1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
|
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2019-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
/*
References:
@article{
title = {Particle Tracing Algorithms for 3D Curvilinear Grids},
year = {2000},
author = {Nielson, Gregory and Uller, H. and Sadarjoen, I. and Walsum, Theo and Hin, Andrea and Post, Frits}
}
@article{
title = {Sources of error in the graphical analysis of CFD results},
publisher = {Journal of Scientific Computing},
year = {1988},
volume = {3},
number = {2},
pages = {149--164},
author = {Buning, Pieter G.},
}
*/
#if defined (HAVE_CONFIG_H)
# include "config.h"
#endif
#include "defun.h"
#include "error.h"
#include "ovl.h"
// Coordinates of a point in C-Space (unit square mesh)
typedef struct
{
double x, y;
} Vector2;
// The integer value and the fractional value from a point in C-Space.
// Equivalent to the cell index the point is located in and the local
// coordinates of the point in the cell.
typedef struct
{
double fcx, fcy;
signed long idx, idy;
} Cell2;
typedef struct
{
double x, y, z;
} Vector3;
typedef struct
{
double fcx, fcy, fcz;
signed long idx, idy, idz;
} Cell3;
static inline void
number_to_fractional (signed long *id, double *fc, const double u)
{
*id = floor (u);
*fc = u - *id;
}
static inline octave_idx_type
handle_border_index (const octave_idx_type id, const octave_idx_type N)
{
return (id < N - 1 ? id : N - 2);
}
static inline void
handle_border (octave_idx_type *id2, double *fc2, const octave_idx_type id1,
const double fc1, const octave_idx_type N)
{
if (id1 < N - 1)
{
*id2 = id1;
*fc2 = fc1;
}
else
{
*id2 = N - 2;
*fc2 = 1.0;
}
}
static inline double
bilinear (const double u11, const double u21, const double u12,
const double u22, const double x, const double y)
{
return (u11 * (1-x) * (1-y) +
u21 * x * (1-y) +
u12 * (1-x) * y +
u22 * x * y);
}
static inline Cell2
vector_to_cell2d (const Vector2 X)
{
Cell2 Z;
number_to_fractional (&Z.idx, &Z.fcx, X.x);
number_to_fractional (&Z.idy, &Z.fcy, X.y);
return (Z);
}
static inline bool
is_in_definition_set2d (const Cell2 X, const octave_idx_type cols,
const octave_idx_type rows)
{
return ( (((X.idx >= 0) && (X.idx < cols-1)) ||
((X.idx == cols-1) && (X.fcx == 0.0))) &&
(((X.idy >= 0) && (X.idy < rows-1)) ||
((X.idy == rows-1) && (X.fcy == 0.0))) );
}
static inline Vector2
add2d (const Cell2 X, const Vector2 Y)
{
Vector2 Z = {X.idx + X.fcx + Y.x,
X.idy + X.fcy + Y.y};
return (Z);
}
static inline Vector2
vector_interpolation2d (const Cell2 X, const Matrix& u, const Matrix& v,
const octave_idx_type cols, const octave_idx_type rows)
{
Vector2 V;
double fcx, fcy;
octave_idx_type idx, idy;
handle_border (&idx, &fcx, X.idx, X.fcx, cols);
handle_border (&idy, &fcy, X.idy, X.fcy, rows);
V.x = bilinear (u(idy, idx), u(idy, idx+1), u(idy+1, idx),
u(idy+1, idx+1), fcx, fcy);
V.y = bilinear (v(idy, idx), v(idy, idx+1), v(idy+1, idx),
v(idy+1, idx+1), fcx, fcy);
return (V);
}
// Apply the Jacobian matrix on the vector V.
