1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
#if defined (HAVE_CONFIG_H)
# include "config.h"
#endif
#include <iomanip>
#include <istream>
#include <ostream>
#include <string>
#include "byte-swap.h"
#include "dMatrix.h"
#include "dSparse.h"
#include "data-conv.h"
#include "file-ops.h"
#include "glob-match.h"
#include "lo-mappers.h"
#include "mach-info.h"
#include "oct-env.h"
#include "oct-locbuf.h"
#include "oct-time.h"
#include "quit.h"
#include "ls-mat4.h"
#include "Cell.h"
#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "load-save.h"
#include "oct-map.h"
#include "ov-cell.h"
#include "ovl.h"
#include "pager.h"
#include "sysdep.h"
#include "utils.h"
#include "variables.h"
#include "version.h"
// Read LEN elements of data from IS in the format specified by
// PRECISION, placing the result in DATA. If SWAP is TRUE, swap
// the bytes of each element before copying to DATA. FLT_FMT
// specifies the format of the data if we are reading floating point
// numbers.
static void
read_mat_binary_data (std::istream& is, double *data, int precision,
int len, bool swap,
octave::mach_info::float_format flt_fmt)
{
switch (precision)
{
case 0:
read_doubles (is, data, LS_DOUBLE, len, swap, flt_fmt);
break;
case 1:
read_doubles (is, data, LS_FLOAT, len, swap, flt_fmt);
break;
case 2:
read_doubles (is, data, LS_INT, len, swap, flt_fmt);
break;
case 3:
read_doubles (is, data, LS_SHORT, len, swap, flt_fmt);
break;
case 4:
read_doubles (is, data, LS_U_SHORT, len, swap, flt_fmt);
break;
case 5:
read_doubles (is, data, LS_U_CHAR, len, swap, flt_fmt);
break;
default:
break;
}
}
int
read_mat_file_header (std::istream& is, bool& swap, int32_t& mopt,
int32_t& nr, int32_t& nc,
int32_t& imag, int32_t& len,
int quiet)
{
swap = false;
// We expect to fail here, at the beginning of a record, so not
// being able to read another mopt value should not result in an
// error.
is.read (reinterpret_cast<char *> (&mopt), 4);
if (! is)
return 1;
if (! is.read (reinterpret_cast<char *> (&nr), 4))
return -1;
if (! is.read (reinterpret_cast<char *> (&nc), 4))
return -1;
if (! is.read (reinterpret_cast<char *> (&imag), 4))
return -1;
if (! is.read (reinterpret_cast<char *> (&len), 4))
return -1;
// If mopt is nonzero and the byte order is swapped, mopt will be
// bigger than we expect, so we swap bytes.
//
// If mopt is zero, it means the file was written on a little endian machine,
// and we only need to swap if we are running on a big endian machine.
//
// Gag me.
if (octave::mach_info::words_big_endian () && mopt == 0)
swap = true;
// mopt is signed, therefore byte swap may result in negative value.
if (mopt > 9999 || mopt < 0)
swap = true;
if (swap)
{
swap_bytes<4> (&mopt);
swap_bytes<4> (&nr);
swap_bytes<4> (&nc);
swap_bytes<4> (&imag);
swap_bytes<4> (&len);
}
if (mopt > 9999 || mopt < 0 || imag > 1 || imag < 0)
{
if (! quiet)
error ("load: can't read binary file");
return -1;
}
return 0;
}
// We don't just use a cast here, because we need to be able to detect
// possible errors.
octave::mach_info::float_format
mopt_digit_to_float_format (int mach)
{
octave::mach_info::float_format flt_fmt = octave::mach_info::flt_fmt_unknown;
switch (mach)
{
case 0:
flt_fmt = octave::mach_info::flt_fmt_ieee_little_endian;
break;
case 1:
flt_fmt = octave::mach_info::flt_fmt_ieee_big_endian;
break;
case 2:
case 3:
case 4:
default:
flt_fmt = octave::mach_info::flt_fmt_unknown;
break;
}
return flt_fmt;
}
int
float_format_to_mopt_digit (octave::mach_info::float_format flt_fmt)
{
int retval = -1;
switch (flt_fmt)
{
case octave::mach_info::flt_fmt_ieee_little_endian:
retval = 0;
break;
case octave::mach_info::flt_fmt_ieee_big_endian:
retval = 1;
break;
default:
break;
}
return retval;
}
// Extract one value (scalar, matrix, string, etc.) from stream IS and
// place it in TC, returning the name of the variable.
