File: qz.cc

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (951 lines) | stat: -rw-r--r-- 28,155 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1998-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

// Generalized eigenvalue balancing via LAPACK

// Originally written by A. S. Hodel <scotte@eng.auburn.edu>, but is
// substantially different with the change to use LAPACK.

#undef DEBUG
#undef DEBUG_SORT
#undef DEBUG_EIG

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <cctype>
#include <cmath>

#if defined (DEBUG_EIG)
#  include <iomanip>
#endif

#include "f77-fcn.h"
#include "lo-lapack-proto.h"
#include "qr.h"
#include "quit.h"

#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#if defined (DEBUG) || defined (DEBUG_SORT)
#  include "pager.h"
#  include "pr-output.h"
#endif

// FIXME: Matlab does not produce lambda as the first output argument.
// Compatibility problem?

DEFUN (qz, args, nargout,
       doc: /* -*- texinfo -*-
@deftypefn  {} {@var{lambda} =} qz (@var{A}, @var{B})
@deftypefnx {} {[@var{AA}, @var{BB}, @var{Q}, @var{Z}, @var{V}, @var{W}, @var{lambda}] =} qz (@var{A}, @var{B})
@deftypefnx {} {[@var{AA}, @var{BB}, @var{Z}] =} qz (@var{A}, @var{B}, @var{opt})
@deftypefnx {} {[@var{AA}, @var{BB}, @var{Z}, @var{lambda}] =} qz (@var{A}, @var{B}, @var{opt})
Compute the QZ@tie{}decomposition of a generalized eigenvalue problem.

The generalized eigenvalue problem is defined as

@tex
$$A x = \lambda B x$$
@end tex
@ifnottex

@math{A x = @var{lambda} B x}

@end ifnottex

There are three calling forms of the function:

@enumerate
@item @code{@var{lambda} = qz (@var{A}, @var{B})}

Compute the generalized eigenvalues
@tex
$\lambda.$
@end tex
@ifnottex
@var{lambda}.
@end ifnottex

@item @code{[@var{AA}, @var{BB}, @var{Q}, @var{Z}, @var{V}, @var{W}, @var{lambda}] = qz (@var{A}, @var{B})}

Compute QZ@tie{}decomposition, generalized eigenvectors, and generalized
eigenvalues.
@tex
$$ AV = BV{ \rm diag }(\lambda) $$
$$ W^T A = { \rm diag }(\lambda)W^T B $$
$$ AA = Q^T AZ, BB = Q^T BZ $$
@end tex
@ifnottex

@example
@group

@var{A} * @var{V} = @var{B} * @var{V} * diag (@var{lambda})
@var{W}' * @var{A} = diag (@var{lambda}) * @var{W}' * @var{B}
@var{AA} = @var{Q} * @var{A} * @var{Z}, @var{BB} = @var{Q} * @var{B} * @var{Z}

@end group
@end example

@end ifnottex
with @var{Q} and @var{Z} orthogonal (unitary for complex case).

@item @code{[@var{AA}, @var{BB}, @var{Z} @{, @var{lambda}@}] = qz (@var{A}, @var{B}, @var{opt})}

As in form 2 above, but allows ordering of generalized eigenpairs for, e.g.,
solution of discrete time algebraic @nospell{Riccati} equations.  Form 3 is not
available for complex matrices, and does not compute the generalized
eigenvectors @var{V}, @var{W}, nor the orthogonal matrix @var{Q}.

@table @var
@item opt
for ordering eigenvalues of the @nospell{GEP} pencil.  The leading block of
the revised pencil contains all eigenvalues that satisfy:

@table @asis
@item @qcode{"N"}
unordered (default)

@item @qcode{"S"}
small: leading block has all
@tex
$|\lambda| < 1$
@end tex
@ifnottex
|@var{lambda}| < 1
@end ifnottex

@item @qcode{"B"}
big: leading block has all
@tex
$|\lambda| \geq 1$
@end tex
@ifnottex
|@var{lambda}| @geq{} 1
@end ifnottex

@item @qcode{"-"}
negative real part: leading block has all eigenvalues in the open left
half-plane

