File: symrcm.cc

package info (click to toggle)
octave 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 124,192 kB
  • sloc: cpp: 322,665; ansic: 68,088; fortran: 20,980; objc: 8,121; sh: 7,719; yacc: 4,266; lex: 4,123; perl: 1,530; java: 1,366; awk: 1,257; makefile: 424; xml: 147
file content (705 lines) | stat: -rw-r--r-- 19,997 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2007-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING.  If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////

/*
An implementation of the Reverse Cuthill-McKee algorithm (symrcm)

The implementation of this algorithm is based in the descriptions found in

@INPROCEEDINGS{,
        author = {E. Cuthill and J. McKee},
        title = {Reducing the Bandwidth of Sparse Symmetric Matrices},
        booktitle = {Proceedings of the 24th ACM National Conference},
        publisher = {Brandon Press},
        pages = {157 -- 172},
        location = {New Jersey},
        year = {1969}
}

@BOOK{,
        author = {Alan George and Joseph W. H. Liu},
        title = {Computer Solution of Large Sparse Positive Definite Systems},
        publisher = {Prentice Hall Series in Computational Mathematics},
        ISBN = {0-13-165274-5},
        year = {1981}
}

The algorithm represents a heuristic approach to the NP-complete minimum
bandwidth problem.

Written by Michael Weitzel <michael.weitzel@@uni-siegen.de>
                           <weitzel@@ldknet.org>
*/

#if defined (HAVE_CONFIG_H)
#  include "config.h"
#endif

#include <algorithm>

#include "CSparse.h"
#include "boolNDArray.h"
#include "dNDArray.h"
#include "dSparse.h"
#include "oct-locbuf.h"
#include "oct-sparse.h"
#include "quit.h"

#include "defun.h"
#include "errwarn.h"
#include "ov.h"
#include "ovl.h"

// A node struct for the Cuthill-McKee algorithm
struct CMK_Node
{
  // the node's id (matrix row index)
  octave_idx_type id;
  // the node's degree
  octave_idx_type deg;
  // minimal distance to the root of the spanning tree
  octave_idx_type dist;
};

// A simple queue.
// Queues Q have a fixed maximum size N (rows,cols of the matrix) and are
// stored in an array.  qh and qt point to queue head and tail.

// Enqueue operation (adds a node "o" at the tail)

inline static void
Q_enq (CMK_Node *Q, octave_idx_type N, octave_idx_type& qt, const CMK_Node& o)
{
  Q[qt] = o;
  qt = (qt + 1) % (N + 1);
}

// Dequeue operation (removes a node from the head)

inline static CMK_Node
Q_deq (CMK_Node * Q, octave_idx_type N, octave_idx_type& qh)
{
  CMK_Node r = Q[qh];
  qh = (qh + 1) % (N + 1);
  return r;
}

// Predicate (queue empty)
#define Q_empty(Q, N, qh, qt)   ((qh) == (qt))

// A simple, array-based binary heap (used as a priority queue for nodes)

// the left descendant of entry i
#define LEFT(i)         (((i) << 1) + 1)        // = (2*(i)+1)
// the right descendant of entry i
#define RIGHT(i)        (((i) << 1) + 2)        // = (2*(i)+2)
// the parent of entry i
#define PARENT(i)       (((i) - 1) >> 1)        // = floor(((i)-1)/2)

// Builds a min-heap (the root contains the smallest element).  A is an array
// with the graph's nodes, i is a starting position, size is the length of A.

static void
H_heapify_min (CMK_Node *A, octave_idx_type i, octave_idx_type size)
{
  octave_idx_type j = i;
  for (;;)
    {
      octave_idx_type l = LEFT(j);
      octave_idx_type r = RIGHT(j);

      octave_idx_type smallest;
      if (l < size && A[l].deg < A[j].deg)
        smallest = l;
      else
        smallest = j;

      if (r < size && A[r].deg < A[smallest].deg)
        smallest = r;

      if (smallest != j)
        {
          std::swap (A[j], A[smallest]);
          j = smallest;
        }
      else
        break;
    }
}