//
// The data is expected to be in Matlab version 4 .mat format, though
// not all the features of that format are supported.
//
// FILENAME is used for error messages.
//
// This format provides no way to tag the data as global.
std::string
read_mat_binary_data (std::istream& is, const std::string& filename,
octave_value& tc)
{
std::string retval;
bool swap = false;
int32_t mopt, nr, nc, imag, len;
int err = read_mat_file_header (is, swap, mopt, nr, nc, imag, len);
if (err)
{
if (err < 0)
error ("load: trouble reading binary file '%s'", filename.c_str ());
return retval;
}
int type = 0;
int prec = 0;
int order = 0;
int mach = 0;
type = mopt % 10; // Full, sparse, etc.
mopt /= 10; // Eliminate first digit.
prec = mopt % 10; // double, float, int, etc.
mopt /= 10; // Eliminate second digit.
order = mopt % 10; // Row or column major ordering.
mopt /= 10; // Eliminate third digit.
mach = mopt % 10; // IEEE, VAX, etc.
octave::mach_info::float_format flt_fmt;
flt_fmt = mopt_digit_to_float_format (mach);
if (flt_fmt == octave::mach_info::flt_fmt_unknown)
error ("load: unrecognized binary format!");
if (imag && type == 1)
error ("load: encountered complex matrix with string flag set!");
int dlen = 0;
// LEN includes the terminating character, and the file is also
// supposed to include it, but apparently not all files do. Either
// way, I think this should work.
{
OCTAVE_LOCAL_BUFFER (char, name, len+1);
name[len] = '\0';
if (! is.read (name, len))
error ("load: trouble reading binary file '%s'", filename.c_str ());
retval = name;
dlen = nr * nc;
if (dlen < 0)
error ("load: trouble reading binary file '%s'", filename.c_str ());
if (order)
{
octave_idx_type tmp = nr;
nr = nc;
nc = tmp;
}
if (type == 2)
{
if (nc == 4)
{
octave_idx_type nr_new, nc_new;
Array<Complex> data (dim_vector (1, nr - 1));
Array<octave_idx_type> c (dim_vector (1, nr - 1));
Array<octave_idx_type> r (dim_vector (1, nr - 1));
OCTAVE_LOCAL_BUFFER (double, dtmp, nr);
OCTAVE_LOCAL_BUFFER (double, ctmp, nr);
read_mat_binary_data (is, dtmp, prec, nr, swap, flt_fmt);
for (octave_idx_type i = 0; i < nr - 1; i++)
r.xelem (i) = dtmp[i] - 1;
nr_new = dtmp[nr - 1];
read_mat_binary_data (is, dtmp, prec, nr, swap, flt_fmt);
for (octave_idx_type i = 0; i < nr - 1; i++)
c.xelem (i) = dtmp[i] - 1;
nc_new = dtmp[nr - 1];
read_mat_binary_data (is, dtmp, prec, nr - 1, swap, flt_fmt);
read_mat_binary_data (is, ctmp, prec, 1, swap, flt_fmt);
read_mat_binary_data (is, ctmp, prec, nr - 1, swap, flt_fmt);
for (octave_idx_type i = 0; i < nr - 1; i++)
data.xelem (i) = Complex (dtmp[i], ctmp[i]);
read_mat_binary_data (is, ctmp, prec, 1, swap, flt_fmt);