@item @qcode{"+"}
non-negative real part: leading block has all eigenvalues in the closed right
half-plane
@end table
@end table
@end enumerate

Note: @code{qz} performs permutation balancing, but not scaling
(@pxref{XREFbalance,,balance}), which may be lead to less accurate results than
@code{eig}.  The order of output arguments was selected for compatibility with
@sc{matlab}.
@seealso{eig, ordeig, balance, lu, chol, hess, qr, qzhess, schur, svd}
@end deftypefn */)
{
  int nargin = args.length ();

#if defined (DEBUG)
  octave_stdout << "qz: nargin = " << nargin
                << ", nargout = " << nargout << std::endl;
#endif

  if (nargin < 2 || nargin > 3 || nargout > 7)
    print_usage ();

  if (nargin == 3 && (nargout < 3 || nargout > 4))
    error ("qz: invalid number of output arguments for form 3 call");

#if defined (DEBUG)
  octave_stdout << "qz: determine ordering option" << std::endl;
#endif

  // Determine ordering option.

  char ord_job = 'N';
  double safmin = 0.0;

  if (nargin == 3)
    {
      std::string opt = args(2).xstring_value ("qz: OPT must be a string");

      if (opt.empty ())
        error ("qz: OPT must be a non-empty string");

      ord_job = std::toupper (opt[0]);

      std::string valid_opts = "NSB+-";

      if (valid_opts.find_first_of (ord_job) == std::string::npos)
        error ("qz: invalid order option '%c'", ord_job);

      // overflow constant required by dlag2
      F77_FUNC (xdlamch, XDLAMCH) (F77_CONST_CHAR_ARG2 ("S", 1),
                                   safmin
                                   F77_CHAR_ARG_LEN (1));

#if defined (DEBUG_EIG)
      octave_stdout << "qz: initial value of safmin="
                    << setiosflags (std::ios::scientific)
                    << safmin << std::endl;
#endif

      // Some machines (e.g., DEC alpha) get safmin = 0;
      // for these, use eps instead to avoid problems in dlag2.
      if (safmin == 0)
        {
#if defined (DEBUG_EIG)
          octave_stdout << "qz: DANGER WILL ROBINSON: safmin is 0!"
                        << std::endl;
#endif

          F77_FUNC (xdlamch, XDLAMCH) (F77_CONST_CHAR_ARG2 ("E", 1),
                                       safmin
                                       F77_CHAR_ARG_LEN (1));

#if defined (DEBUG_EIG)
          octave_stdout << "qz: safmin set to "
                        << setiosflags (std::ios::scientific)
                        << safmin << std::endl;
#endif
        }
    }

#if defined (DEBUG)
  octave_stdout << "qz: check matrix A" << std::endl;
#endif

  // Matrix A: check dimensions.
  F77_INT nn = octave::to_f77_int (args(0).rows ());
  F77_INT nc = octave::to_f77_int (args(0).columns ());

#if defined (DEBUG)
  octave_stdout << "Matrix A dimensions: (" << nn << ',' << nc << ')'
                << std::endl;
#endif

  if (args(0).isempty ())
    {
      warn_empty_arg ("qz: A");
      return octave_value_list (2, Matrix ());
    }
  else if (nc != nn)
    err_square_matrix_required ("qz", "A");

  // Matrix A: get value.
  Matrix aa;
  ComplexMatrix caa;

  if (args(0).iscomplex ())
    caa = args(0).complex_matrix_value ();
  else
    aa = args(0).matrix_value ();

#if defined (DEBUG)
  octave_stdout << "qz: check matrix B" << std::endl;
#endif

  // Extract argument 2 (bb, or cbb if complex).
  F77_INT b_nr = octave::to_f77_int (args(1).rows ());
  F77_INT b_nc = octave::to_f77_int (args(1).columns ());

  if (nn != b_nc || nn != b_nr)
    err_nonconformant ();

  Matrix bb;
  ComplexMatrix cbb;

  if (args(1).iscomplex ())
    cbb = args(1).complex_matrix_value ();
  else
    bb = args(1).matrix_value ();

