File: ordschur.cc

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (224 lines) | stat: -rw-r--r-- 7,450 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2016-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include "defun.h"
#include "error.h"
#include "lo-lapack-proto.h"
#include "ovl.h"

DEFUN (ordschur, args, ,
       doc: /* -*- texinfo -*-
@deftypefn {} {[@var{UR}, @var{SR}] =} ordschur (@var{U}, @var{S}, @var{select})
Reorders the real Schur factorization (@var{U},@var{S}) obtained with the
@code{schur} function, so that selected eigenvalues appear in the upper left
diagonal blocks of the quasi triangular Schur matrix.

The logical vector @var{select} specifies the selected eigenvalues as they
appear along @var{S}'s diagonal.

For example, given the matrix @code{@var{A} = [1, 2; 3, 4]}, and its Schur
decomposition

@example
[@var{U}, @var{S}] = schur (@var{A})
@end example

@noindent
which returns

@example
@group
@var{U} =

  -0.82456  -0.56577
   0.56577  -0.82456

@var{S} =

  -0.37228  -1.00000
   0.00000   5.37228

@end group
@end example

It is possible to reorder the decomposition so that the positive eigenvalue
is in the upper left corner, by doing:

@example
[@var{U}, @var{S}] = ordschur (@var{U}, @var{S}, [0,1])
@end example

@seealso{schur, ordeig}
@end deftypefn */)
{
  if (args.length () != 3)
    print_usage ();

  const Array<octave_idx_type> sel_arg = args(2).xoctave_idx_type_vector_value ("ordschur: SELECT must be an array of integers");

  const octave_idx_type sel_n = sel_arg.numel ();

  const dim_vector dimU = args(0).dims ();
  const dim_vector dimS = args(1).dims ();

  if (sel_n != dimU(0))
    error ("ordschur: SELECT must have same length as the sides of U and S");
  else if (sel_n != dimU(0) || sel_n != dimS(0) || sel_n != dimU(1)
           || sel_n != dimS(1))
    error ("ordschur: U and S must be square and of equal sizes");

  octave_value_list retval;

  const bool double_type  = args(0).is_double_type ()
                            || args(1).is_double_type ();
  const bool complex_type = args(0).iscomplex ()
                            || args(1).iscomplex ();

#define PREPARE_ARGS(TYPE, TYPE_M, TYPE_COND)                           \
  TYPE ## Matrix U = args(0).x ## TYPE_M ## _value                      \
    ("ordschur: U and S must be real or complex floating point matrices"); \
  TYPE ## Matrix S = args(1).x ## TYPE_M ## _value                      \
    ("ordschur: U and S must be real or complex floating point matrices"); \
  TYPE ## Matrix w (dim_vector (n, 1));                                 \
  TYPE ## Matrix work (dim_vector (n, 1));                              \
  F77_INT m;                                                            \
  F77_INT info;                                                         \
  TYPE_COND cond1, cond2;

#define PREPARE_OUTPUT()                        \
  if (info != 0)                                \
    error ("ordschur: trsen failed");           \
                                                \
  retval = ovl (U, S);

  F77_INT n = octave::to_f77_int (sel_n);
  Array<F77_INT> sel (dim_vector (n, 1));
  for (F77_INT i = 0; i < n; i++)
    sel.xelem (i) = octave::to_f77_int (sel_arg.xelem (i));

  if (double_type)
    {
      if (complex_type)
        {
          PREPARE_ARGS (Complex, complex_matrix, double)

          F77_XFCN (ztrsen, ztrsen,
                    (F77_CONST_CHAR_ARG ("N"), F77_CONST_CHAR_ARG ("V"),
                     sel.data (), n, F77_DBLE_CMPLX_ARG (S.fortran_vec ()), n,
                     F77_DBLE_CMPLX_ARG (U.fortran_vec ()), n,
                     F77_DBLE_CMPLX_ARG (w.fortran_vec ()), m, cond1, cond2,
                     F77_DBLE_CMPLX_ARG (work.fortran_vec ()), n,
                     info));