// Heap operation insert.  Running time is O(log(n))

static void
H_insert (CMK_Node *H, octave_idx_type& h, const CMK_Node& o)
{
  octave_idx_type i = h++;

  H[i] = o;

  if (i == 0)
    return;
  do
    {
      octave_idx_type p = PARENT(i);
      if (H[i].deg < H[p].deg)
        {
          std::swap (H[i], H[p]);

          i = p;
        }
      else
        break;
    }
  while (i > 0);
}

// Heap operation remove-min.  Removes the smallest element in O(1) and
// reorganizes the heap optionally in O(log(n))

inline static CMK_Node
H_remove_min (CMK_Node *H, octave_idx_type& h, int reorg/*=1*/)
{
  CMK_Node r = H[0];
  H[0] = H[--h];
  if (reorg)
    H_heapify_min (H, 0, h);
  return r;
}

// Predicate (heap empty)
#define H_empty(H, h)   ((h) == 0)

// Helper function for the Cuthill-McKee algorithm.  Tries to determine a
// pseudo-peripheral node of the graph as starting node.

static octave_idx_type
find_starting_node (octave_idx_type N, const octave_idx_type *ridx,
                    const octave_idx_type *cidx, const octave_idx_type *ridx2,
                    const octave_idx_type *cidx2, octave_idx_type *D,
                    octave_idx_type start)
{
  CMK_Node w;

  OCTAVE_LOCAL_BUFFER (CMK_Node, Q, N+1);
  boolNDArray btmp (dim_vector (1, N), false);
  bool *visit = btmp.fortran_vec ();

  octave_idx_type qh = 0;
  octave_idx_type qt = 0;
  CMK_Node x;
  x.id = start;
  x.deg = D[start];
  x.dist = 0;
  Q_enq (Q, N, qt, x);
  visit[start] = true;

  // distance level
  octave_idx_type level = 0;
  // current largest "eccentricity"
  octave_idx_type max_dist = 0;

  for (;;)
    {
      while (! Q_empty (Q, N, qh, qt))
        {
          CMK_Node v = Q_deq (Q, N, qh);

          if (v.dist > x.dist || (v.id != x.id && v.deg > x.deg))
            x = v;

          octave_idx_type i = v.id;

          // add all unvisited neighbors to the queue
          octave_idx_type j1 = cidx[i];
          octave_idx_type j2 = cidx2[i];
          while (j1 < cidx[i+1] || j2 < cidx2[i+1])
            {
              octave_quit ();

              if (j1 == cidx[i+1])
                {
                  octave_idx_type r2 = ridx2[j2++];
                  if (! visit[r2])
                    {
                      // the distance of node j is dist(i)+1
                      w.id = r2;
                      w.deg = D[r2];
                      w.dist = v.dist+1;
                      Q_enq (Q, N, qt, w);
                      visit[r2] = true;

                      if (w.dist > level)
                        level = w.dist;
                    }
                }
              else if (j2 == cidx2[i+1])
                {
                  octave_idx_type r1 = ridx[j1++];
                  if (! visit[r1])
                    {
                      // the distance of node j is dist(i)+1
                      w.id = r1;
                      w.deg = D[r1];
                      w.dist = v.dist+1;
                      Q_enq (Q, N, qt, w);
                      visit[r1] = true;

                      if (w.dist > level)
                        level = w.dist;
                    }
                }
              else
                {
                  octave_idx_type r1 = ridx[j1];
                  octave_idx_type r2 = ridx2[j2];
                  if (r1 <= r2)
                    {
                      if (! visit[r1])
                        {
                          w.id = r1;
                          w.deg = D[r1];
                          w.dist = v.dist+1;
                          Q_enq (Q, N, qt, w);
                          visit[r1] = true;