  // Both matrices loaded, now check whether to calculate complex or real val.

  bool complex_case = (args(0).iscomplex () || args(1).iscomplex ());

  if (nargin == 3 && complex_case)
    error ("qz: cannot re-order complex qz decomposition");

  // First, declare variables used in both the real and complex cases.
  // FIXME: There are a lot of excess variables declared.
  //        Probably a better way to handle this.
  Matrix QQ (nn,nn), ZZ (nn,nn), VR (nn,nn), VL (nn,nn);
  RowVector alphar (nn), alphai (nn), betar (nn);
  ComplexRowVector xalpha (nn), xbeta (nn);
  ComplexMatrix CQ (nn,nn), CZ (nn,nn), CVR (nn,nn), CVL (nn,nn);
  F77_INT ilo, ihi, info;
  char comp_q = (nargout >= 3 ? 'V' : 'N');
  char comp_z = ((nargout >= 4 || nargin == 3)? 'V' : 'N');

  // Initialize Q, Z to identity matrix if either is needed
  if (comp_q == 'V' || comp_z == 'V')
    {
      double *QQptr = QQ.fortran_vec ();
      double *ZZptr = ZZ.fortran_vec ();
      std::fill_n (QQptr, QQ.numel (), 0.0);
      std::fill_n (ZZptr, ZZ.numel (), 0.0);
      for (F77_INT i = 0; i < nn; i++)
        {
          QQ(i,i) = 1.0;
          ZZ(i,i) = 1.0;
        }
    }

  // Always perform permutation balancing.
  const char bal_job = 'P';
  RowVector lscale (nn), rscale (nn), work (6 * nn), rwork (nn);

  if (complex_case)
    {
#if defined (DEBUG)
      if (comp_q == 'V')
        octave_stdout << "qz: performing balancing; CQ =\n" << CQ << std::endl;
#endif
      if (args(0).isreal ())
        caa = ComplexMatrix (aa);

      if (args(1).isreal ())
        cbb = ComplexMatrix (bb);

      if (comp_q == 'V')
        CQ = ComplexMatrix (QQ);

      if (comp_z == 'V')
        CZ = ComplexMatrix (ZZ);

      F77_XFCN (zggbal, ZGGBAL,
                (F77_CONST_CHAR_ARG2 (&bal_job, 1),
                 nn, F77_DBLE_CMPLX_ARG (caa.fortran_vec ()), nn,
                 F77_DBLE_CMPLX_ARG (cbb.fortran_vec ()),
                 nn, ilo, ihi, lscale.fortran_vec (),
                 rscale.fortran_vec (), work.fortran_vec (), info
                 F77_CHAR_ARG_LEN (1)));
    }
  else
    {
#if defined (DEBUG)
      if (comp_q == 'V')
        octave_stdout << "qz: performing balancing; QQ =\n" << QQ << std::endl;
#endif

      F77_XFCN (dggbal, DGGBAL,
                (F77_CONST_CHAR_ARG2 (&bal_job, 1),
                 nn, aa.fortran_vec (), nn, bb.fortran_vec (),
                 nn, ilo, ihi, lscale.fortran_vec (),
                 rscale.fortran_vec (), work.fortran_vec (), info
                 F77_CHAR_ARG_LEN (1)));
    }

  // Only permutation balance above is done.  Skip scaling balance.

#if 0
  // Since we just want the balancing matrices, we can use dggbal
  // for both the real and complex cases; left first

  if (comp_q == 'V')
    {
      F77_XFCN (dggbak, DGGBAK,
                (F77_CONST_CHAR_ARG2 (&bal_job, 1),
                 F77_CONST_CHAR_ARG2 ("L", 1),
                 nn, ilo, ihi, lscale.data (), rscale.data (),
                 nn, QQ.fortran_vec (), nn, info
                 F77_CHAR_ARG_LEN (1)
                 F77_CHAR_ARG_LEN (1)));

#if defined (DEBUG)
      if (comp_q == 'V')
        octave_stdout << "qz: balancing done; QQ =\n" << QQ << std::endl;
#endif
    }

