File: quad.cc

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (460 lines) | stat: -rw-r--r-- 13,061 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <string>

#include "Quad.h"
#include "lo-mappers.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "interpreter-private.h"
#include "pager.h"
#include "parse.h"
#include "ov.h"
#include "ovl.h"
#include "unwind-prot.h"
#include "utils.h"
#include "variables.h"

#include "Quad-opts.cc"

// Global pointer for user defined function required by quadrature functions.
static octave_value quad_fcn;

// Have we warned about imaginary values returned from user function?
static bool warned_imaginary = false;

// Is this a recursive call?
static int call_depth = 0;

double
quad_user_function (double x)
{
  double retval = 0.0;

  octave_value_list args;
  args(0) = x;

  if (quad_fcn.is_defined ())
    {
      octave_value_list tmp;

      try
        {
          tmp = octave::feval (quad_fcn, args, 1);
        }
      catch (octave::execution_exception& e)
        {
          err_user_supplied_eval (e, "quad");
        }

      if (! tmp.length () || ! tmp(0).is_defined ())
        err_user_supplied_eval ("quad");

      if (! warned_imaginary && tmp(0).iscomplex ())
        {
          warning ("quad: ignoring imaginary part returned from user-supplied function");
          warned_imaginary = true;
        }

      retval = tmp(0).xdouble_value ("quad: expecting user supplied function to return numeric value");
    }

  return retval;
}

float
quad_float_user_function (float x)
{
  float retval = 0.0;

  octave_value_list args;
  args(0) = x;

  if (quad_fcn.is_defined ())
    {
      octave_value_list tmp;

      try
        {
          tmp = octave::feval (quad_fcn, args, 1);
        }
      catch (octave::execution_exception& e)
        {
          err_user_supplied_eval (e, "quad");
        }

      if (! tmp.length () || ! tmp(0).is_defined ())
        err_user_supplied_eval ("quad");

      if (! warned_imaginary && tmp(0).iscomplex ())
        {
          warning ("quad: ignoring imaginary part returned from user-supplied function");
          warned_imaginary = true;
        }

      retval = tmp(0).xfloat_value ("quad: expecting user supplied function to return numeric value");
    }

  return retval;
}

DEFMETHODX ("quad", Fquad, interp, args, ,
            doc: /* -*- texinfo -*-
@deftypefn  {} {@var{q} =} quad (@var{f}, @var{a}, @var{b})
@deftypefnx {} {@var{q} =} quad (@var{f}, @var{a}, @var{b}, @var{tol})
@deftypefnx {} {@var{q} =} quad (@var{f}, @var{a}, @var{b}, @var{tol}, @var{sing})
@deftypefnx {} {[@var{q}, @var{ier}, @var{nfun}, @var{err}] =} quad (@dots{})
Numerically evaluate the integral of @var{f} from @var{a} to @var{b} using
Fortran routines from @w{@sc{quadpack}}.

@var{f} is a function handle, inline function, or a string containing the
name of the function to evaluate.  The function must have the form @code{y =
f (x)} where @var{y} and @var{x} are scalars.

@var{a} and @var{b} are the lower and upper limits of integration.  Either
or both may be infinite.

The optional argument @var{tol} is a vector that specifies the desired
accuracy of the result.  The first element of the vector is the desired
absolute tolerance, and the second element is the desired relative
tolerance.  To choose a relative test only, set the absolute
tolerance to zero.  To choose an absolute test only, set the relative
tolerance to zero.  Both tolerances default to @code{sqrt (eps)} or
approximately 1.5e-8.

The optional argument @var{sing} is a vector of values at which the
integrand is known to be singular.

The result of the integration is returned in @var{q}.

@var{ier} contains an integer error code (0 indicates a successful
integration).

@var{nfun} indicates the number of function evaluations that were
made.

@var{err} contains an estimate of the error in the solution.

The function @code{quad_options} can set other optional parameters for
@code{quad}.