// The step vector length is set to h.
static inline Vector2
calculate_step_vector2d (const Cell2 X, const Vector2 V,
const RowVector& tx, const RowVector& ty,
const octave_idx_type cols, const octave_idx_type rows,
const double h)
{
Vector2 S;
const octave_idx_type idx = handle_border_index (X.idx, cols);
const octave_idx_type idy = handle_border_index (X.idy, rows);
const double x = V.x * tx(idx);
const double y = V.y * ty(idy);
const double n = 1.0 / sqrt (x*x + y*y);
S.x = h * n * x;
S.y = h * n * y;
return (S);
}
static inline bool
is_singular2d (const Vector2 V)
{
return ((octave::math::isnan (V.x) || octave::math::isnan (V.y)) ||
((V.x == 0) && (V.y == 0)));
}
static void
euler2d (const octave_idx_type cols, const octave_idx_type rows,
const Matrix& u, const Matrix& v,
const RowVector& tx, const RowVector& ty,
const double zeta, const double xi,
const double h, const octave_idx_type maxnverts,
Matrix& buffer, octave_idx_type *nverts)
{
Vector2 V0, V1, S0, X1, Xnxt, S1;
const Vector2 X0 = {zeta, xi};
Cell2 X0f, X1f;
octave_idx_type i = 0;
buffer(i, 0) = X0.x;
buffer(i, 1) = X0.y;
X0f = vector_to_cell2d (X0);
while (true)
{
if (! is_in_definition_set2d (X0f, cols, rows))
break;
V0 = vector_interpolation2d (X0f, u, v, cols, rows);
if (is_singular2d (V0))
break;
S0 = calculate_step_vector2d (X0f, V0, tx, ty, cols, rows, h);
X1 = add2d (X0f, S0);
X1f = vector_to_cell2d (X1);
if (! is_in_definition_set2d (X1f, cols, rows))
break;
V1 = vector_interpolation2d (X1f, u, v, cols, rows);
if (is_singular2d (V1))
break;
S1 = calculate_step_vector2d (X1f, V1, tx, ty, cols, rows, h);
// Runge Kutta - Heun's Scheme
const Vector2 S = {0.5 * (S0.x + S1.x),
0.5 * (S0.y + S1.y)};
Xnxt = add2d (X0f, S);
X0f = vector_to_cell2d (Xnxt);
if (! is_in_definition_set2d (X0f, cols, rows))
break;
i++;
buffer(i, 0) = Xnxt.x;
buffer(i, 1) = Xnxt.y;
if (i + 1 >= maxnverts)
break;
}
*nverts = i + 1;
}
static inline double
trilinear (const double u111, const double u211, const double u121,
const double u221, const double u112, const double u212,
const double u122, const double u222,
const double x, const double y, const double z)
{
return (u111 * (1-x) * (1-y) * (1-z) +
u211 * x * (1-y) * (1-z) +
u121 * (1-x) * y * (1-z) +
u221 * x * y * (1-z) +
u112 * (1-x) * (1-y) * z +
u212 * x * (1-y) * z +
u122 * (1-x) * y * z +
u222 * x * y * z);
}
static inline Cell3
vector_to_cell3d (const Vector3 X)
{
Cell3 Z;
number_to_fractional (&Z.idx, &Z.fcx, X.x);
number_to_fractional (&Z.idy, &Z.fcy, X.y);
number_to_fractional (&Z.idz, &Z.fcz, X.z);
return (Z);
}
static inline bool
is_in_definition_set3d (const Cell3 X, const octave_idx_type nx,
const octave_idx_type ny, const octave_idx_type nz)
{
return ( (((X.idx >= 0) && (X.idx < nx-1)) ||
((X.idx == nx-1) && (X.fcx == 0.0))) &&
(((X.idy >= 0) && (X.idy < ny-1)) ||
((X.idy == ny-1) && (X.fcy == 0.0))) &&
(((X.idz >= 0) && (X.idz < nz-1)) ||
((X.idz == nz-1) && (X.fcz == 0.0))) );
}
static inline Vector3
add3d (const Cell3 X, const Vector3 Y)
{
Vector3 Z = {X.idx + X.fcx + Y.x,
X.idy + X.fcy + Y.y,
X.idz + X.fcz + Y.z};
return (Z);
}
static inline Vector3
vector_interpolation3d (const Cell3 X, const NDArray& u, const NDArray& v,