  // then right
  if (comp_z == 'V')
    {
      F77_XFCN (dggbak, DGGBAK,
                (F77_CONST_CHAR_ARG2 (&bal_job, 1),
                 F77_CONST_CHAR_ARG2 ("R", 1),
                 nn, ilo, ihi, lscale.data (), rscale.data (),
                 nn, ZZ.fortran_vec (), nn, info
                 F77_CHAR_ARG_LEN (1)
                 F77_CHAR_ARG_LEN (1)));

#if defined (DEBUG)
      if (comp_z == 'V')
        octave_stdout << "qz: balancing done; ZZ=\n" << ZZ << std::endl;
#endif
    }
#endif

  char qz_job = (nargout < 2 ? 'E' : 'S');

  if (complex_case)
    {
      // Complex case.

      // The QR decomposition of cbb.
      octave::math::qr<ComplexMatrix> cbqr (cbb);
      // The R matrix of QR decomposition for cbb.
      cbb = cbqr.R ();
      // (Q*)caa for following work.
      caa = (cbqr.Q ().hermitian ()) * caa;
      CQ = CQ * cbqr.Q ();

      F77_XFCN (zgghrd, ZGGHRD,
                (F77_CONST_CHAR_ARG2 (&comp_q, 1),
                 F77_CONST_CHAR_ARG2 (&comp_z, 1),
                 nn, ilo, ihi, F77_DBLE_CMPLX_ARG (caa.fortran_vec ()),
                 nn, F77_DBLE_CMPLX_ARG (cbb.fortran_vec ()), nn,
                 F77_DBLE_CMPLX_ARG (CQ.fortran_vec ()), nn,
                 F77_DBLE_CMPLX_ARG (CZ.fortran_vec ()), nn, info
                 F77_CHAR_ARG_LEN (1)
                 F77_CHAR_ARG_LEN (1)));

      ComplexRowVector cwork (nn);

      F77_XFCN (zhgeqz, ZHGEQZ,
                (F77_CONST_CHAR_ARG2 (&qz_job, 1),
                 F77_CONST_CHAR_ARG2 (&comp_q, 1),
                 F77_CONST_CHAR_ARG2 (&comp_z, 1),
                 nn, ilo, ihi,
                 F77_DBLE_CMPLX_ARG (caa.fortran_vec ()), nn,
                 F77_DBLE_CMPLX_ARG (cbb.fortran_vec ()), nn,
                 F77_DBLE_CMPLX_ARG (xalpha.fortran_vec ()),
                 F77_DBLE_CMPLX_ARG (xbeta.fortran_vec ()),
                 F77_DBLE_CMPLX_ARG (CQ.fortran_vec ()), nn,
                 F77_DBLE_CMPLX_ARG (CZ.fortran_vec ()), nn,
                 F77_DBLE_CMPLX_ARG (cwork.fortran_vec ()), nn,
                 rwork.fortran_vec (), info
                 F77_CHAR_ARG_LEN (1)
                 F77_CHAR_ARG_LEN (1)
                 F77_CHAR_ARG_LEN (1)));

      if (comp_q == 'V')
        {
          // Left eigenvector.
          F77_XFCN (zggbak, ZGGBAK,
                    (F77_CONST_CHAR_ARG2 (&bal_job, 1),
                     F77_CONST_CHAR_ARG2 ("L", 1),
                     nn, ilo, ihi, lscale.data (), rscale.data (),
                     nn, F77_DBLE_CMPLX_ARG (CQ.fortran_vec ()), nn, info
                     F77_CHAR_ARG_LEN (1)
                     F77_CHAR_ARG_LEN (1)));
        }

      if (comp_z == 'V')
        {
          // Right eigenvector.
          F77_XFCN (zggbak, ZGGBAK,
                    (F77_CONST_CHAR_ARG2 (&bal_job, 1),
                     F77_CONST_CHAR_ARG2 ("R", 1),
                     nn, ilo, ihi, lscale.data (), rscale.data (),
                     nn, F77_DBLE_CMPLX_ARG (CZ.fortran_vec ()), nn, info
                     F77_CHAR_ARG_LEN (1)
                     F77_CHAR_ARG_LEN (1)));
        }

