1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2009-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
#if defined (HAVE_CONFIG_H)
# include "config.h"
#endif
#include "oct-norm.h"
#include "defun.h"
#include "error.h"
#include "errwarn.h"
template <typename ColumnVector, typename Matrix, typename RowVector>
static void
do_mgorth (ColumnVector& x, const Matrix& V, RowVector& h)
{
octave_idx_type Vc = V.columns ();
h = RowVector (Vc + 1);
for (octave_idx_type j = 0; j < Vc; j++)
{
ColumnVector Vcj = V.column (j);
h(j) = RowVector (Vcj.hermitian ()) * x;
x -= h(j) * Vcj;
}
h(Vc) = xnorm (x);
if (std::real (h(Vc)) > 0)
x /= h(Vc);
}
DEFUN (mgorth, args, ,
doc: /* -*- texinfo -*-
@deftypefn {} {[@var{y}, @var{h}] =} mgorth (@var{x}, @var{v})
Orthogonalize a given column vector @var{x} with respect to a set of
orthonormal vectors comprising the columns of @var{v} using the modified
Gram-Schmidt method.
On exit, @var{y} is a unit vector such that:
@example
@group
norm (@var{y}) = 1
@var{v}' * @var{y} = 0
@var{x} = [@var{v}, @var{y}]*@var{h}'
@end group
@end example
@end deftypefn */)
{
if (args.length () != 2)
print_usage ();
octave_value arg_x = args(0);
octave_value arg_v = args(1);
if (arg_v.ndims () != 2 || arg_x.ndims () != 2 || arg_x.columns () != 1
|| arg_v.rows () != arg_x.rows ())
error ("mgorth: V should be a matrix, and X a column vector with"
" the same number of rows as V.");
if (! arg_x.isnumeric () && ! arg_v.isnumeric ())
error ("mgorth: X and V must be numeric");
octave_value_list retval;
bool iscomplex = (arg_x.iscomplex () || arg_v.iscomplex ());
if (arg_x.is_single_type () || arg_v.is_single_type ())
{
if (iscomplex)
{
FloatComplexColumnVector x
= arg_x.float_complex_column_vector_value ();
FloatComplexMatrix V = arg_v.float_complex_matrix_value ();
FloatComplexRowVector h;
do_mgorth (x, V, h);
retval = ovl (x, h);
}
else
{
FloatColumnVector x = arg_x.float_column_vector_value ();
FloatMatrix V = arg_v.float_matrix_value ();
FloatRowVector h;
do_mgorth (x, V, h);
retval = ovl (x, h);
}
}
else
{
if (iscomplex)
{
ComplexColumnVector x = arg_x.complex_column_vector_value ();
ComplexMatrix V = arg_v.complex_matrix_value ();
ComplexRowVector h;
do_mgorth (x, V, h);
retval = ovl (x, h);
}
else
{
ColumnVector x = arg_x.column_vector_value ();
Matrix V = arg_v.matrix_value ();
RowVector h;
do_mgorth (x, V, h);
retval = ovl (x, h);
}
}
return retval;
}
/*
%!test
%! for ii=1:100
%! assert (abs (mgorth (randn (5, 1), eye (5, 4))), [0 0 0 0 1]', eps);
%! endfor
%!test
%! a = hilb (5);
%! a(:, 1) /= norm (a(:, 1));
%! for ii = 1:5
%! a(:, ii) = mgorth (a(:, ii), a(:, 1:ii-1));
%! endfor
%! assert (a' * a, eye (5), 1e10);
*/
|