SparseComplexMatrix smc = SparseComplexMatrix (data, r, c,
nr_new, nc_new);
tc = (order ? smc.transpose () : smc);
}
else
{
octave_idx_type nr_new, nc_new;
Array<double> data (dim_vector (1, nr - 1));
Array<octave_idx_type> c (dim_vector (1, nr - 1));
Array<octave_idx_type> r (dim_vector (1, nr - 1));
OCTAVE_LOCAL_BUFFER (double, dtmp, nr);
read_mat_binary_data (is, dtmp, prec, nr, swap, flt_fmt);
for (octave_idx_type i = 0; i < nr - 1; i++)
r.xelem (i) = dtmp[i] - 1;
nr_new = dtmp[nr - 1];
read_mat_binary_data (is, dtmp, prec, nr, swap, flt_fmt);
for (octave_idx_type i = 0; i < nr - 1; i++)
c.xelem (i) = dtmp[i] - 1;
nc_new = dtmp[nr - 1];
read_mat_binary_data (is, data.fortran_vec (), prec, nr - 1,
swap, flt_fmt);
read_mat_binary_data (is, dtmp, prec, 1, swap, flt_fmt);
SparseMatrix sm = SparseMatrix (data, r, c, nr_new, nc_new);
tc = (order ? sm.transpose () : sm);
}
}
else
{
Matrix re (nr, nc);
read_mat_binary_data (is, re.fortran_vec (), prec, dlen, swap, flt_fmt);
if (! is)
error ("load: reading matrix data for '%s'", name);
if (imag)
{
Matrix im (nr, nc);
read_mat_binary_data (is, im.fortran_vec (), prec, dlen, swap,
flt_fmt);
if (! is)
error ("load: reading imaginary matrix data for '%s'", name);
ComplexMatrix ctmp (nr, nc);
for (octave_idx_type j = 0; j < nc; j++)
for (octave_idx_type i = 0; i < nr; i++)
ctmp (i,j) = Complex (re(i,j), im(i,j));
tc = (order ? ctmp.transpose () : ctmp);
}
else
tc = (order ? re.transpose () : re);
if (type == 1)
tc = tc.convert_to_str (false, true, '\'');
}
return retval;
}
}
// Save the data from TC along with the corresponding NAME on stream OS
// in the MatLab version 4 binary format.
bool
save_mat_binary_data (std::ostream& os, const octave_value& tc,
const std::string& name)
{
int32_t mopt = 0;
mopt += tc.issparse () ? 2 : tc.is_string () ? 1 : 0;
octave::mach_info::float_format flt_fmt
= octave::mach_info::native_float_format ();;
mopt += 1000 * float_format_to_mopt_digit (flt_fmt);
os.write (reinterpret_cast<char *> (&mopt), 4);
octave_idx_type len;
int32_t nr = tc.rows ();
int32_t nc = tc.columns ();
if (tc.issparse ())
{
len = tc.nnz ();
uint32_t nnz = len + 1;
os.write (reinterpret_cast<char *> (&nnz), 4);
uint32_t iscmplx = (tc.iscomplex () ? 4 : 3);
os.write (reinterpret_cast<char *> (&iscmplx), 4);
uint32_t tmp = 0;
os.write (reinterpret_cast<char *> (&tmp), 4);
}
else
{
os.write (reinterpret_cast<char *> (&nr), 4);
os.write (reinterpret_cast<char *> (&nc), 4);
int32_t imag = (tc.iscomplex () ? 1 : 0);
os.write (reinterpret_cast<char *> (&imag), 4);
len = nr * nc;
}
// LEN includes the terminating character, and the file is also
// supposed to include it.
