1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
#if defined (HAVE_CONFIG_H)
# include "config.h"
#endif
#include "svd.h"
#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
#include "pr-output.h"
#include "utils.h"
#include "variables.h"
static std::string Vsvd_driver = "gesvd";
template <typename T>
static typename octave::math::svd<T>::Type
svd_type (int nargin, int nargout, const octave_value_list & args, const T & A)
{
if (nargout == 0 || nargout == 1)
return octave::math::svd<T>::Type::sigma_only;
else if (nargin == 1)
return octave::math::svd<T>::Type::std;
else if (! args(1).is_real_scalar ())
return octave::math::svd<T>::Type::economy;
else
{
if (A.rows () > A.columns ())
return octave::math::svd<T>::Type::economy;
else
return octave::math::svd<T>::Type::std;
}
}
template <typename T>
static typename octave::math::svd<T>::Driver
svd_driver (void)
{
return (Vsvd_driver == "gesvd"
? octave::math::svd<T>::Driver::GESVD
: octave::math::svd<T>::Driver::GESDD);
}
DEFUN (svd, args, nargout,
classes: double single
doc: /* -*- texinfo -*-
@deftypefn {} {@var{s} =} svd (@var{A})
@deftypefnx {} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A})
@deftypefnx {} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A}, "econ")
@deftypefnx {} {[@var{U}, @var{S}, @var{V}] =} svd (@var{A}, 0)
@cindex singular value decomposition
Compute the singular value decomposition of @var{A}.
The singular value decomposition is defined by the relation
@tex
$$
A = U S V^{\dagger}
$$
@end tex
@ifnottex
@example
A = U*S*V'
@end example
@end ifnottex
The function @code{svd} normally returns only the vector of singular values.
When called with three return values, it computes
@tex
$U$, $S$, and $V$.
@end tex
@ifnottex
@var{U}, @var{S}, and @var{V}.
@end ifnottex
For example,
@example
svd (hilb (3))
@end example
@noindent
returns
@example
@group
ans =
1.4083189
0.1223271
0.0026873
@end group
@end example
@noindent
and
@example
[u, s, v] = svd (hilb (3))
@end example
@noindent
returns
@example
@group
u =
-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867
s =
1.40832 0.00000 0.00000
0.00000 0.12233 0.00000
0.00000 0.00000 0.00269
v =
-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867
@end group
@end example
When given a second argument that is not 0, @code{svd} returns an economy-sized
decomposition, eliminating the unnecessary rows or columns of @var{U} or
@var{V}.
If the second argument is exactly 0, then the choice of decomposition is based
on the matrix @var{A}. If @var{A} has more rows than columns then an
economy-sized decomposition is returned, otherwise a regular decomposition
is calculated.
Algorithm Notes: When calculating the full decomposition (left and right
singular matrices in addition to singular values) there is a choice of two
routines in @sc{lapack}. The default routine used by Octave is @code{gesvd}.
The alternative is @code{gesdd} which is 5X faster, but may use more memory
and may be inaccurate for some input matrices. See the documentation for
@code{svd_driver} for more information on choosing a driver.
