian;
      break;

    case 2:
    case 3:
    case 4:
    default:
      flt_fmt = octave::mach_info::flt_fmt_unknown;
      break;
    }

  return flt_fmt;
}

int
float_format_to_mopt_digit (octave::mach_info::float_format flt_fmt)
{
  int retval = -1;

  switch (flt_fmt)
    {
    case octave::mach_info::flt_fmt_ieee_little_endian:
      retval = 0;
      break;

    case octave::mach_info::flt_fmt_ieee_big_endian:
      retval = 1;
      break;

    default:
      break;
    }

  return retval;
}

// Extract one value (scalar, matrix, string, etc.) from stream IS and
// place it in TC, returning the name of the variable.
//
// The data is expected to be in Matlab version 4 .mat format, though
// not all the features of that format are supported.
//
// FILENAME is used for error messages.
//
// This format provides no way to tag the data as global.

std::string
read_mat_binary_data (std::istream& is, const std::string& filename,
                      octave_value& tc)
{
  std::string retval;

  bool swap = false;
  int32_t mopt, nr, nc, imag, len;

  int err = read_mat_file_header (is, swap, mopt, nr, nc, imag, len);
  if (err)
    {
      if (err < 0)
        error ("load: trouble reading binary file '%s'", filename.c_str ());

      return retval;
    }

  int type = 0;
  int prec = 0;
  int order = 0;
  int mach = 0;

  type = mopt % 10;  // Full, sparse, etc.
  mopt /= 10;        // Eliminate first digit.
  prec = mopt % 10;  // double, float, int, etc.
  mopt /= 10;        // Eliminate second digit.
  order = mopt % 10; // Row or column major ordering.
  mopt /= 10;        // Eliminate third digit.
  mach = mopt % 10;  // IEEE, VAX, etc.

  octave::mach_info::float_format flt_fmt;
  flt_fmt = mopt_digit_to_float_format (mach);

  if (flt_fmt == octave::mach_info::flt_fmt_unknown)
    error ("load: unrecognized binary format!");

  if (imag && type == 1)
    error ("load: encountered complex matrix with string flag set!");

  int dlen = 0;

  // LEN includes the terminating character, and the file is also
  // supposed to include it, but apparently not all files do.  Either
  // way, I think this should work.

  {
    OCTAVE_LOCAL_BUFFER (char, name, len+1);
    name[len] = '\0';
    if (! is.read (name, len))
      error ("load: trouble reading binary file '%s'", filename.c_str ());
    retval = name;

    dlen = nr * nc;
    if (dlen < 0)
      error ("load: trouble reading binary file '%s'", filename.c_str ());

    if (order)
      {
        octave_idx_type tmp = nr;
        nr = nc;
        nc = tmp;
      }

    if (type == 2)
      {
        if (nc == 4)
          {
            octave_idx_type nr_new, nc_new;
            Array<Complex> data (dim_vector (1, nr - 1));
            Array<octave_idx_type> c (dim_vector (1, nr - 1));
            Array<octave_idx_type> r (dim_vector (1, nr - 1));
            OCTAVE_LOCAL_BUFFER (double, dtmp, nr);
            OCTAVE_LOCAL_BUFFER (double, ctmp, nr);

            read_mat_binary_data (is, dtmp, prec, nr, swap, flt_fmt);
            for (octave_idx_type i = 0; i < nr - 1; i++)
              r.xelem (i) = dtmp[i] - 1;
            nr_new = dtmp[nr - 1];
            read_mat_binary_data (is, dtmp, prec, nr, swap, flt_fmt);
            for (octave_idx_type i = 0; i < nr - 1; i++)
              c.xelem (i) = dtmp[i] - 1;
            nc_new = dtmp[nr - 1];
            read_mat_binary_data (is, dtmp, prec, nr - 1, swap, flt_fmt);
            read_mat_binary_data (is, ctmp, prec, 1, swap, flt_fmt);
            read_mat_binary_data (is, ctmp, prec, nr - 1, swap, flt_fmt);

            for (octave_idx_type i = 0; i < nr - 1; i++)
              data.xelem (i) = Complex (dtmp[i], ctmp[i]);
            read_mat_binary_data (is, ctmp, prec, 1, swap, flt_fmt);