int32_t name_len = name.length () + 1;
os.write (reinterpret_cast<char *> (&name_len), 4);
os << name << '\0';
if (tc.is_string ())
{
charMatrix chm = tc.char_matrix_value ();
octave_idx_type nrow = chm.rows ();
octave_idx_type ncol = chm.cols ();
OCTAVE_LOCAL_BUFFER (double, buf, ncol*nrow);
for (octave_idx_type i = 0; i < nrow; i++)
{
std::string tstr = chm.row_as_string (i);
const char *s = tstr.data ();
for (octave_idx_type j = 0; j < ncol; j++)
buf[j*nrow+i] = static_cast<double> (*s++ & 0x00FF);
}
std::streamsize n_bytes = static_cast<std::streamsize> (nrow) *
static_cast<std::streamsize> (ncol) *
sizeof (double);
os.write (reinterpret_cast<char *> (buf), n_bytes);
}
else if (tc.is_range ())
{
Range r = tc.range_value ();
double base = r.base ();
double inc = r.inc ();
octave_idx_type nel = r.numel ();
for (octave_idx_type i = 0; i < nel; i++)
{
double x = base + i * inc;
os.write (reinterpret_cast<char *> (&x), 8);
}
}
else if (tc.is_real_scalar ())
{
double tmp = tc.double_value ();
os.write (reinterpret_cast<char *> (&tmp), 8);
}
else if (tc.issparse ())
{
double ds;
OCTAVE_LOCAL_BUFFER (double, dtmp, len);
if (tc.is_complex_matrix ())
{
SparseComplexMatrix m = tc.sparse_complex_matrix_value ();
for (octave_idx_type i = 0; i < len; i++)
dtmp[i] = m.ridx (i) + 1;
std::streamsize n_bytes = 8 * static_cast<std::streamsize> (len);
os.write (reinterpret_cast<const char *> (dtmp), n_bytes);
ds = nr;
os.write (reinterpret_cast<const char *> (&ds), 8);
octave_idx_type ii = 0;
for (octave_idx_type j = 0; j < nc; j++)
for (octave_idx_type i = m.cidx (j); i < m.cidx (j+1); i++)
dtmp[ii++] = j + 1;
os.write (reinterpret_cast<const char *> (dtmp), n_bytes);
ds = nc;
os.write (reinterpret_cast<const char *> (&ds), 8);
for (octave_idx_type i = 0; i < len; i++)
dtmp[i] = std::real (m.data (i));
os.write (reinterpret_cast<const char *> (dtmp), n_bytes);
ds = 0.;
os.write (reinterpret_cast<const char *> (&ds), 8);
for (octave_idx_type i = 0; i < len; i++)
dtmp[i] = std::imag (m.data (i));
os.write (reinterpret_cast<const char *> (dtmp), n_bytes);
os.write (reinterpret_cast<const char *> (&ds), 8);
}
else
{
SparseMatrix m = tc.sparse_matrix_value ();
for (octave_idx_type i = 0; i < len; i++)
dtmp[i] = m.ridx (i) + 1;
std::streamsize n_bytes = 8 * static_cast<std::streamsize> (len);
os.write (reinterpret_cast<const char *> (dtmp), n_bytes);
ds = nr;
os.write (reinterpret_cast<const char *> (&ds), 8);
octave_idx_type ii = 0;
for (octave_idx_type j = 0; j < nc; j++)
for (octave_idx_type i = m.cidx (j); i < m.cidx (j+1); i++)
dtmp[ii++] = j + 1;
os.write (reinterpret_cast<const char *> (dtmp), n_bytes);
ds = nc;
os.write (reinterpret_cast<const char *> (&ds), 8);
os.write (reinterpret_cast<const char *> (m.data ()), n_bytes);
ds = 0.;
os.write (reinterpret_cast<const char *> (&ds), 8);
}
}
else if (tc.is_real_matrix ())
{
Matrix m = tc.matrix_value ();
std::streamsize n_bytes = 8 * static_cast<std::streamsize> (len);
os.write (reinterpret_cast<const char *> (m.data ()), n_bytes);
}
else if (tc.is_complex_scalar ())
{
Complex tmp = tc.complex_value ();
os.write (reinterpret_cast<char *> (&tmp), 16);
}
else if (tc.is_complex_matrix ())
{
ComplexMatrix m_cmplx = tc.complex_matrix_value ();
Matrix m = ::real (m_cmplx);
std::streamsize n_bytes = 8 * static_cast<std::streamsize> (len);
os.write (reinterpret_cast<const char *> (m.data ()), n_bytes);
m = ::imag (m_cmplx);
os.write (reinterpret_cast<const char *> (m.data ()), n_bytes);
}
else
// FIXME: Should this just error out rather than warn?
warn_wrong_type_arg ("save", tc);
return ! os.fail ();
}
|