const NDArray& w, const octave_idx_type nx,
const octave_idx_type ny, const octave_idx_type nz)
{
Vector3 V;
double fcx, fcy, fcz;
octave_idx_type idx, idy, idz;
handle_border (&idx, &fcx, X.idx, X.fcx, nx);
handle_border (&idy, &fcy, X.idy, X.fcy, ny);
handle_border (&idz, &fcz, X.idz, X.fcz, nz);
V.x = trilinear (u(idy, idx, idz), u(idy, idx+1, idz),
u(idy+1, idx, idz), u(idy+1, idx+1, idz),
u(idy, idx, idz+1), u(idy, idx+1, idz+1),
u(idy+1, idx, idz+1), u(idy+1, idx+1, idz+1),
fcx, fcy, fcz);
V.y = trilinear (v(idy, idx, idz), v(idy, idx+1, idz),
v(idy+1, idx, idz), v(idy+1, idx+1, idz),
v(idy, idx, idz+1), v(idy, idx+1, idz+1),
v(idy+1, idx, idz+1), v(idy+1, idx+1, idz+1),
fcx, fcy, fcz);
V.z = trilinear (w(idy, idx, idz), w(idy, idx+1, idz),
w(idy+1, idx, idz), w(idy+1, idx+1, idz),
w(idy, idx, idz+1), w(idy, idx+1, idz+1),
w(idy+1, idx, idz+1), w(idy+1, idx+1, idz+1),
fcx, fcy, fcz);
return (V);
}
static inline Vector3
calculate_step_vector3d (const Cell3 X, const Vector3 V,
const RowVector& tx, const RowVector& ty, const RowVector& tz,
const octave_idx_type nx, const octave_idx_type ny,
const octave_idx_type nz, const double h)
{
Vector3 S;
const octave_idx_type idx = handle_border_index (X.idx, nx);
const octave_idx_type idy = handle_border_index (X.idy, ny);
const octave_idx_type idz = handle_border_index (X.idz, nz);
const double x = V.x * tx(idx);
const double y = V.y * ty(idy);
const double z = V.z * tz(idz);
const double n = 1.0 / sqrt (x*x + y*y + z*z);
S.x = h * n * x;
S.y = h * n * y;
S.z = h * n * z;
return (S);
}
static inline bool
is_singular3d (const Vector3 V)
{
return ((octave::math::isnan (V.x) || octave::math::isnan (V.y) ||
octave::math::isnan (V.z)) ||
((V.x == 0) && (V.y == 0) && (V.z == 0)));
}
static void
euler3d (const octave_idx_type nx, const octave_idx_type ny, const octave_idx_type nz,
const NDArray& u, const NDArray& v, const NDArray& w,
const RowVector& tx, const RowVector& ty, const RowVector& tz,
const double zeta, const double xi, const double rho,
const double h, const octave_idx_type maxnverts,
Matrix& buffer, octave_idx_type *nverts)
{
Vector3 V0, V1, S0, X1, Xnxt, S1;
const Vector3 X0 = {zeta, xi, rho};
Cell3 X0f, X1f;
octave_idx_type i = 0;
buffer(i, 0) = X0.x;
buffer(i, 1) = X0.y;
buffer(i, 2) = X0.z;
X0f = vector_to_cell3d (X0);
while (true)
{
if (! is_in_definition_set3d (X0f, nx, ny, nz))
break;
V0 = vector_interpolation3d (X0f, u, v, w, nx, ny, nz);
if (is_singular3d (V0))
break;
S0 = calculate_step_vector3d (X0f, V0, tx, ty, tz, nx, ny, nz, h);
X1 = add3d (X0f, S0);
X1f = vector_to_cell3d (X1);
if (! is_in_definition_set3d (X1f, nx, ny, nz))
break;
V1 = vector_interpolation3d (X1f, u, v, w, nx, ny, nz);
if (is_singular3d (V1))
break;
S1 = calculate_step_vector3d (X1f, V1, tx, ty, tz, nx, ny, nz, h);
// Runge Kutta - Heun's Scheme
const Vector3 S = {0.5 * (S0.x + S1.x),
0.5 * (S0.y + S1.y),
0.5 * (S0.z + S1.z)};
Xnxt = add3d (X0f, S);
X0f = vector_to_cell3d (Xnxt);
if (! is_in_definition_set3d (X0f, nx, ny, nz))
break;
i++;
buffer(i, 0) = Xnxt.x;
buffer(i, 1) = Xnxt.y;
buffer(i, 2) = Xnxt.z;
if (i + 1 >= maxnverts)
break;
}
