1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 1996-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
#if defined (HAVE_CONFIG_H)
# include "config.h"
#endif
#include "defun.h"
#include "error.h"
#include "errwarn.h"
#include "ovl.h"
DEFUN (sylvester, args, ,
doc: /* -*- texinfo -*-
@deftypefn {} {@var{X} =} sylvester (@var{A}, @var{B}, @var{C})
Solve the Sylvester equation.
The Sylvester equation is defined as:
@tex
$$
A X + X B = C
$$
@end tex
@ifnottex
@example
A X + X B = C
@end example
@end ifnottex
The solution is computed using standard @sc{lapack} subroutines.
For example:
@example
@group
sylvester ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
@result{} [ 0.50000, 0.66667; 0.66667, 0.50000 ]
@end group
@end example
@end deftypefn */)
{
if (args.length () != 3)
print_usage ();
octave_value retval;
octave_value arg_a = args(0);
octave_value arg_b = args(1);
octave_value arg_c = args(2);
octave_idx_type a_nr = arg_a.rows ();
octave_idx_type a_nc = arg_a.columns ();
octave_idx_type b_nr = arg_b.rows ();
octave_idx_type b_nc = arg_b.columns ();
octave_idx_type c_nr = arg_c.rows ();
octave_idx_type c_nc = arg_c.columns ();
bool isfloat = arg_a.is_single_type ()
|| arg_b.is_single_type ()
|| arg_c.is_single_type ();
if (arg_a.isempty () || arg_b.isempty () || arg_c.isempty ())
{
if (isfloat)
return ovl (FloatMatrix ());
else
return ovl (Matrix ());
}
// Arguments are not empty, so check for correct dimensions.
if (a_nr != a_nc)
err_square_matrix_required ("sylvester", "A");
if (b_nr != b_nc)
err_square_matrix_required ("sylvester", "B");
if (a_nr != c_nr || b_nr != c_nc)
err_nonconformant ();
if (isfloat)
{
if (arg_a.iscomplex ()
|| arg_b.iscomplex ()
|| arg_c.iscomplex ())
{
// Do everything in complex arithmetic;
FloatComplexMatrix ca = arg_a.float_complex_matrix_value ();
FloatComplexMatrix cb = arg_b.float_complex_matrix_value ();
FloatComplexMatrix cc = arg_c.float_complex_matrix_value ();
retval = Sylvester (ca, cb, cc);
}
else
{
// Do everything in real arithmetic.
FloatMatrix ca = arg_a.float_matrix_value ();
FloatMatrix cb = arg_b.float_matrix_value ();
FloatMatrix cc = arg_c.float_matrix_value ();
retval = Sylvester (ca, cb, cc);
}
}
else
{
if (arg_a.iscomplex ()
|| arg_b.iscomplex ()
|| arg_c.iscomplex ())
{
// Do everything in complex arithmetic;
ComplexMatrix ca = arg_a.complex_matrix_value ();
ComplexMatrix cb = arg_b.complex_matrix_value ();
ComplexMatrix cc = arg_c.complex_matrix_value ();
retval = Sylvester (ca, cb, cc);
}
else
{
// Do everything in real arithmetic.
Matrix ca = arg_a.matrix_value ();
Matrix cb = arg_b.matrix_value ();
Matrix cc = arg_c.matrix_value ();
retval = Sylvester (ca, cb, cc);
}
}
return retval;
}
/*
%!assert (sylvester ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12]), [1/2, 2/3; 2/3, 1/2], sqrt (eps))
%!assert (sylvester (single ([1, 2; 3, 4]), single ([5, 6; 7, 8]), single ([9, 10; 11, 12])), single ([1/2, 2/3; 2/3, 1/2]), sqrt (eps ("single")))
## Test input validation
%!error sylvester ()
%!error sylvester (1)
%!error sylvester (1,2)
%!error sylvester (1, 2, 3, 4)
%!error <A must be a square matrix> sylvester (ones (2,3), ones (2,2), ones (2,2))
%!error <B must be a square matrix> sylvester (ones (2,2), ones (2,3), ones (2,2))
%!error <nonconformant matrices> sylvester (ones (2,2), ones (2,2), ones (3,3))
*/
|