                          if (w.dist > level)
                            level = w.dist;
                        }
                      j1++;
                      if (r1 == r2)
                        j2++;
                    }
                  else
                    {
                      if (! visit[r2])
                        {
                          w.id = r2;
                          w.deg = D[r2];
                          w.dist = v.dist+1;
                          Q_enq (Q, N, qt, w);
                          visit[r2] = true;

                          if (w.dist > level)
                            level = w.dist;
                        }
                      j2++;
                    }
                }
            }
        } // finish of BFS

      if (max_dist < x.dist)
        {
          max_dist = x.dist;

          for (octave_idx_type i = 0; i < N; i++)
            visit[i] = false;

          visit[x.id] = true;
          x.dist = 0;
          qt = qh = 0;
          Q_enq (Q, N, qt, x);
        }
      else
        break;
    }
  return x.id;
}

// Calculates the node's degrees.  This means counting the nonzero elements
// in the symmetric matrix' rows.  This works for non-symmetric matrices
// as well.

static octave_idx_type
calc_degrees (octave_idx_type N, const octave_idx_type *ridx,
              const octave_idx_type *cidx, octave_idx_type *D)
{
  octave_idx_type max_deg = 0;

  for (octave_idx_type i = 0; i < N; i++)
    D[i] = 0;

  for (octave_idx_type j = 0; j < N; j++)
    {
      for (octave_idx_type i = cidx[j]; i < cidx[j+1]; i++)
        {
          octave_quit ();

          octave_idx_type k = ridx[i];
          // there is a nonzero element (k,j)
          D[k]++;
          if (D[k] > max_deg)
            max_deg = D[k];
          // if there is no element (j,k) there is one in
          // the symmetric matrix:
          if (k != j)
            {
              bool found = false;
              for (octave_idx_type l = cidx[k]; l < cidx[k + 1]; l++)
                {
                  octave_quit ();

                  if (ridx[l] == j)
                    {
                      found = true;
                      break;
                    }
                  else if (ridx[l] > j)
                    break;
                }

              if (! found)
                {
                  // A(j,k) == 0
                  D[j]++;
                  if (D[j] > max_deg)
                    max_deg = D[j];
                }
            }
        }
    }
  return max_deg;
}

// Transpose of the structure of a square sparse matrix

static void
transpose (octave_idx_type N, const octave_idx_type *ridx,
           const octave_idx_type *cidx, octave_idx_type *ridx2,
           octave_idx_type *cidx2)
{
  octave_idx_type nz = cidx[N];

  OCTAVE_LOCAL_BUFFER (octave_idx_type, w, N + 1);
  for (octave_idx_type i = 0; i < N; i++)
    w[i] = 0;
  for (octave_idx_type i = 0; i < nz; i++)
    w[ridx[i]]++;
  nz = 0;
  for (octave_idx_type i = 0; i < N; i++)
    {
      octave_quit ();

      cidx2[i] = nz;
      nz += w[i];
      w[i] = cidx2[i];
    }
  cidx2[N] = nz;
  w[N] = nz;

  for (octave_idx_type j = 0; j < N; j++)
    for (octave_idx_type k = cidx[j]; k < cidx[j + 1]; k++)
      {
        octave_quit ();

        octave_idx_type q = w[ridx[k]]++;
        ridx2[q] = j;
      }
}

// An implementation of the Cuthill-McKee algorithm.
DEFUN (symrcm, args, ,
       doc: /* -*- texinfo -*-
@deftypefn {} {@var{p} =} symrcm (@var{S})
Return the symmetric reverse @nospell{Cuthill-McKee} permutation of @var{S}.

@var{p} is a permutation vector such that
@code{@var{S}(@var{p}, @var{p})} tends to have its diagonal elements closer
to the diagonal than @var{S}.  This is a good preordering for LU or
Cholesky@tie{}factorization of matrices that come from ``long, skinny''
problems.  It works for both symmetric and asymmetric @var{S}.