            SparseComplexMatrix smc = SparseComplexMatrix (data, r, c,
                                                           nr_new, nc_new);

            tc = (order ? smc.transpose () : smc);
          }
        else
          {
            octave_idx_type nr_new, nc_new;
            Array<double> data (dim_vector (1, nr - 1));
            Array<octave_idx_type> c (dim_vector (1, nr - 1));
            Array<octave_idx_type> r (dim_vector (1, nr - 1));
            OCTAVE_LOCAL_BUFFER (double, dtmp, nr);

            read_mat_binary_data (is, dtmp, prec, nr, swap, flt_fmt);
            for (octave_idx_type i = 0; i < nr - 1; i++)
              r.xelem (i) = dtmp[i] - 1;
            nr_new = dtmp[nr - 1];
            read_mat_binary_data (is, dtmp, prec, nr, swap, flt_fmt);
            for (octave_idx_type i = 0; i < nr - 1; i++)
              c.xelem (i) = dtmp[i] - 1;
            nc_new = dtmp[nr - 1];
            read_mat_binary_data (is, data.fortran_vec (), prec, nr - 1,
                                  swap, flt_fmt);
            read_mat_binary_data (is, dtmp, prec, 1, swap, flt_fmt);

            SparseMatrix sm = SparseMatrix (data, r, c, nr_new, nc_new);

            tc = (order ? sm.transpose () : sm);
          }
      }
    else
      {
        Matrix re (nr, nc);

        read_mat_binary_data (is, re.fortran_vec (), prec, dlen, swap, flt_fmt);

        if (! is)
          error ("load: reading matrix data for '%s'", name);

        if (imag)
          {
            Matrix im (nr, nc);

            read_mat_binary_data (is, im.fortran_vec (), prec, dlen, swap,
                                  flt_fmt);

            if (! is)
              error ("load: reading imaginary matrix data for '%s'", name);

            ComplexMatrix ctmp (nr, nc);

            for (octave_idx_type j = 0; j < nc; j++)
              for (octave_idx_type i = 0; i < nr; i++)
                ctmp (i,j) = Complex (re(i,j), im(i,j));

            tc = (order ? ctmp.transpose () : ctmp);
          }
        else
          tc = (order ? re.transpose () : re);

        if (type == 1)
          tc = tc.convert_to_str (false, true, '\'');
      }

    return retval;
  }
}

// Save the data from TC along with the corresponding NAME on stream OS
// in the MatLab version 4 binary format.

bool
save_mat_binary_data (std::ostream& os, const octave_value& tc,
                      const std::string& name)
{
  int32_t mopt = 0;

  mopt += tc.issparse () ? 2 : tc.is_string () ? 1 : 0;

  octave::mach_info::float_format flt_fmt
    = octave::mach_info::native_float_format ();;

  mopt += 1000 * float_format_to_mopt_digit (flt_fmt);

  os.write (reinterpret_cast<char *> (&mopt), 4);

  octave_idx_type len;
  int32_t nr = tc.rows ();

  int32_t nc = tc.columns ();

  if (tc.issparse ())
    {
      len = tc.nnz ();
      uint32_t nnz = len + 1;
      os.write (reinterpret_cast<char *> (&nnz), 4);

      uint32_t iscmplx = (tc.iscomplex () ? 4 : 3);
      os.write (reinterpret_cast<char *> (&iscmplx), 4);

      uint32_t tmp = 0;
      os.write (reinterpret_cast<char *> (&tmp), 4);
    }
  else
    {
      os.write (reinterpret_cast<char *> (&nr), 4);
      os.write (reinterpret_cast<char *> (&nc), 4);

      int32_t imag = (tc.iscomplex () ? 1 : 0);
      os.write (reinterpret_cast<char *> (&imag), 4);

      len = nr * nc;
    }

  // LEN includes the terminating character, and the file is also
  // supposed to include it.

  int32_t name_len = name.length () + 1;

  os.write (reinterpret_cast<char *> (&name_len), 4);
  os << name << '\0';

  if (tc.is_string ())
    {
      charMatrix chm = tc.char_matrix_value ();

      octave_idx_type nrow = chm.rows ();
      octave_idx_type ncol = chm.cols ();