@seealso{svd_driver, svds, eig, lu, chol, hess, qr, qz}
@end deftypefn */)
{
int nargin = args.length ();
if (nargin < 1 || nargin > 2 || nargout > 3)
print_usage ();
octave_value arg = args(0);
if (arg.ndims () != 2)
error ("svd: A must be a 2-D matrix");
octave_value_list retval;
bool isfloat = arg.is_single_type ();
if (isfloat)
{
if (arg.isreal ())
{
FloatMatrix tmp = arg.float_matrix_value ();
if (tmp.any_element_is_inf_or_nan ())
error ("svd: cannot take SVD of matrix containing Inf or NaN values");
octave::math::svd<FloatMatrix> result
(tmp,
svd_type<FloatMatrix> (nargin, nargout, args, tmp),
svd_driver<FloatMatrix> ());
FloatDiagMatrix sigma = result.singular_values ();
if (nargout == 0 || nargout == 1)
retval(0) = sigma.extract_diag ();
else if (nargout == 2)
retval = ovl (result.left_singular_matrix (),
sigma);
else
retval = ovl (result.left_singular_matrix (),
sigma,
result.right_singular_matrix ());
}
else if (arg.iscomplex ())
{
FloatComplexMatrix ctmp = arg.float_complex_matrix_value ();
if (ctmp.any_element_is_inf_or_nan ())
error ("svd: cannot take SVD of matrix containing Inf or NaN values");
octave::math::svd<FloatComplexMatrix> result
(ctmp,
svd_type<FloatComplexMatrix> (nargin, nargout, args, ctmp),
svd_driver<FloatComplexMatrix> ());
FloatDiagMatrix sigma = result.singular_values ();
if (nargout == 0 || nargout == 1)
retval(0) = sigma.extract_diag ();
else if (nargout == 2)
retval = ovl (result.left_singular_matrix (),
sigma);
else
retval = ovl (result.left_singular_matrix (),
sigma,
result.right_singular_matrix ());
}
}
else
{
if (arg.isreal ())
{
Matrix tmp = arg.matrix_value ();
if (tmp.any_element_is_inf_or_nan ())
error ("svd: cannot take SVD of matrix containing Inf or NaN values");
octave::math::svd<Matrix> result
(tmp,
svd_type<Matrix> (nargin, nargout, args, tmp),
svd_driver<Matrix> ());
DiagMatrix sigma = result.singular_values ();
if (nargout == 0 || nargout == 1)
retval(0) = sigma.extract_diag ();
else if (nargout == 2)
retval = ovl (result.left_singular_matrix (),
sigma);
else
retval = ovl (result.left_singular_matrix (),
sigma,
result.right_singular_matrix ());
}
else if (arg.iscomplex ())
{
ComplexMatrix ctmp = arg.complex_matrix_value ();
if (ctmp.any_element_is_inf_or_nan ())
error ("svd: cannot take SVD of matrix containing Inf or NaN values");
octave::math::svd<ComplexMatrix> result
(ctmp,
svd_type<ComplexMatrix> (nargin, nargout, args, ctmp),
svd_driver<ComplexMatrix> ());
DiagMatrix sigma = result.singular_values ();
if (nargout == 0 || nargout == 1)
retval(0) = sigma.extract_diag ();
else if (nargout == 2)
retval = ovl (result.left_singular_matrix (),
sigma);
else
retval = ovl (result.left_singular_matrix (),
sigma,
result.right_singular_matrix ());
}
else
err_wrong_type_arg ("svd", arg);
}
return retval;
}
/*
%!assert (svd ([1, 2; 2, 1]), [3; 1], sqrt (eps))
%!test
%! a = [1, 2; 3, 4] + [5, 6; 7, 8]*i;
%! [u,s,v] = svd (a);
%! assert (a, u * s * v', 128 * eps);
%!test
%! [u, s, v] = svd ([1, 2; 2, 1]);
%! x = 1 / sqrt (2);
%! assert (u, [-x, -x; -x, x], sqrt (eps));
%! assert (s, [3, 0; 0, 1], sqrt (eps));
%! assert (v, [-x, x; -x, -x], sqrt (eps));
%!test
%! a = [1, 2, 3; 4, 5, 6];
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps));
%!test
%! a = [1, 2; 3, 4; 5, 6];
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps));
%!test
%! a = [1, 2, 3; 4, 5, 6];
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps));