The algorithm represents a heuristic approach to the NP-complete bandwidth
minimization problem.  The implementation is based in the descriptions found
in

@nospell{E. Cuthill, J. McKee}.
@cite{Reducing the Bandwidth of Sparse Symmetric Matrices}.
Proceedings of the 24th @nospell{ACM} National Conference,
157--172 1969, Brandon Press, New Jersey.

@nospell{A. George, J.W.H. Liu}.  @cite{Computer Solution of Large Sparse
Positive Definite Systems}, Prentice Hall Series in Computational
Mathematics, ISBN 0-13-165274-5, 1981.

@seealso{colperm, colamd, symamd}
@end deftypefn */)
{
  if (args.length () != 1)
    print_usage ();

  octave_value arg = args(0);

  // the parameter of the matrix is converted into a sparse matrix
  //(if necessary)
  octave_idx_type *cidx;
  octave_idx_type *ridx;
  SparseMatrix Ar;
  SparseComplexMatrix Ac;

  if (arg.isreal ())
    {
      Ar = arg.sparse_matrix_value ();
      // Note cidx/ridx are const, so use xridx and xcidx...
      cidx = Ar.xcidx ();
      ridx = Ar.xridx ();
    }
  else
    {
      Ac = arg.sparse_complex_matrix_value ();
      cidx = Ac.xcidx ();
      ridx = Ac.xridx ();
    }

  octave_idx_type nr = arg.rows ();
  octave_idx_type nc = arg.columns ();

  if (nr != nc)
    err_square_matrix_required ("symrcm", "S");

  if (nr == 0 && nc == 0)
    return ovl (NDArray (dim_vector (1, 0)));

  // sizes of the heaps
  octave_idx_type s = 0;

  // head- and tail-indices for the queue
  octave_idx_type qt = 0;
  octave_idx_type qh = 0;
  CMK_Node v, w;
  // dimension of the matrix
  octave_idx_type N = nr;

  OCTAVE_LOCAL_BUFFER (octave_idx_type, cidx2, N + 1);
  OCTAVE_LOCAL_BUFFER (octave_idx_type, ridx2, cidx[N]);
  transpose (N, ridx, cidx, ridx2, cidx2);

  // the permutation vector
  NDArray P (dim_vector (1, N));

  // compute the node degrees
  OCTAVE_LOCAL_BUFFER (octave_idx_type, D, N);
  octave_idx_type max_deg = calc_degrees (N, ridx, cidx, D);

  // if none of the nodes has a degree > 0 (a matrix of zeros)
  // the return value corresponds to the identity permutation
  if (max_deg == 0)
    {
      for (octave_idx_type i = 0; i < N; i++)
        P(i) = i;

      return ovl (P);
    }

  // a heap for the a node's neighbors.  The number of neighbors is
  // limited by the maximum degree max_deg:
  OCTAVE_LOCAL_BUFFER (CMK_Node, S, max_deg);

  // a queue for the BFS.  The array is always one element larger than
  // the number of entries that are stored.
  OCTAVE_LOCAL_BUFFER (CMK_Node, Q, N+1);

  // a counter (for building the permutation)
  octave_idx_type c = -1;

  // upper bound for the bandwidth (=quality of solution)
  // initialize the bandwidth of the graph with 0.  B contains the
  // the maximum of the theoretical lower limits of the subgraphs
  // bandwidths.
  octave_idx_type B = 0;

  // mark all nodes as unvisited; with the exception of the nodes
  // that have degree==0 and build a CC of the graph.

  boolNDArray btmp (dim_vector (1, N), false);
  bool *visit = btmp.fortran_vec ();

  do
    {
      // locate an unvisited starting node of the graph
      octave_idx_type i;
      for (i = 0; i < N; i++)
        if (! visit[i])
          break;

      // locate a probably better starting node
      v.id = find_starting_node (N, ridx, cidx, ridx2, cidx2, D, i);

      // mark the node as visited and enqueue it (a starting node
      // for the BFS).  Since the node will be a root of a spanning
      // tree, its dist is 0.
      v.deg = D[v.id];
      v.dist = 0;
      visit[v.id] = true;
      Q_enq (Q, N, qt, v);