Note: because @code{quad} is written in Fortran it cannot be called
recursively.  This prevents its use in integrating over more than one
variable by routines @code{dblquad} and @code{triplequad}.
@seealso{quad_options, quadv, quadl, quadgk, quadcc, trapz, dblquad, triplequad}
@end deftypefn */)
{
  int nargin = args.length ();

  if (nargin < 3 || nargin > 5)
    print_usage ();

  warned_imaginary = false;

  octave::unwind_protect frame;

  frame.protect_var (call_depth);
  call_depth++;

  if (call_depth > 1)
    error ("quad: invalid recursive call");

  quad_fcn = octave::get_function_handle (interp, args(0), "x");

  octave_value_list retval;

  if (args(1).is_single_type () || args(2).is_single_type ())
    {
      float a = args(1).xfloat_value ("quad: lower limit of integration A must be a scalar");
      float b = args(2).xfloat_value ("quad: upper limit of integration B must be a scalar");

      int indefinite = 0;
      FloatIndefQuad::IntegralType indef_type
        = FloatIndefQuad::doubly_infinite;
      float bound = 0.0;
      if (octave::math::isinf (a) && octave::math::isinf (b))
        {
          indefinite = 1;
          indef_type = FloatIndefQuad::doubly_infinite;
        }
      else if (octave::math::isinf (a))
        {
          indefinite = 1;
          bound = b;
          indef_type = FloatIndefQuad::neg_inf_to_bound;
        }
      else if (octave::math::isinf (b))
        {
          indefinite = 1;
          bound = a;
          indef_type = FloatIndefQuad::bound_to_inf;
        }

      octave_idx_type ier = 0;
      octave_idx_type nfun = 0;
      float abserr = 0.0;
      float val = 0.0;
      bool have_sing = false;
      FloatColumnVector sing;
      FloatColumnVector tol;

      switch (nargin)
        {
        case 5:
          if (indefinite)
            error ("quad: singularities not allowed on infinite intervals");

          have_sing = true;

          sing = args(4).xfloat_vector_value ("quad: fifth argument SING must be a vector of singularities");
          OCTAVE_FALLTHROUGH;

        case 4:
          tol = args(3).xfloat_vector_value ("quad: TOL must be a 1 or 2-element vector");

          switch (tol.numel ())
            {
            case 2:
              quad_opts.set_single_precision_relative_tolerance (tol (1));
              OCTAVE_FALLTHROUGH;

            case 1:
              quad_opts.set_single_precision_absolute_tolerance (tol (0));
              break;

            default:
              error ("quad: TOL must be a 1 or 2-element vector");
            }
          OCTAVE_FALLTHROUGH;

        case 3:
          if (indefinite)
            {
              FloatIndefQuad iq (quad_float_user_function, bound,
                                 indef_type);
              iq.set_options (quad_opts);
              val = iq.float_integrate (ier, nfun, abserr);
            }
          else
            {
              if (have_sing)
                {
                  FloatDefQuad dq (quad_float_user_function, a, b, sing);
                  dq.set_options (quad_opts);
                  val = dq.float_integrate (ier, nfun, abserr);
                }
              else
                {
                  FloatDefQuad dq (quad_float_user_function, a, b);
                  dq.set_options (quad_opts);
                  val = dq.float_integrate (ier, nfun, abserr);
                }
            }
          break;

        default:
          panic_impossible ();
          break;
        }

      retval = ovl (val, ier, nfun, abserr);

    }
  else
    {
      double a = args(1).xdouble_value ("quad: lower limit of integration A must be a scalar");
      double b = args(2).xdouble_value ("quad: upper limit of integration B must be a scalar");

      int indefinite = 0;
      IndefQuad::IntegralType indef_type = IndefQuad::doubly_infinite;
      double bound = 0.0;
      if (octave::math::isinf (a) && octave::math::isinf (b))
        {
          indefinite = 1;
          indef_type = IndefQuad::doubly_infinite;
        }
      else if (octave::math::isinf (a))
        {
          indefinite = 1;
          bound = b;
          indef_type = IndefQuad::neg_inf_to_bound;
        }
      else if (octave::math::isinf (b))
        {
          indefinite = 1;
          bound = a;
          indef_type = IndefQuad::bound_to_inf;
        }

      octave_idx_type ier = 0;
      octave_idx_type nfun = 0;
      double abserr = 0.0;
      double val = 0.0;
      bool have_sing = false;
      ColumnVector sing;
      ColumnVector tol;