          PREPARE_OUTPUT()
        }
      else
        {
          PREPARE_ARGS (, matrix, double)
          Matrix wi (dim_vector (n, 1));
          Array<F77_INT> iwork (dim_vector (n, 1));

          F77_XFCN (dtrsen, dtrsen,
                    (F77_CONST_CHAR_ARG ("N"), F77_CONST_CHAR_ARG ("V"),
                     sel.data (), n, S.fortran_vec (), n, U.fortran_vec (), n,
                     w.fortran_vec (), wi.fortran_vec (), m, cond1, cond2,
                     work.fortran_vec (), n, iwork.fortran_vec (), n, info));

          PREPARE_OUTPUT ()
        }
    }
  else
    {
      if (complex_type)
        {
          PREPARE_ARGS (FloatComplex, float_complex_matrix, float)

          F77_XFCN (ctrsen, ctrsen,
                    (F77_CONST_CHAR_ARG ("N"), F77_CONST_CHAR_ARG ("V"),
                     sel.data (), n, F77_CMPLX_ARG (S.fortran_vec ()), n,
                     F77_CMPLX_ARG (U.fortran_vec ()), n,
                     F77_CMPLX_ARG (w.fortran_vec ()), m, cond1, cond2,
                     F77_CMPLX_ARG (work.fortran_vec ()), n,
                     info));

          PREPARE_OUTPUT ()
        }
      else
        {
          PREPARE_ARGS (Float, float_matrix, float)
          FloatMatrix wi (dim_vector (n, 1));
          Array<F77_INT> iwork (dim_vector (n, 1));

          F77_XFCN (strsen, strsen,
                    (F77_CONST_CHAR_ARG ("N"), F77_CONST_CHAR_ARG ("V"),
                     sel.data (), n, S.fortran_vec (), n, U.fortran_vec (), n,
                     w.fortran_vec (), wi.fortran_vec (), m, cond1, cond2,
                     work.fortran_vec (), n, iwork.fortran_vec (), n, info));

          PREPARE_OUTPUT ()
        }
    }

#undef PREPARE_ARGS
#undef PREPARE_OUTPUT

  return retval;
}

/*

%!test
%! A = [1, 2, 3, -2; 4, 5, 6, -5 ; 7, 8, 9, -5; 10, 11, 12, 4 ];
%! [U, T] = schur (A);
%! [US, TS] = ordschur (U, T, [ 0, 0, 1, 1 ]);
%! assert (US*TS*US', A, sqrt (eps));
%! assert (diag (T)(3:4), diag (TS)(1:2), sqrt (eps));

%!test
%! A = [1, 2, 3, -2; 4, 5, 6, -5 ; 7, 8, 9, -5; 10, 11, 12, 4 ];
%! [U, T] = schur (A);
%! [US, TS] = ordschur (single (U), single (T), [ 0, 0, 1, 1 ]);
%! assert (US*TS*US', A, sqrt (eps ("single")));
%! assert (diag (T)(3:4), diag (TS)(1:2), sqrt (eps ("single")));

%!test
%! A = [1, 2, 3, -2; 4, 5, 6, -5 ; 7, 8, 9, -5; 10, 11, 12, 4+3i ];
%! [U, T] = schur (A);
%! [US, TS] = ordschur (U, T, [ 0, 0, 1, 1 ]);
%! assert (US*TS*US', A, sqrt (eps));
%! assert (diag (T)(3:4), diag (TS)(1:2), sqrt (eps));

%!test
%! A = [1, 2, 3, -2; 4, 5, 6, -5 ; 7, 8, 9, -5; 10, 11, 12, 4+3i ];
%! [U, T] = schur (A);
%! [US, TS] = ordschur (single (U), single (T), [ 0, 0, 1, 1 ]);
%! assert (US*TS*US', A, sqrt (eps ("single")));
%! assert (diag (T)(3:4), diag (TS)(1:2), sqrt (eps ("single")));

*/