      OCTAVE_LOCAL_BUFFER (double, buf, ncol*nrow);

      for (octave_idx_type i = 0; i < nrow; i++)
        {
          std::string tstr = chm.row_as_string (i);
          const char *s = tstr.data ();

          for (octave_idx_type j = 0; j < ncol; j++)
            buf[j*nrow+i] = static_cast<double> (*s++ & 0x00FF);
        }
      std::streamsize n_bytes = static_cast<std::streamsize> (nrow) *
                                static_cast<std::streamsize> (ncol) *
                                sizeof (double);
      os.write (reinterpret_cast<char *> (buf), n_bytes);
    }
  else if (tc.is_range ())
    {
      Range r = tc.range_value ();
      double base = r.base ();
      double inc = r.inc ();
      octave_idx_type nel = r.numel ();
      for (octave_idx_type i = 0; i < nel; i++)
        {
          double x = base + i * inc;
          os.write (reinterpret_cast<char *> (&x), 8);
        }
    }
  else if (tc.is_real_scalar ())
    {
      double tmp = tc.double_value ();
      os.write (reinterpret_cast<char *> (&tmp), 8);
    }
  else if (tc.issparse ())
    {
      double ds;
      OCTAVE_LOCAL_BUFFER (double, dtmp, len);
      if (tc.is_complex_matrix ())
        {
          SparseComplexMatrix m = tc.sparse_complex_matrix_value ();

          for (octave_idx_type i = 0; i < len; i++)
            dtmp[i] = m.ridx (i) + 1;
          std::streamsize n_bytes = 8 * static_cast<std::streamsize> (len);
          os.write (reinterpret_cast<const char *> (dtmp), n_bytes);
          ds = nr;
          os.write (reinterpret_cast<const char *> (&ds), 8);

          octave_idx_type ii = 0;
          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = m.cidx (j); i < m.cidx (j+1); i++)
              dtmp[ii++] = j + 1;
          os.write (reinterpret_cast<const char *> (dtmp), n_bytes);
          ds = nc;
          os.write (reinterpret_cast<const char *> (&ds), 8);

          for (octave_idx_type i = 0; i < len; i++)
            dtmp[i] = std::real (m.data (i));
          os.write (reinterpret_cast<const char *> (dtmp), n_bytes);
          ds = 0.;
          os.write (reinterpret_cast<const char *> (&ds), 8);

          for (octave_idx_type i = 0; i < len; i++)
            dtmp[i] = std::imag (m.data (i));
          os.write (reinterpret_cast<const char *> (dtmp), n_bytes);
          os.write (reinterpret_cast<const char *> (&ds), 8);
        }
      else
        {
          SparseMatrix m = tc.sparse_matrix_value ();

          for (octave_idx_type i = 0; i < len; i++)
            dtmp[i] = m.ridx (i) + 1;
          std::streamsize n_bytes = 8 * static_cast<std::streamsize> (len);
          os.write (reinterpret_cast<const char *> (dtmp), n_bytes);
          ds = nr;
          os.write (reinterpret_cast<const char *> (&ds), 8);

          octave_idx_type ii = 0;
          for (octave_idx_type j = 0; j < nc; j++)
            for (octave_idx_type i = m.cidx (j); i < m.cidx (j+1); i++)
              dtmp[ii++] = j + 1;
          os.write (reinterpret_cast<const char *> (dtmp), n_bytes);
          ds = nc;
          os.write (reinterpret_cast<const char *> (&ds), 8);

          os.write (reinterpret_cast<const char *> (m.data ()), n_bytes);
          ds = 0.;
          os.write (reinterpret_cast<const char *> (&ds), 8);
        }
    }
  else if (tc.is_real_matrix ())
    {
      Matrix m = tc.matrix_value ();
      std::streamsize n_bytes = 8 * static_cast<std::streamsize> (len);
      os.write (reinterpret_cast<const char *> (m.data ()), n_bytes);
    }
  else if (tc.is_complex_scalar ())
    {
      Complex tmp = tc.complex_value ();
      os.write (reinterpret_cast<char *> (&tmp), 16);
    }
  else if (tc.is_complex_matrix ())
    {
      ComplexMatrix m_cmplx = tc.complex_matrix_value ();
      Matrix m = ::real (m_cmplx);
      std::streamsize n_bytes = 8 * static_cast<std::streamsize> (len);
      os.write (reinterpret_cast<const char *> (m.data ()), n_bytes);
      m = ::imag (m_cmplx);
      os.write (reinterpret_cast<const char *> (m.data ()), n_bytes);
    }
  else
    // FIXME: Should this just error out rather than warn?
    warn_wrong_type_arg ("save", tc);

  return ! os.fail ();
}