    }
  else
    {
#if defined (DEBUG)
      octave_stdout << "qz: performing qr decomposition of bb" << std::endl;
#endif

      // Compute the QR factorization of bb.
      octave::math::qr<Matrix> bqr (bb);

#if defined (DEBUG)
      octave_stdout << "qz: qr (bb) done; now performing qz decomposition"
                    << std::endl;
#endif

      bb = bqr.R ();

#if defined (DEBUG)
      octave_stdout << "qz: extracted bb" << std::endl;
#endif

      aa = (bqr.Q ()).transpose () * aa;

#if defined (DEBUG)
      octave_stdout << "qz: updated aa " << std::endl;
      octave_stdout << "bqr.Q () =\n" << bqr.Q () << std::endl;

      if (comp_q == 'V')
        octave_stdout << "QQ =" << QQ << std::endl;
#endif

      if (comp_q == 'V')
        QQ = QQ * bqr.Q ();

#if defined (DEBUG)
      octave_stdout << "qz: precursors done..." << std::endl;
#endif

#if defined (DEBUG)
      octave_stdout << "qz: comp_q = " << comp_q << ", comp_z = " << comp_z
                    << std::endl;
#endif

      // Reduce to generalized Hessenberg form.
      F77_XFCN (dgghrd, DGGHRD,
                (F77_CONST_CHAR_ARG2 (&comp_q, 1),
                 F77_CONST_CHAR_ARG2 (&comp_z, 1),
                 nn, ilo, ihi, aa.fortran_vec (),
                 nn, bb.fortran_vec (), nn, QQ.fortran_vec (), nn,
                 ZZ.fortran_vec (), nn, info
                 F77_CHAR_ARG_LEN (1)
                 F77_CHAR_ARG_LEN (1)));

      // Check if just computing generalized eigenvalues,
      // or if we're actually computing the decomposition.

      // Reduce to generalized Schur form.
      F77_XFCN (dhgeqz, DHGEQZ,
                (F77_CONST_CHAR_ARG2 (&qz_job, 1),
                 F77_CONST_CHAR_ARG2 (&comp_q, 1),
                 F77_CONST_CHAR_ARG2 (&comp_z, 1),
                 nn, ilo, ihi, aa.fortran_vec (), nn, bb.fortran_vec (),
                 nn, alphar.fortran_vec (), alphai.fortran_vec (),
                 betar.fortran_vec (), QQ.fortran_vec (), nn,
                 ZZ.fortran_vec (), nn, work.fortran_vec (), nn, info
                 F77_CHAR_ARG_LEN (1)
                 F77_CHAR_ARG_LEN (1)
                 F77_CHAR_ARG_LEN (1)));

      if (comp_q == 'V')
        {
          F77_XFCN (dggbak, DGGBAK,
                    (F77_CONST_CHAR_ARG2 (&bal_job, 1),
                     F77_CONST_CHAR_ARG2 ("L", 1),
                     nn, ilo, ihi, lscale.data (), rscale.data (),
                     nn, QQ.fortran_vec (), nn, info
                     F77_CHAR_ARG_LEN (1)
                     F77_CHAR_ARG_LEN (1)));

#if defined (DEBUG)
          if (comp_q == 'V')
            octave_stdout << "qz: balancing done; QQ=\n" << QQ << std::endl;
#endif
        }

      // then right
      if (comp_z == 'V')
        {
          F77_XFCN (dggbak, DGGBAK,
                    (F77_CONST_CHAR_ARG2 (&bal_job, 1),
                     F77_CONST_CHAR_ARG2 ("R", 1),
                     nn, ilo, ihi, lscale.data (), rscale.data (),
                     nn, ZZ.fortran_vec (), nn, info
                     F77_CHAR_ARG_LEN (1)
                     F77_CHAR_ARG_LEN (1)));

#if defined (DEBUG)
          if (comp_z == 'V')
            octave_stdout << "qz: balancing done; ZZ=\n" << ZZ << std::endl;
#endif
        }