*nverts = i + 1;
}
static octave_value
streameuler2d_internal (const octave_value_list& args)
{
const int nargin = args.length ();
if (nargin != 8)
print_usage ();
const Matrix U = args(0).matrix_value ();
const Matrix V = args(1).matrix_value ();
const RowVector TX = args(2).row_vector_value ();
const RowVector TY = args(3).row_vector_value ();
const double zeta = args(4).double_value ();
const double xi = args(5).double_value ();
const double h = args(6).double_value ();
const octave_idx_type maxnverts = args(7).idx_type_value ();
const octave_idx_type rows = U.rows ();
const octave_idx_type cols = U.columns ();
octave_idx_type nverts;
Matrix buffer (maxnverts, 2);
euler2d (cols, rows, U, V, TX, TY, zeta, xi, h, maxnverts,
buffer, &nverts);
Matrix xy = buffer.extract (0, 0, nverts-1, 1);
return octave_value (xy);
}
static octave_value
streameuler3d_internal (const octave_value_list& args, const char *fcn)
{
const int nargin = args.length ();
if (nargin != 11)
print_usage ();
const NDArray U = args(0).array_value ();
const NDArray V = args(1).array_value ();
const NDArray W = args(2).array_value ();
const RowVector TX = args(3).row_vector_value ();
const RowVector TY = args(4).row_vector_value ();
const RowVector TZ = args(5).row_vector_value ();
const double zeta = args(6).double_value ();
const double xi = args(7).double_value ();
const double rho = args(8).double_value ();
const double h = args(9).double_value ();
const octave_idx_type maxnverts = args(10).idx_type_value ();
const dim_vector dims = args(0).dims ();
const int ndims = dims.ndims ();
if (ndims != 3)
error ("%s: dimension must be 3", fcn);
octave_idx_type nverts;
Matrix buffer (maxnverts, 3);
euler3d (dims(1), dims(0), dims(2), U, V, W, TX, TY, TZ, zeta, xi, rho,
h, maxnverts, buffer, &nverts);
Matrix xyz = buffer.extract (0, 0, nverts-1, 2);
return octave_value (xyz);
}
DEFUN (__streameuler2d__, args, ,
doc: /* -*- texinfo -*-
@deftypefn {} {} __streameuler2d__ (@var{U}, @var{V}, @var{TX}, @var{TY}, @var{ZETA}, @var{XI}, @var{H}, @var{MAXNVERTS})
Calculates the streamline in a vector field @code{[@var{U}, @var{V}]} starting
from a seed point at position @code{[@var{ZETA}, @var{XI}]}. The integrator
used is Heun's Scheme. The step size can be controlled by @var{H}. The
Jacobian matrix can be defined for each grid cell by
@code{[@var{TX}, @var{TY}]}.
@seealso{streamline, stream2, stream3, __streameuler3d__}
@end deftypefn */)
{
return streameuler2d_internal (args);
}
DEFUN (__streameuler3d__, args, ,
doc: /* -*- texinfo -*-
@deftypefn {} {} __streameuler3d__ (@var{U}, @var{V}, @var{W}, @var{TX}, @var{TY}, @var{TZ}, @var{ZETA}, @var{XI}, @var{RHO}, @var{H}, @var{MAXNVERTS})
Calculates the streamline in a vector field @code{[@var{U}, @var{V}, @var{W}]}
starting from a seed point at position
@code{[@var{ZETA}, @var{XI}, @var{RHO}]}. The integrator used is Heun's
Scheme. The step size can be controlled by @var{H}. The Jacobian matrix can
be defined for each grid cell by @code{[@var{TX}, @var{TY}, @var{TZ}]}.
@seealso{streamline, stream2, stream3, __streameuler2d__}
@end deftypefn */)
{
return streameuler3d_internal (args, "__streameuler3d__");
}
|