      // lower bound for the bandwidth of a subgraph
      // keep a "level" in the spanning tree (= min. distance to the
      // root) for determining the bandwidth of the computed
      // permutation P
      octave_idx_type Bsub = 0;
      // min. dist. to the root is 0
      octave_idx_type level = 0;
      // the root is the first/only node on level 0
      octave_idx_type level_N = 1;

      while (! Q_empty (Q, N, qh, qt))
        {
          v = Q_deq (Q, N, qh);
          i = v.id;

          c++;

          // for computing the inverse permutation P where
          // A(inv(P),inv(P)) or P'*A*P is banded
          //         P(i) = c;

          // for computing permutation P where
          // A(P(i),P(j)) or P*A*P' is banded
          P(c) = i;

          // put all unvisited neighbors j of node i on the heap
          s = 0;
          octave_idx_type j1 = cidx[i];
          octave_idx_type j2 = cidx2[i];

          octave_quit ();

          while (j1 < cidx[i+1] || j2 < cidx2[i+1])
            {
              octave_quit ();

              if (j1 == cidx[i+1])
                {
                  octave_idx_type r2 = ridx2[j2++];
                  if (! visit[r2])
                    {
                      // the distance of node j is dist(i)+1
                      w.id = r2;
                      w.deg = D[r2];
                      w.dist = v.dist+1;
                      H_insert (S, s, w);
                      visit[r2] = true;
                    }
                }
              else if (j2 == cidx2[i+1])
                {
                  octave_idx_type r1 = ridx[j1++];
                  if (! visit[r1])
                    {
                      w.id = r1;
                      w.deg = D[r1];
                      w.dist = v.dist+1;
                      H_insert (S, s, w);
                      visit[r1] = true;
                    }
                }
              else
                {
                  octave_idx_type r1 = ridx[j1];
                  octave_idx_type r2 = ridx2[j2];
                  if (r1 <= r2)
                    {
                      if (! visit[r1])
                        {
                          w.id = r1;
                          w.deg = D[r1];
                          w.dist = v.dist+1;
                          H_insert (S, s, w);
                          visit[r1] = true;
                        }
                      j1++;
                      if (r1 == r2)
                        j2++;
                    }
                  else
                    {
                      if (! visit[r2])
                        {
                          w.id = r2;
                          w.deg = D[r2];
                          w.dist = v.dist+1;
                          H_insert (S, s, w);
                          visit[r2] = true;
                        }
                      j2++;
                    }
                }
            }

          // add the neighbors to the queue (sorted by node degree)
          while (! H_empty (S, s))
            {
              octave_quit ();

              // locate a neighbor of i with minimal degree in O(log(N))
              v = H_remove_min (S, s, 1);

              // entered the BFS a new level?
              if (v.dist > level)
                {
                  // adjustment of bandwidth:
                  // "[...] the minimum bandwidth that
                  // can be obtained [...] is the
                  //  maximum number of nodes per level"
                  if (Bsub < level_N)
                    Bsub = level_N;

                  level = v.dist;
                  // v is the first node on the new level
                  level_N = 1;
                }
              else
                {
                  // there is no new level but another node on
                  // this level:
                  level_N++;
                }

              // enqueue v in O(1)
              Q_enq (Q, N, qt, v);
            }

          // synchronize the bandwidth with level_N once again:
          if (Bsub < level_N)
            Bsub = level_N;
        }
      // finish of BFS.  If there are still unvisited nodes in the graph
      // then it is split into CCs.  The computed bandwidth is the maximum
      // of all subgraphs.  Update:
      if (Bsub > B)
        B = Bsub;
    }
  // are there any nodes left?
  while (c+1 < N);

  // compute the reverse-ordering
  s = N / 2 - 1;
  for (octave_idx_type i = 0, j = N - 1; i <= s; i++, j--)
    std::swap (P.elem (i), P.elem (j));

  // increment all indices, since Octave is not C
  return ovl (P+1);
}