    }

  // Order the QZ decomposition?
  if (ord_job != 'N')
    {
      if (complex_case)
        // Probably not needed, but better be safe.
        error ("qz: cannot re-order complex QZ decomposition");

#if defined (DEBUG_SORT)
      octave_stdout << "qz: ordering eigenvalues: ord_job = "
                    << ord_job << std::endl;
#endif

      Array<F77_LOGICAL> select (dim_vector (nn, 1));

      for (int j = 0; j < nn; j++)
        {
          switch (ord_job)
            {
            case 'S':
              select(j) = alphar(j)*alphar(j) + alphai(j)*alphai(j) < betar(j)*betar(j);
              break;

            case 'B':
              select(j) = alphar(j)*alphar(j) + alphai(j)*alphai(j) >= betar(j)*betar(j);
              break;

            case '+':
              select(j) = alphar(j) * betar(j) >= 0;
              break;

            case '-':
              select(j) = alphar(j) * betar(j) < 0;
              break;

            default:
              // Invalid order option
              // (should never happen since options were checked at the top).
              panic_impossible ();
              break;
            }
        }

      F77_LOGICAL wantq = 0, wantz = (comp_z == 'V');
      F77_INT ijob = 0, mm, lrwork3 = 4*nn+16, liwork = nn;
      F77_DBLE pl, pr;
      RowVector rwork3(lrwork3);
      Array<F77_INT> iwork (dim_vector (liwork, 1));

      F77_XFCN (dtgsen, DTGSEN,
                (ijob, wantq, wantz,
                 select.fortran_vec (), nn,
                 aa.fortran_vec (), nn,
                 bb.fortran_vec (), nn,
                 alphar.fortran_vec (),
                 alphai.fortran_vec (),
                 betar.fortran_vec (),
                 nullptr, nn,
                 ZZ.fortran_vec (), nn,
                 mm,
                 pl, pr,
                 nullptr,
                 rwork3.fortran_vec (), lrwork3,
                 iwork.fortran_vec (), liwork,
                 info));

#if defined (DEBUG_SORT)
      octave_stdout << "qz: back from dtgsen: aa =\n";
      octave_print_internal (octave_stdout, aa);
      octave_stdout << "\nbb =\n";
      octave_print_internal (octave_stdout, bb);
      if (comp_z == 'V')
        {
          octave_stdout << "\nZZ =\n";
          octave_print_internal (octave_stdout, ZZ);
        }
      octave_stdout << "\nqz: info=" << info;
      octave_stdout << "\nalphar =\n";
      octave_print_internal (octave_stdout, Matrix (alphar));
      octave_stdout << "\nalphai =\n";
      octave_print_internal (octave_stdout, Matrix (alphai));
      octave_stdout << "\nbeta =\n";
      octave_print_internal (octave_stdout, Matrix (betar));
      octave_stdout << std::endl;
#endif
    }

  // Compute the generalized eigenvalues as well?
  ComplexColumnVector gev;

  if (nargout < 2 || nargout == 7 || (nargin == 3 && nargout == 4))
    {
      if (complex_case)
        {
          ComplexColumnVector tmp (nn);

          for (F77_INT i = 0; i < nn; i++)
            tmp(i) = xalpha(i) / xbeta(i);

          gev = tmp;
        }
      else
        {
#if defined (DEBUG)
          octave_stdout << "qz: computing generalized eigenvalues" << std::endl;
#endif

          // Return finite generalized eigenvalues.
          ComplexColumnVector tmp (nn);

          F77_INT cnt = 0;
          for (F77_INT i = 0; i < nn; i++)
            if (betar(i) != 0)
              tmp(cnt++) = Complex (alphar(i), alphai(i)) / betar(i);

          tmp.resize (cnt);  // Trim vector to number of return values

          gev = tmp;
        }
    }

  // Right, left eigenvector matrices.
  if (nargout >= 5)
    {
      // Which side to compute?
      char side = (nargout == 5 ? 'R' : 'B');
      // Compute all of them and backtransform
      char howmany = 'B';
      // Dummy pointer; select is not used.
      F77_INT *select = nullptr;

      if (complex_case)
        {
          CVL = CQ;
          CVR = CZ;
          ComplexRowVector cwork2 (2 * nn);
          RowVector rwork2 (8 * nn);
          F77_INT m;

