1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002-2021 The Octave Project Developers
//
// See the file COPYRIGHT.md in the top-level directory of this
// distribution or <https://octave.org/copyright/>.
//
// This file is part of Octave.
//
// Octave is free software: you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// Octave is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Octave; see the file COPYING. If not, see
// <https://www.gnu.org/licenses/>.
//
////////////////////////////////////////////////////////////////////////
#if defined (HAVE_CONFIG_H)
# include "config.h"
#endif
#include <cmath>
#include "lo-ieee.h"
#include "defun.h"
#include "error.h"
#include "ovl.h"
inline double max (double a, double b, double c)
{
if (a < b)
return (b < c ? c : b);
else
return (a < c ? c : a);
}
inline double min (double a, double b, double c)
{
if (a > b)
return (b > c ? c : b);
else
return (a > c ? c : a);
}
#define REF(x,k,i) x(static_cast<octave_idx_type> (elem((k), (i))) - 1)
// for large data set the algorithm is very slow
// one should presort (how?) either the elements of the points of evaluation
// to cut down the time needed to decide which triangle contains the
// given point
// e.g., build up a neighbouring triangle structure and use a simplex-like
// method to traverse it
DEFUN (tsearch, args, ,
doc: /* -*- texinfo -*-
@deftypefn {} {@var{idx} =} tsearch (@var{x}, @var{y}, @var{t}, @var{xi}, @var{yi})
Search for the enclosing Delaunay convex hull.
For @code{@var{t} = delaunay (@var{x}, @var{y})}, finds the index in @var{t}
containing the points @code{(@var{xi}, @var{yi})}. For points outside the
convex hull, @var{idx} is NaN.
@seealso{delaunay, delaunayn}
@end deftypefn */)
{
if (args.length () != 5)
print_usage ();
const double eps = 1.0e-12;
const ColumnVector x (args(0).vector_value ());
const ColumnVector y (args(1).vector_value ());
const Matrix elem (args(2).matrix_value ());
const ColumnVector xi (args(3).vector_value ());
const ColumnVector yi (args(4).vector_value ());
const octave_idx_type nelem = elem.rows ();
ColumnVector minx (nelem);
ColumnVector maxx (nelem);
ColumnVector miny (nelem);
ColumnVector maxy (nelem);
for (octave_idx_type k = 0; k < nelem; k++)
{
minx(k) = min (REF (x, k, 0), REF (x, k, 1), REF (x, k, 2)) - eps;
maxx(k) = max (REF (x, k, 0), REF (x, k, 1), REF (x, k, 2)) + eps;
miny(k) = min (REF (y, k, 0), REF (y, k, 1), REF (y, k, 2)) - eps;
maxy(k) = max (REF (y, k, 0), REF (y, k, 1), REF (y, k, 2)) + eps;
}
const octave_idx_type np = xi.numel ();
ColumnVector values (np);
double x0, y0, a11, a12, a21, a22, det;
x0 = y0 = 0.0;
a11 = a12 = a21 = a22 = 0.0;
det = 0.0;
octave_idx_type k = nelem; // k is a counter of elements
for (octave_idx_type kp = 0; kp < np; kp++)
{
const double xt = xi(kp);
const double yt = yi(kp);
// check if last triangle contains the next point
if (k < nelem)
{
const double dx1 = xt - x0;
const double dx2 = yt - y0;
const double c1 = (a22 * dx1 - a21 * dx2) / det;
const double c2 = (-a12 * dx1 + a11 * dx2) / det;
if (c1 >= -eps && c2 >= -eps && (c1 + c2) <= (1 + eps))
{
values(kp) = double(k+1);
continue;
}
}
// it doesn't, so go through all elements
for (k = 0; k < nelem; k++)
{
octave_quit ();
if (xt >= minx(k) && xt <= maxx(k) && yt >= miny(k) && yt <= maxy(k))
{
// element inside the minimum rectangle: examine it closely
x0 = REF (x, k, 0);
y0 = REF (y, k, 0);
a11 = REF (x, k, 1) - x0;
a12 = REF (y, k, 1) - y0;
a21 = REF (x, k, 2) - x0;
a22 = REF (y, k, 2) - y0;
det = a11 * a22 - a21 * a12;
// solve the system
const double dx1 = xt - x0;
const double dx2 = yt - y0;
const double c1 = (a22 * dx1 - a21 * dx2) / det;
const double c2 = (-a12 * dx1 + a11 * dx2) / det;
if ((c1 >= -eps) && (c2 >= -eps) && ((c1 + c2) <= (1 + eps)))
{
values(kp) = double(k+1);
break;
}
} //endif # examine this element closely
} //endfor # each element
if (k == nelem)
values(kp) = lo_ieee_nan_value ();
} //endfor # kp
return ovl (values);
}
/*
%!shared x, y, tri
%! x = [-1;-1;1];
%! y = [-1;1;-1];
%! tri = [1, 2, 3];
%!assert (tsearch (x,y,tri,-1,-1), 1)
%!assert (tsearch (x,y,tri, 1,-1), 1)
%!assert (tsearch (x,y,tri,-1, 1), 1)
%!assert (tsearch (x,y,tri,-1/3, -1/3), 1)
%!assert (tsearch (x,y,tri, 1, 1), NaN)
%!error tsearch ()
*/
|