      switch (nargin)
        {
        case 5:
          if (indefinite)
            error ("quad: singularities not allowed on infinite intervals");

          have_sing = true;

          sing = args(4).xvector_value ("quad: fifth argument SING must be a vector of singularities");
          OCTAVE_FALLTHROUGH;

        case 4:
          tol = args(3).xvector_value ("quad: TOL must be a 1 or 2-element vector");

          switch (tol.numel ())
            {
            case 2:
              quad_opts.set_relative_tolerance (tol (1));
              OCTAVE_FALLTHROUGH;

            case 1:
              quad_opts.set_absolute_tolerance (tol (0));
              break;

            default:
              error ("quad: TOL must be a 1 or 2-element vector");
            }
          OCTAVE_FALLTHROUGH;

        case 3:
          if (indefinite)
            {
              IndefQuad iq (quad_user_function, bound, indef_type);
              iq.set_options (quad_opts);
              val = iq.integrate (ier, nfun, abserr);
            }
          else
            {
              if (have_sing)
                {
                  DefQuad dq (quad_user_function, a, b, sing);
                  dq.set_options (quad_opts);
                  val = dq.integrate (ier, nfun, abserr);
                }
              else
                {
                  DefQuad dq (quad_user_function, a, b);
                  dq.set_options (quad_opts);
                  val = dq.integrate (ier, nfun, abserr);
                }
            }
          break;

        default:
          panic_impossible ();
          break;
        }

      retval = ovl (val, ier, nfun, abserr);
    }

  return retval;
}

/*
%!function y = __f (x)
%!  y = x + 1;
%!endfunction

%!test
%! [v, ier, nfun, err] = quad ("__f", 0, 5);
%! assert (ier, 0);
%! assert (v, 17.5, sqrt (eps));
%! assert (nfun > 0);
%! assert (err < sqrt (eps));

%!test
%! [v, ier, nfun, err] = quad ("__f", single (0), single (5));
%! assert (ier, 0);
%! assert (v, 17.5, sqrt (eps ("single")));
%! assert (nfun > 0);
%! assert (err < sqrt (eps ("single")));

%!function y = __f (x)
%!  y = x .* sin (1 ./ x) .* sqrt (abs (1 - x));
%!endfunction

%!test
%!  [v, ier, nfun, err] = quad ("__f", 0.001, 3);
%! assert (ier == 0 || ier == 1);
%! assert (v, 1.98194120273598, sqrt (eps));
%! assert (nfun > 0);

%!test
%!  [v, ier, nfun, err] = quad (@__f, 0.001, 3);
%! assert (ier == 0 || ier == 1);
%! assert (v, 1.98194120273598, sqrt (eps));
%! assert (nfun > 0);

%!test
%!  fstr = "x .* sin (1 ./ x) .* sqrt (abs (1 - x))";
%!  [v, ier, nfun, err] = quad (fstr, 0.001, 3);
%! assert (ier == 0 || ier == 1);
%! assert (v, 1.98194120273598, sqrt (eps));
%! assert (nfun > 0);

%!test
%!  anon_fcn = @(x) x .* sin (1 ./ x) .* sqrt (abs (1 - x));
%!  [v, ier, nfun, err] = quad (anon_fcn, 0.001, 3);
%! assert (ier == 0 || ier == 1);
%! assert (v, 1.98194120273598, sqrt (eps));
%! assert (nfun > 0);

%!test
%!  inline_fcn = inline ("x .* sin (1 ./ x) .* sqrt (abs (1 - x))", "x");
%!  [v, ier, nfun, err] = quad (inline_fcn, 0.001, 3);
%! assert (ier == 0 || ier == 1);
%! assert (v, 1.98194120273598, sqrt (eps));
%! assert (nfun > 0);

%!test
%!  [v, ier, nfun, err] = quad ("__f", single (0.001), single (3));
%! assert (ier == 0 || ier == 1);
%! assert (v, 1.98194120273598, sqrt (eps ("single")));
%! assert (nfun > 0);

%!error quad ()
%!error quad ("__f", 1, 2, 3, 4, 5)

%!test
%! quad_options ("absolute tolerance", eps);
%! assert (quad_options ("absolute tolerance") == eps);

%!error quad_options (1, 2, 3)
*/