          F77_XFCN (ztgevc, ZTGEVC,
                    (F77_CONST_CHAR_ARG2 (&side, 1),
                     F77_CONST_CHAR_ARG2 (&howmany, 1),
                     select, nn, F77_DBLE_CMPLX_ARG (caa.fortran_vec ()), nn,
                     F77_DBLE_CMPLX_ARG (cbb.fortran_vec ()),
                     nn, F77_DBLE_CMPLX_ARG (CVL.fortran_vec ()), nn,
                     F77_DBLE_CMPLX_ARG (CVR.fortran_vec ()), nn, nn,
                     m, F77_DBLE_CMPLX_ARG (cwork2.fortran_vec ()),
                     rwork2.fortran_vec (), info
                     F77_CHAR_ARG_LEN (1)
                     F77_CHAR_ARG_LEN (1)));
        }
      else
        {
#if defined (DEBUG)
          octave_stdout << "qz: computing generalized eigenvectors" << std::endl;
#endif

          VL = QQ;
          VR = ZZ;
          F77_INT m;

          F77_XFCN (dtgevc, DTGEVC,
                    (F77_CONST_CHAR_ARG2 (&side, 1),
                     F77_CONST_CHAR_ARG2 (&howmany, 1),
                     select, nn, aa.fortran_vec (), nn, bb.fortran_vec (),
                     nn, VL.fortran_vec (), nn, VR.fortran_vec (), nn, nn,
                     m, work.fortran_vec (), info
                     F77_CHAR_ARG_LEN (1)
                     F77_CHAR_ARG_LEN (1)));

          // Now construct the complex form of VV, WW.
          F77_INT j = 0;

          while (j < nn)
            {
              octave_quit ();

              // See if real or complex eigenvalue.

              // Column increment; assume complex eigenvalue.
              int cinc = 2;

              if (j == (nn-1))
                // Single column.
                cinc = 1;
              else if (aa(j+1,j) == 0)
                cinc = 1;

              // Now copy the eigenvector (s) to CVR, CVL.
              if (cinc == 1)
                {
                  for (F77_INT i = 0; i < nn; i++)
                    CVR(i,j) = VR(i,j);

                  if (side == 'B')
                    for (F77_INT i = 0; i < nn; i++)
                      CVL(i,j) = VL(i,j);
                }
              else
                {
                  // Double column; complex vector.

                  for (F77_INT i = 0; i < nn; i++)
                    {
                      CVR(i,j) = Complex (VR(i,j), VR(i,j+1));
                      CVR(i,j+1) = Complex (VR(i,j), -VR(i,j+1));
                    }

                  if (side == 'B')
                    for (F77_INT i = 0; i < nn; i++)
                      {
                        CVL(i,j) = Complex (VL(i,j), VL(i,j+1));
                        CVL(i,j+1) = Complex (VL(i,j), -VL(i,j+1));
                      }
                }

              // Advance to next eigenvectors (if any).
              j += cinc;
            }
        }
    }

  octave_value_list retval (nargout);

  switch (nargout)
    {
    case 7:
      retval(6) = gev;
      OCTAVE_FALLTHROUGH;

    case 6:
      // Return left eigenvectors.
      retval(5) = CVL;
      OCTAVE_FALLTHROUGH;

    case 5:
      // Return right eigenvectors.
      retval(4) = CVR;
      OCTAVE_FALLTHROUGH;

    case 4:
      if (nargin == 3)
        {
#if defined (DEBUG)
          octave_stdout << "qz: sort: retval(3) = gev =\n";
          octave_print_internal (octave_stdout, ComplexMatrix (gev));
          octave_stdout << std::endl;
#endif
          retval(3) = gev;
        }
      else
        {
          if (complex_case)
            retval(3) = CZ;
          else
            retval(3) = ZZ;
        }
      OCTAVE_FALLTHROUGH;