%!test
%! a = [1, 2; 3, 4; 5, 6];
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps));
%!assert (svd (single ([1, 2; 2, 1])), single ([3; 1]), sqrt (eps ("single")))
%!test
%! [u, s, v] = svd (single ([1, 2; 2, 1]));
%! x = single (1 / sqrt (2));
%! assert (u, [-x, -x; -x, x], sqrt (eps ("single")));
%! assert (s, single ([3, 0; 0, 1]), sqrt (eps ("single")));
%! assert (v, [-x, x; -x, -x], sqrt (eps ("single")));
%!test
%! a = single ([1, 2, 3; 4, 5, 6]);
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps ("single")));
%!test
%! a = single ([1, 2; 3, 4; 5, 6]);
%! [u, s, v] = svd (a);
%! assert (u * s * v', a, sqrt (eps ("single")));
%!test
%! a = single ([1, 2, 3; 4, 5, 6]);
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps ("single")));
%!test
%! a = single ([1, 2; 3, 4; 5, 6]);
%! [u, s, v] = svd (a, 1);
%! assert (u * s * v', a, sqrt (eps ("single")));
%!test
%! a = zeros (0, 5);
%! [u, s, v] = svd (a);
%! assert (size (u), [0, 0]);
%! assert (size (s), [0, 5]);
%! assert (size (v), [5, 5]);
%!test
%! a = zeros (5, 0);
%! [u, s, v] = svd (a, 1);
%! assert (size (u), [5, 0]);
%! assert (size (s), [0, 0]);
%! assert (size (v), [0, 0]);
%!test <*49309>
%! [~,~,v] = svd ([1, 1, 1], 0);
%! assert (size (v), [3 3]);
%! [~,~,v] = svd ([1, 1, 1], "econ");
%! assert (size (v), [3 1]);
%!assert <*55710> (1 / svd (-0), Inf)
%!error svd ()
%!error svd ([1, 2; 4, 5], 2, 3)
*/
DEFUN (svd_driver, args, nargout,
doc: /* -*- texinfo -*-
@deftypefn {} {@var{val} =} svd_driver ()
@deftypefnx {} {@var{old_val} =} svd_driver (@var{new_val})
@deftypefnx {} {} svd_driver (@var{new_val}, "local")
Query or set the underlying @sc{lapack} driver used by @code{svd}.
Currently recognized values are @qcode{"gesdd"} and @qcode{"gesvd"}.
The default is @qcode{"gesvd"}.
When called from inside a function with the @qcode{"local"} option, the
variable is changed locally for the function and any subroutines it calls.
The original variable value is restored when exiting the function.
Algorithm Notes: The @sc{lapack} library provides two routines for calculating
the full singular value decomposition (left and right singular matrices as
well as singular values). When calculating just the singular values the
following discussion is not relevant.
The newer @code{gesdd} routine is based on a Divide-and-Conquer algorithm that
is 5X faster than the alternative @code{gesvd}, which is based on QR
factorization. However, the new algorithm can use significantly more memory.
For an @nospell{MxN} input matrix the memory usage is of order O(min(M,N) ^ 2),
whereas the alternative is of order O(max(M,N)).
Beyond speed and memory issues, there have been instances where some input
matrices were not accurately decomposed by @code{gesdd}. See currently active
bug @url{https://savannah.gnu.org/bugs/?55564}. Until these accuracy issues
are resolved in a new version of the @sc{lapack} library, the default driver
in Octave has been set to @qcode{"gesvd"}.
@seealso{svd}
@end deftypefn */)
{
static const char *driver_names[] = { "gesvd", "gesdd", nullptr };
return SET_INTERNAL_VARIABLE_CHOICES (svd_driver, driver_names);
}
/*
%!test
%! A = [1+1i, 1-1i, 0; 0, 2, 0; 1i, 1i, 1+2i];
%! old_driver = svd_driver ("gesvd");
%! [U1, S1, V1] = svd (A);
%! svd_driver ("gesdd");
%! [U2, S2, V2] = svd (A);
%! svd_driver (old_driver);
%! assert (U1, U2, 5*eps);
%! assert (S1, S2, 5*eps);
%! assert (V1, V2, 5*eps);
*/
|