    case 3:
      if (nargin == 3)
        {
          if (complex_case)
            retval(2) = CZ;
          else
            retval(2) = ZZ;
        }
      else
        {
          if (complex_case)
            retval(2) = CQ.hermitian ();
          else
            retval(2) = QQ.transpose ();
        }
      OCTAVE_FALLTHROUGH;

    case 2:
      {
        if (complex_case)
          {
#if defined (DEBUG)
            octave_stdout << "qz: retval(1) = cbb =\n";
            octave_print_internal (octave_stdout, cbb);
            octave_stdout << "\nqz: retval(0) = caa =\n";
            octave_print_internal (octave_stdout, caa);
            octave_stdout << std::endl;
#endif
            retval(1) = cbb;
            retval(0) = caa;
          }
        else
          {
#if defined (DEBUG)
            octave_stdout << "qz: retval(1) = bb =\n";
            octave_print_internal (octave_stdout, bb);
            octave_stdout << "\nqz: retval(0) = aa =\n";
            octave_print_internal (octave_stdout, aa);
            octave_stdout << std::endl;
#endif
            retval(1) = bb;
            retval(0) = aa;
          }
      }
      break;

    case 1:
    case 0:
#if defined (DEBUG)
      octave_stdout << "qz: retval(0) = gev = " << gev << std::endl;
#endif
      retval(0) = gev;
      break;

    default:
      error ("qz: too many return arguments");
      break;
    }

#if defined (DEBUG)
  octave_stdout << "qz: exiting (at long last)" << std::endl;
#endif

  return retval;
}

/*
%!shared a, b, c
%! a = [1 2; 0 3];
%! b = [1 0; 0 0];
%! c = [0 1; 0 0];
%!assert (qz (a,b), 1)
%!assert (isempty (qz (a,c)))

## Example 7.7.3 in Golub & Van Loan
%!test
%! a = [ 10  1  2;
%!        1  2 -1;
%!        1  1  2];
%! b = reshape (1:9,3,3);
%! [aa, bb, q, z, v, w, lambda] = qz (a, b);
%! sz = length (lambda);
%! observed = (b * v * diag ([lambda;0])) (:, 1:sz);
%! assert ((a*v)(:, 1:sz), observed, norm (observed) * 1e-14);
%! observed = (diag ([lambda;0]) * w' * b) (1:sz, :);
%! assert ((w'*a)(1:sz, :) , observed, norm (observed) * 1e-13);
%! assert (q * a * z, aa, norm (aa) * 1e-14);
%! assert (q * b * z, bb, norm (bb) * 1e-14);

%!test
%! A = [0, 0, -1, 0; 1, 0, 0, 0; -1, 0, -2, -1; 0, -1, 1, 0];
%! B = [0, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1];
%! [AA, BB, Q, Z1] = qz (A, B);
%! [AA, BB, Z2] = qz (A, B, "-");
%! assert (Z1, Z2);

%!test
%! A = [ -1.03428  0.24929  0.43205 -0.12860;
%!        1.16228  0.27870  2.12954  0.69250;
%!       -0.51524 -0.34939 -0.77820  2.13721;
%!       -1.32941  2.11870  0.72005  1.00835 ];
%! B = [  1.407302 -0.632956 -0.360628  0.068534;
%!        0.149898  0.298248  0.991777  0.023652;
%!        0.169281 -0.405205 -1.775834  1.511730;
%!        0.717770  1.291390 -1.766607 -0.531352 ];
%! [AA, BB, Z, lambda] = qz (A, B, "+");
%! assert (all (real (lambda(1:3)) >= 0))
%! assert (real (lambda(4) < 0))
%! [AA, BB, Z, lambda] = qz (A, B, "-");
%! assert (real (lambda(1) < 0))
%! assert (all (real (lambda(2:4)) >= 0))
%! [AA, BB, Z, lambda] = qz (A, B, "B");
%! assert (all (abs (lambda(1:3)) >= 1))
%! assert (abs (lambda(4) < 1))
%! [AA, BB, Z, lambda] = qz (A, B, "S");
%! assert (abs (lambda(1) < 1))
%! assert (all (abs (lambda(2:4)) >= 1))
*/